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ABSTRACT

Crossover interference in meiosis is often modeled via stationary renewal processes. Here we consider a
new model to incorporate the known biological feature of ‘‘obligate chiasma’’ whereby in most organisms
each bivalent almost always has at least one crossover. The initial crossover is modeled as uniformly dis-
tributed along the chromosome, and starting from its position, subsequent crossovers are placed with
forward and backward stationary renewal processes using a chi-square distribution of intercrossover dis-
tances. We used our model as well as the standard chi-square model to simulate the patterns of crossover
densities along bivalents or chromatids for those having zero, one, two, or three or more crossovers;
indeed, such patterns depend on the number of crossovers. With both models, simulated patterns com-
pare very well to those found experimentally in mice, both for MLH1 foci on bivalents and for crossovers
on genetic maps. However, our model provides a better fit to experimental data as compared to the
standard chi-square model, particularly regarding the distribution of numbers of crossovers per chromo-
some. Finally, our model predicts an enhancement of the recombination rate near the extremities, which,
however, explains only a part of the pattern observed in mouse.

MEIOSIS is a key step in the life cycle of organisms
that reproduce sexually because it is the process

that leads to the halving of chromosome number; ploidy
level is restored at the fertilization step. In the meiotic
process, crossovers (COs) play a crucial role, ensuring
the proper segregation of homologous chromosomes
at the first division. Indeed, they make a mechanical
link between homologs that is essential to ensure that
the cell will send each homolog to opposite poles. A CO
may be observed cytologically because it forms a struc-
ture called chiasma. In addition, genetic recombina-
tion due to COs is an important evolutionary force
involved in shaping the genetic diversity of natural and
artificial populations. For instance, the frequency of
COs may be different between sexes or according to
the mode of reproduction (Lenormand and Dutheil

2005; Roze and Lenormand 2005) and seems to play
an evolutionary role.

COs lead to reciprocal exchange of large fragments
of homologous nonsister chromatids (supplemental
Figure 1 at http://www.genetics.org/supplemental/).
Thus, the genetic outcome of COs is the reassociation
of genetic markers located on both sides of the CO
point. COs occur in the context of a bivalent that is a

structure associating two homologous chromosomes,
each formed by two sister chromatids. Each gamete will
inherit one of these chromatids. When a bivalent ex-
hibits one CO, two nonsister chromatids are recom-
bined while the other two remain unchanged. With two
COs on one bivalent, three kinds of chromatids are
recovered with zero, one, or two COs (supplemental
Figure 1). It is generally considered that there is no
chromatid interference (Zhao et al. 1995; Copenhaver

et al. 1998); i.e., when two COs occur on the bivalent the
chromatids involved in each CO are randomly and
independently chosen.

CO distribution along chromosomes may be estimated
at the bivalent level, by direct cytological observation
of chiasmata or by immunofluorescent observation of
foci of different proteins associated with CO formation
(Lawrie et al. 1995; Froenicke et al. 2002; de Boer et al.
2006). In such cases, one measures the density of chi-
asmata or foci along the bivalent, and the distance is
measured in micrometers under the microscope. Al-
ternatively, CO distributions may be estimated at the
chromatid level by analyzing segregation data from
high-density linkage-mapping experiments (Broman

et al. 2002). In such cases, the CO position is between
two adjacent genetic markers that display recombina-
tion, and the distance is measured in units of genetic
distance (centimorgans). In all cases, CO density is not
uniformly distributed along physical chromosomes; the
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pattern varies greatly among species and even among
chromosomes within a species. A very common rule is
that COs are strongly suppressed at the centromere
regions, even if in some species COs have been found
preferentially localized in pericentromeric regions ( Jones

1984; Choo 1998; see review by Mezard 2006). Although
the causes of such variability are still not understood, it is
clear that CO distribution is a highly regulated process.
First, in most organisms, each pair of chromosomes, what-
ever their size, bears at least one CO ( Jones and Franklin

2006). Second, COs are not independent of each other:
the occurrence of one CO inhibits the occurrence of
others in a distance-dependent manner, resulting in COs
being spaced more evenly through the chromosomes than
would be expected if they occurred independently. This
phenomenon is known as positive interference (hereafter
referred to as interference; Jones 1984). As a conse-
quence, the number of COs is often limited (typically one
to two COs per chromosome in mouse). The existence
of interference has been confirmed in most species
tested (exceptions include Schizosaccharomyces pombe and
Aspergillus nidulans) although its mechanism remains mys-
terious (Zickler and Kleckner 1999). In addition, data
obtained in yeast (Hollingsworth and Brill 2004;
Stahl et al. 2004), human (Housworth and Stahl

2003), and Arabidopsis thaliana (wild type, Lam et al. 2005;
Copenhaver et al. 2002; mutants, Higgins et al. 2004;
Mercier et al. 2005) strongly suggest that while most COs
are subject to interference, some of them are not, defining
two classes of COs (Mezard et al. 2007). The ratio of inter-
fering COs to noninterfering COs differs between the
species in which it has been studied. In yeast, �30% of
the COs seem to escape the interference mechanism
and in A. thaliana it is �15%. In mouse, several results
(reviewed in de Boer et al. 2006) suggest that non-
interfering COs constitute�10% of the total CO number.
At the two extremes are Caenorhabditis elegans that has only
interfering COs and S. pombe with only noninterfering
COs. Interestingly, interfering COs can be specifically
detected during meiosis, using immunodetection of the
MLH1, one of the proteins involved in this pathway of CO
formation.

Interference is thus important for the dynamics of
diversity and genetic linkage in natural populations or
in controlled crosses. In particular, it should be properly
modeled when building linkage maps because the map
function converting recombination fractions into addi-
tive genetic distances depends on the frequency of double
COs, and this frequency is sensitive to interference.
Moreover, interference reduces the probability of close
recombination events on a gamete, thereby strongly
affecting the way the genetic material is shuffled at each
generation.

Numerous models have been proposed to describe
the role of interference in the positioning of COs along
chromosomes (Mezard et al. 2007). An important math-
ematical model of the field is the ‘‘chi-square model’’

(also called ‘‘counting model’’) that produces a very
satisfactory fit of predicted CO distribution to genetic
data sets in many cases (Foss et al. 1993). The chi-square
model is based on the assumption that a fixed number
of failed events separate COs. That was motivated by the
fact that biologically, meiotic recombination is known
to be initiated by DNA double-strand breaks that are
repaired as either COs or non-CO (Bishop and Zickler

2004). Thus, the failed events would be the non-CO
events. However, the chi-square model based on a fixed
number of failed events between two COs is challenged
by data that suggest that the number of failed events
varies between sexes and individuals in the same species,
between chromosomes in the same nucleus, and even
along chromosomes or in mutant context (Lin et al.
2001; Esch 2005; Martini et al. 2006). Furthermore, the
biological foundation of the chi-square model remains
speculative as no biological process has been described
that directly counts DNA double-strand breaks, although
some interesting hypotheses of ordered clusters of re-
combination intermediates have been proposed by
Stahl et al. (2004). Nevertheless, this model still pro-
vides a very good fit to genetic data and can be used to
model CO distribution without assuming any particular
biological process (de Boer et al. 2006). Very similar to
this chi-square model, the gamma model (McPeek and
Speed 1995) is obtained by pulling inter-CO distances
from a gamma probability distribution. For integer val-
ues of its parameter, the gamma model is strictly equi-
valent to the chi-square model.

It has been known for some time that in a majority of
organisms, successful meiosis requires at least one chi-
asma to be formed on each bivalent, a constraint re-
ferred to as obligate chiasma (OC) ( Jones 1984; Jones

and Franklin 2006). Surprisingly, although there is a
vast literature on mathematical modeling of interfer-
ence (Zhao and Speed 1996), little has been done to
include OC. To take into account the OC, we introduce
a model of CO formation with OC. One possible ex-
planation for the OC phenomenon is that in a process
sequential in time, at least one CO should arise if
enough double-strand break sites attempt to produce
COs. Then, once a site is sufficiently advanced in the CO
process, interference sets in; i.e., that site will inhibit the
sites in its neighborhood. In this work, we modified the
chi-square model to take into account this OC con-
straint and examine the general pattern that follows for
the COs along bivalents and along chromatids. We first
do this at the bivalent level, comparing simulations
obtained with the chi-square and our models to exper-
imental distributions of the subset of COs marked by
MLH1 along mouse bivalents. These COs are believed
to belong to the interfering pathway. The data we use
were published by Froenicke et al. (2002). Then we ex-
tend this study to CO patterns at the chromatid level,
comparing simulations obtained with our model to ex-
perimental distributions of recombination along mouse
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linkage maps published by Broman et al. (2002). Finally
we show that our model naturally leads to an enhanced
recombination rate along physical chromosomes near
the telomeres and compare this to the mouse data in
Froenicke et al. (2002).

MODELS

Distance units and chromosome length: Throughout
this article, positions of loci along a chromosome are
expressed either in physical micrometer distance along
the synaptonemal complex (SC) or in genetic distance
as for linkage maps. In addition, we also introduce the
interference-relevant distance (IRD), which is the dis-
tance for the coordinate space in which we suppose that
interference is produced.

SC distances can be measured from microscope
image analysis as described by Froenicke et al. (2002).
They reflect a certain degree of chromatin condensa-
tion that may be heterogeneous, so this distance is not
expected to be linear in the physical distance (measured
in base pairs along the DNA molecule).

Genetic distances are expressed in morgans; this unit
is defined as the distance over which the mean number
of COs arising on a chromatid is one per meiosis. In the
coordinate space of genetic distance, the CO density is
thus uniformly distributed along the chromosome. In
general, genetic distance is proportional neither to SC
distance nor to physical distance in base pairs along the
DNA molecule.

We define IRD as the coordinate space in which we
model interference. This space is most commonly sup-
posed to be the same as the genetic distance space, since
most interference models suppose that two COs are less
likely to occur when the genetic distance between them
becomes low. This means that such models consider that
the closer two intervals are on the linkage map, the less
likely they are to be both recombinant in the same
meiosis. In this article, we introduce a new interference
model in which IRD and genetic distances are not pro-
portional to each other.

It is possible to convert positions from one coordinate
space to another, provided that the CO density along
each space is known. So if rCO;SCðxÞ, rCO;GðxÞ, and
rCO;IRDðxÞ are the CO densities at position x in the SC
space, the genetic space, and the IRD space, respec-
tively, and XSC, XG, and XIRD are the positions of a given
locus in these three spaces, respectively, correspond-
ences between these positions may be calculated using
the relation

ðXSC

0
rCO;SCðxÞdx ¼

ðXG

0
rCO;GðxÞdx ¼

ðXIRD

0
rCO;IRDðxÞdx:

At the chromatid level, rCO;GðxÞ ¼ 1 for any x by
definition of the genetic distance. At the bivalent level,
we see later that rCO;GðxÞ ¼ 2 for any x.

From bivalents to chromatids: Interference arises at
the bivalent level, which consists of the four aligned
chromatids tied together in the SC. For each CO gen-
erated, the two (nonsister) chromatids involved are
chosen at random with equal probabilities among the
four possible pairs, following the hypothesis of no chro-
matid interference (supplemental Figure 1 at http://
www.genetics.org/supplemental/). Thus, once COs have
been placed along a bivalent by using any model of
interference, it is possible to model the position of COs
along a chromatid derived from this bivalent by ran-
domly selecting on average half of the COs and discard-
ing the other ones. This is called ‘‘random thinning’’
(McPeek and Speed 1995). Then, the mean density of
COs on the bivalent must be 2.0 per morgan because
each CO has a probability of 1

2 to be passed on to a
chromatid and there the density of COs must be 1.0 by
definition of the morgan unit for genetic distance.

Interference models using stationary renewal pro-
cesses: The main models of CO interference are based
on stationary renewal processes (SRPs) (Zhao and Speed

1996). In a renewal process, one generates a succession
of points (positions) along a line, going from say left to
right. The distances between successive points are in-
dependent and identically distributed random variables.
Such a process becomes ‘‘stationary’’ (statistically inde-
pendent of where one sets the origin of the coordinates
on the line) if the first point is laid down far enough to
the left; in particular, the expected density of points
becomes uniform along the line. For the modeling of
COs along bivalents, first, place on the line a segment of
length equal to the genetic length of the bivalent under
consideration; then, use the SRP to lay down points on
the line; finally, identify the positions of the SRP points
lying within the segment as COs at the corresponding
genetic positions on the bivalent. By stationarity of the
SRPs, the density of COs is uniform along the bivalent.
Note that in such SRPs, the IRD space is the genetic
distance space, so inter-CO distances are expressed in
morgans. Interference is naturally associated with the
distribution of distances (d ) between successive COs: if
interference is high, the points will tend to be regularly
spaced. If, on the contrary, there is no interference, then
d has an exponential distribution, corresponding to the
Haldane no interference model (Haldane 1919). SRPs
are useful mathematical tools for modeling the interfer-
ence that one CO has on its surrounding. One of the
most commonly used SRPs is the chi-square model (Foss

et al. 1993), also called the counting model. We focus on it
because of its simplicity and goodness-of-fit to data in
previous works. In that model, d is obtained by summing
m 1 1 random variables (m is an integer parameter cor-
responding to the number of precursors that do not turn
into COs), each of them following an exponential dis-
tribution. This is equivalent to pulling d from a chi-square
distribution with 2(m 1 1) d.f. To ensure an average
number of two COs per morgan unit of bivalent length,
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each value of d has to be divided by 2(m 1 1). The
biological interpretation of this model is that the current
CO prevents the following m putative ones from being
realized so they are ‘‘skipped.’’ When m ¼ 0, we recover
the noninterfering model (Haldane’s model). The chi-
square model has been applied to describe interference
in a number of different organisms, and adjustments to
biological data lead to average values of m ¼ 2 for Neu-
rospora, m ¼ 4 for Drosophila (Foss et al. 1993), and
m ¼ 3–9 for Arabidopsis, depending on chromosomes
(Copenhaver et al. 2002; Lam et al. 2005).

‘‘Forced initial CO’’ model for obligate chiasma: For
each bivalent, having at least one CO ensures that mei-
osis will correctly segregate the chromosomes. In gen-
eral, SRPs do not lead to OC because there is some
chance that the interval generated by the SRP will be
larger than the length of the chromosome.

We describe here an interference model in which the
OC rule is enforced by construction: we directly gener-
ate the position of an initial CO with a uniform distri-
bution along the IRD space. Then we generate further
COs successively toward each end of the bivalent via
SRPs using for each inter-CO distance d a sum of m 1 1
exponentially distributed random variables. The result-
ing process is referred to as forced initial CO (FIC).
Both the FIC and the chi-square models involve SRPs
parameterized by the integer m, which specifies the
number of putative points to skip. Note that both the
chi-square and our FIC model involve a single param-
eter m that describes the intensity of the interference;
no other adjustment to the data can be made because we
assume given the genetic length of the chromosome.

The FIC model is not a SRP, and it generates CO
distributions that are not uniform if m is different from
zero. In other words, the IRD space within the FIC model
is different from the genetic distance space. So we have to
go from this IRD space to the distance of interest that can
be either the SC distance or the genetic distance, de-
pending on the type of data that we want to compare to.
For this, we simulate 5 3 105 bivalents to numerically
obtain the CO density distribution along IRD space, and,
after CO positions have been simulated, we convert their
IRD position into either SC or genetic positions as de-
scribed before (no adjustable parameter here).

To ensure an average number of 2 COs per morgan
unit of bivalent length, we do not know of a mathemat-
ical solution to calculate the rescaling coefficient that
should be applied to d. So we determine this rescaling
coefficient numerically by simulating COs on 104 biva-
lents and iterating this process on the rescaling co-
efficient until the average simulated number of COs per
morgan unit of bivalent length reaches 2.0 6 10�3.

DATA SETS AND ANALYSIS

Modeling interference between MLH1 foci using data
from FROENICKE et al. (2002): The mouse data kindly

provided to us by Lorrie Anderson specify, for each
chromosome separately, the positions of the MLH1 foci,
measured in relative SC distances, decomposed accord-
ing to whether one focus or two foci are observed on the
same SC, as displayed in Figure 3 of Froenicke et al.
(2002). That study used male mice of strain C57BL/6J.
During meiosis, the MLH1 foci were detected by im-
munofluorescence, their position (in micrometers) on
the SC was measured, and the identification of the cor-
responding chromosome number was obtained by chro-
mosome ‘‘painting.’’ MLH1 foci are associated with the
formation of a subset of COs corresponding to the in-
terfering pathway (Argueso et al. 2004; de Boer et al.
2006). See Froenicke et al. (2002) for further details.

We calculated 95% confidence intervals on frequen-
cies of MLH1 foci on bivalents estimated from experi-
mental data as 61:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1� f Þ=N

p
, where f is the

estimated frequency of these foci and N is the total
number of bivalents observed.

We use both our FIC model and the standard chi-
square model to simulate (i) frequencies of SCs with
zero, one, two, or three or more COs and (ii) patterns of
COs along SCs having one CO and along SCs having two
COs. The MLH1 mapping data of Froenicke et al.
(2002) give the position in fractions of the total SC
length. We convert this fraction into the usual genetic
distance as described before, using the density distribu-
tion of MLH1 foci along the SC space. This last density
distribution is taken from the data of Froenicke et al.
(2002). We also use the experimental data set to de-
termine the genetic length of each chromosome, as half
the average number of MLH1 foci per bivalent. To stay
as close as possible to the data published in Froenicke

et al. (2002), we use here only fractions of total SC
lengths, so standardized positions on each chromosome
go from zero to one. The interference parameter m is
the only quantity we can adjust; for this adjustment, we
proceed as follows: (1) for every pair of adjacent MLH1
foci in the experimental data set, we calculate the ge-
netic distance d between both foci; (2) we calculate the
distribution of d as the frequencies of d-values falling
into 10 bins of identical width, spanning the length of
the chromosome; (3) for all integer values of m between
0 and 50, we simulate 107 meioses using our models,
derive a series of simulated d values, and calculate their
distribution as for experimental data; (4) for each value
of m, we measure the goodness-of-fit of the model as the
sum of squares of differences between experimental
and simulated frequencies over the 10 distance bins;
and (5) finally we set m to the value for which this sum of
squares of differences reaches a minimum.

To pool MLH1 density data over all chromosomes,
the numbers of foci observed in a given position bin are
summed over all chromosomes, and global densities
are then calculated for each bin. For simulations, chro-
mosome lengths are determined from the data for each
chromosome separately and then m is adjusted. Similarly,
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simulated COs are pooled over chromosomes as for ex-
perimental MLH1 foci.

Modeling interference between COs using data from
BROMAN et al. (2002): The data kindly provided to us by
Karl Broman specify separately for each chromosome
the positions of COs, measured in genetic distance, on a
high-density mouse linkage map reflecting female meio-
sis. Data are decomposed according to whether zero,
one, two, or three COs are observed on the same gam-
etic chromosome as displayed in Figure 3 of Broman

et al. (2002). That work pooled two data sets from
94 progeny of each of the interspecific BSB and BSS
backcross populations, respectively (C57BL/6J 3 Mus
spretus) F1 3 C57BL/6J and (C57BL/6J 3 SPRET/Ei)
F1 3 SPRET/Ei (Rowe et al. 1994), genotyped with
respectively 1372 and 4913 genetic markers, 904 mark-
ers being common to both populations. See Broman

et al. (2002) for further details.
Here for each chromosome we set m to n� 1, where n

is the parameter of the gamma model estimated by
Broman et al. (2002). Indeed, the gamma model with an
integer value of n is strictly equivalent to a chi-square
model with m¼ n� 1 (McPeek and Speed 1995). So we
apply our model without using any adjusted parameter.
For chromosomes 17 and 18, genetic length was esti-
mated by Broman et al. (2002) to values slightly ,50 cM.
Since such values are not in accordance with the OC
constraint and thus are not allowed for the FIC model,
we set those chromosome lengths to 50 cM for the sim-
ulations. In general, increasing the genetic length will
lower the goodness-of-fit to the data, and so this proce-
dure should not skew the analysis in favor of the model.

Density data pooling over chromosomes is performed
as for MLH1 data, by pooling COs instead of MLH1 foci.

Modeling the heterogeneity of MLH1 foci distribu-
tion along chromosomes: If there were a unique path-
way to produce COs, the distribution of MLH1 foci would
give an exact picture of the pattern of recombination
rate along the bivalent. Under this simplified hypothe-
sis, we investigate to what extent the observed distribu-
tion of MLH1 foci along SCs could be a consequence of
both interference and the OC constraint.

To do this, we simulate crossovers on bivalents with
our FIC model considering IRD positions to be the same
as SC positions, and so no conversion between these
positions is necessary. We thus compare directly the sim-
ulated pattern of CO density along IRD space with the
pattern of MLH1 foci density along SC space, to see to
what extent these patterns may be shaped by interfer-
ence and OC.

As before, we pool data over chromosomes by taking
the experimental densities of foci for each chromosome
and pooling them. The same procedure is used in the
simulations where for each chromosome the value of m
is adjusted to the data as seen before.

So far we have never considered centromere effects,
one reason being that both the Froenicke et al. (2002)

and the Broman et al. (2002) studies are on mice where
chromosomes are telocentric. Nevertheless, in most
organisms, the centromere suppression effect is the
dominant effect patterning recombination rate along
chromosomes, so we cannot escape modeling it here.
We have thus extended our model to take into account
in an all-or-none fashion the effect of the centromere on
recombination. In this extended model, we simulate the
COs as follows: the first CO must fall outside the cen-
tromere; and subsequent ones are generated as before
but only those outside the centromere are kept.

RESULTS

Patterning of MLH1 foci along the chromosome:
In Figure 1 we show the histograms of simulated CO fre-
quencies on bivalents (along the genetic map) when
one has one, two, and three COs. The pattern appears as
a ripple effect, the more COs there are, the more ripples
appear. For meioses with just one CO, the distribution is
lower at the chromosome ends while it is higher for
meioses with two COs. Further ripples appear when the
number of COs grows, and the density is higher in the
middle for an odd number of COs and lower for an even
number of COs. If interference is absent (m ¼ 0), each
of the curves is completely flat, while as m grows, the
ripples become stronger (Figure 1). Another feature is
the dependence on the chromosome length; for short
chromosomes (between 50 and 70 cM) and m interme-
diate to large, the curve associated with having two COs
has a deep trough near the middle. For long chromo-
somes, the patterning becomes weaker (Figure 1), and for
very long chromosomes, the ripples disappear, leaving
just the uniform distribution. Qualitatively, the chi-
square model and our FIC model lead to similar pat-
terns (Figure 1). However, for short chromosomes, the
FIC model predicts a lower proportion of bivalents with
two and three COs and a greater proportion of bivalents
with one CO, as compared to the chi-square model
(Figure 1). This difference becomes greater for shorter
chromosomes and weaker interference, and, inversely,
the differences between the models become negligible
for long chromosomes or strong interference.

Let us now compare our model with the experimental
distributions obtained by Froenicke et al. (2002). Table 1
gives the values of interference parameter m in the chi-
square model and in our FIC model after adjustment to
the experimental data for each chromosome. For short
chromosomes 15–19, because of OC there are only a
very small number of bivalents with two MLH1 foci in
the experimental data, so that sometimes no adjustment
was possible for m. In such cases, however, the value of m
has almost no effect on the outcome of the models, so
that m was arbitrarily set to 50.

Figure 2 shows the observed and expected frequen-
cies of bivalents with zero, one, two, and three or more
MLH1 foci (experimental data) or simulated COs. The
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chi-square and the FIC models give a similarly good fit
to the data for longer chromosomes (1–11), whereas in
shorter chromosomes (12–19) the chi-square model of-
ten tends to predict too few bivalents with one CO and
too many ones with zero or two COs, so that the FIC
model provides a more satisfactory fit to the data. To
obtain an objective measure of the goodness-of-fit to the
data for each model, we calculated sums of squares of
differences between observed and expected frequen-
cies of bivalents with zero, one, two, and three or more
MLH1 foci or simulated COs (Table 2). The lower this
value the better the model fits the data. Pooling all chro-
mosomes together as explained before, this sum of
squares is 5.2 3 10�4 for the FIC model and 7.9 3 10�3

for the chi-square model, a value 15 times higher than
with the FIC model.

Figure 3 shows the expected and observed patterns of
MLH1 foci density along the SC for bivalents having ex-
actly 1 or exactly 2 MLH1 foci, as well as for all bivalents.
These last curves for all bivalents show a perfect fit be-
tween models and data by construction. They are strongly
asymmetric, with very low MLH1 densities at the cen-
tromeric end and very high ones at the telomeric end.
Figure 3 shows graphs for two chromosomes and for all

19 autosomes pooled together, and a similar figure with
each of the 19 autosomes is given as supplemental Fig-
ure 2 at http://www.genetics.org/supplemental/. Note
that a difference between Figure 1 and Figure 3 is that
IRD positions were converted into SC positions in Fig-
ure 3 and into genetic positions in Figure 1. As observed
in Figure 2, simulations reproduce the experimental
data equally well for the chi-square and the FIC models
in longer chromosomes (1–11), whereas for shorter
ones (12–19) the FIC model shows a slightly better fit.
The smallest chromosomes are also noisier because they
have so few meioses with two MLH1 foci. As previously,
we measured goodness-of-fit to the data for the FIC and
chi-square models by calculating sums of squares of dif-
ferences between observed and expected frequencies of
MLH1 foci in the different bins along bivalents (Table
2). Lower values again indicate better fits to the data.
Pooling all chromosomes together as explained before,
this sum of squares is 4.4 3 10�4 for the FIC model and
2.3 3 10�3 for the chi-square model, so that the FIC
model gives a value five times lower than the chi-square
model.

Interestingly, among 2020 bivalents analyzed in the ex-
perimental data set, 20 of them had no CO belonging

Figure 1.—Frequencies of crossovers (COs) along bivalents having one (circles), two (triangles), or three COs (squares) and for
all bivalents (diamonds). Positions are based on genetic distances. The chromosome is taken to have a genetic size of 100 or 60 cM.
The data were obtained from simulations using the standard chi-square model (open symbols and dashed lines) and our FIC model
enforcing the obligate chiasma constraint (solid symbols and lines), using m¼ 4 and m¼ 12. x-axis: relative position of the middle of
the bin along the synaptonemal complex (SC), expressed in relative genetic distance. All bin sizes are 0.05. CO frequencies are
calculated from 5 3 107 simulated meioses. The total curve for all bivalents is flat because of the definition of genetic distance.
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to the subset marked by MLH1. If such observations are
not artifacts, the FIC model alone, by construction, is
not able to account for them (see discussion). We also
see that essentially no cases of three or more COs are
produced within our FIC model; the reason is that
interference in the mouse is strong (m is large).

Modeling the pattern of COs along chromatids: Fig-
ure 4 shows the predicted patterns of CO density along
chromatids within the FIC and chi-square models. Quali-
tatively, the patterns are similar to the case of the bivalents
(Figure 1), although the variations are less pronounced
here, in particular for the case of the single CO curve.
Again, the intensity of the pattern depends on chromo-
some length and m and is stronger for smaller chromo-
somes and higher values of m. Differences between
chi-square and FIC models (Figure 4) are qualitatively
similar to those observed at the bivalent level (Figure 1),
though less pronounced.

In Figure 5 we compare experimental data to simu-
lations obtained with the FIC model, in direct analogy

with what was done for Figures 2 and 3 except that the
x-axis corresponds to genetic distance in Figure 5, d–f,
instead of SC distance in Figure 3. The experimental
data are linkage mapping data of Broman et al. (2002),
and we also use his values of m for the interference pa-
rameter. For chromosome 1 (Figure 5, a and d), the
intensity of the patterning is weak and the data are noisy,
but this is the chromosome where the patterning effect
is weakest because it is long. Most of the chromosomes
have a clear patterning effect and resemble that given in
Figure 5e: the single CO events arise dominantly near
the center, and if a gamete has more than one CO these
arise only rarely near the center. This is confirmed in
Figure 5f, where counts of COs are pooled over all chro-
mosomes. A figure similar to Figure 5, but for all indivi-
dual chromosomes is available as supplemental Figure 3
at http://www.genetics.org/supplemental/.

Obligate chiasma produces a ‘‘smile’’ in the CO
density: Here we point out that the obligate chiasma
constraint along with interference leads to a natural
enhancement of CO rates at the extremities of a chro-
mosome. To see this, we apply our FIC model of OC
with interference and determine the density of COs as a
function of IRD position. Then comparing the results to
the data of Froenicke et al. (2002) indicates to what ex-
tent the density distribution of COs along IRD space
may explain this distribution along SC space. Our re-
sults show that COs arise more frequently near the ex-
tremities of the chromosome and less in the center. We
call this a smile effect. The results are presented in Fig-
ure 6. Not surprisingly, the strength of the smile de-
pends on the length of the chromosome and on the
parameter m. As an example, the enhancement of the
CO rate at telomeres compared to the center reaches
24% for m ¼ 8. Note that SRP models without OC, like
the chi-square model, do not lead to any such smile effect.

We also modeled the case of a metacentric chromo-
some with complete suppression of recombination within
the centromere and none outside its range. Results are
shown in Figure 6; the recombination rate appears to be
higher both near the centromere and near the telo-
meres (double smile) for 100-cM chromosomes, whereas
this effect is not observed with 60-cM chromosomes.

Finally, we compare our theoretically motivated smile
shapes to the actual data of total MLH1 foci densities (see
Figure 3), using the SC distances provided in Froenicke

et al. (2002) and considering that SC and IRD distances
are identical. The results are displayed in Figure 7. The
theoretical smile leads to an enhancement at the telo-
mere compared to the center of�34%, while that of the
experimental data is 179%.

DISCUSSION

Multiple distance coordinate spaces and interference:
As explained before, positions along a bivalent or a chro-
matid may be expressed in four different metrics: (1)

TABLE 1

Estimates of chromosome genetic length L and interference
parameter m from female mouse CO mapping along

genetic maps (data from BROMAN et al. 2002) or
from male mouse MLH1 foci mapping along

bivalents (data from FROENICKE et al. 2002)

Chromosome
LMLH1

(cM)
mMLH1

FIC
mMLH1

x2

LCO

(cM)
mCO

FIC

1 76.2 25 20 98.4 9
2 77.7 9 8 87.2 9
3 63.1 26 30 75.5 22
4 70.1 14 12 89.4 6
5 72.0 50 45 82.4 10
6 59.7 15 17 67.0 12
7 68.1 9 10 71.8 9
8 60.8 15 18 67.6 9
9 55.7 24 34 67.6 9
10 61.7 8 10 62.2 28
11 69.9 14 12 68.1 11
12 54.6 4 8 56.4 4
13 51.4 5 9 66.0 23
14 53.2 50 50 61.7 11
15 49.6 50a 22 54.3 62
16 50.0 50a 9 61.2 35
17 50.9 50a 16 49.5b 35
18 50.9 50a 10 41.5b 15
19 50.0 50a 50a 51.6 NA
X NA NA NA 76.6 9

For MLH1 foci data, estimates of m are obtained with either
the FIC model or the standard chi-square model. For CO
data, m was estimated with the FIC model.

a For short chromosomes, given the very small number of biva-
lents with two MLH1 foci, an arbitrary value of m ¼ 50 was used.

b For chromosomes 17 and 18, genetic length was estimated
from the data of Broman et al. (2002) to values ,50 cM. Since
such values are not in accordance with the OC constraint and
thus are not allowed for the FIC model, we set these chromo-
some lengths to 50 cM for the simulations.
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the physical distance in base pairs along the DNA mol-
ecule, (2) the cytological distance measured in microm-
eters along a chromosome axis that may be observed
under the microscope (e.g., the SC distance), (3) the
IRD space that we define here as the relevant metric to
study the relation between the strength with which two
loci interfere and the distance between these loci, and
(4) the genetic distance related to the expected number
of COs. The experimental relationship between genetic

and physical (SC) distances is illustrated by the curves
of total MLH1 foci density in Figure 3. Concerning IRD
distances, no experimental data are available to date,
but the predicted relationship between genetic and IRD
distances under the hypotheses of the FIC model is illus-
trated in Figure 6.

In studies of interference, a major question is to know
more precisely to what the IRD space may be related. For
instance, the well-known Kosambi mapping function

Figure 2.—Experimental and simulated frequencies of bivalents having zero, one, two, or three or more (x-axis) experimental
MLH1 foci (open bars) or simulated COs (solid and dashed bars). Error bars indicate 95% confidence intervals (see text). Ex-
perimental data come from cytogenetical observations of MLH1 foci on male mice synaptonemal complexes (SCs) by Froenicke

et al. (2002). Simulations are computed using the standard chi-square model (dashed bars) and our FIC model enforcing the
obligate chiasma constraint (solid bars). Chromosome length (in morgans) is calculated as half the average number of
MLH1 foci per bivalent in experimental data (see values in Table 1). The interference parameter m is adjusted for each chro-
mosome on the basis of the distribution of inter-CO distances (see text; values in Table 1) and adjusted independently for
the chi-square model and the FIC model. Frequencies are calculated for each autosome and in the last graph for all 19 autosomes
pooled (see text). Simulated CO frequencies are calculated from 5 3 105 simulated meioses.
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(Kosambi 1944) assumes that considering two segments
of equal size on a linkage map, the probability of having
a CO in the second segment, conditional on having a
CO in the first segment, is proportional to the genetic
distance between both segments. This model thus as-
sumes that the IRD space is the genetic distance space.
This holds for all SRP models, in particular for the
chi-square (Foss et al. 1993) and gamma (McPeek and
Speed 1995) models. On the other hand, in our FIC
model, as well as the beam-film model (Kleckner et al.
2004), the polymerization model (King and Mortimer

1990), and particular count-location models (Goldgar

and Fain 1988), COs simulated by the models are not
uniformly distributed, so the IRD space is different from
the genetic distance space. Unfortunately, to our knowl-
edge there are to date no biological data that would
explain the mode of action of interference so that one
would be able to interpret IRD space in clear biological
terms.

FIC model: Our FIC model was developed to enforce
the biological OC constraint ( Jones and Franklin 2006)
observed in many organisms. Previous work (Broman

and Weber 2000) enforced this OC constraint only
within the so-called ‘‘count-location’’ models (different
from the chi-square model; Sturt 1976; Karlin and
Liberman 1978; Goldgar and Fain 1988; Lange et al.
1997); however, there is no biological hypothesis moti-

vating these models. Moreover, except for Goldgar

and Fain (1988), they do not incorporate inhibition
effects between nearby COs, so such models do not
describe distance-dependent interference.

In the FIC model, we have enforced the OC constraint
in a biologically motivated way as follows. We consider
that in the initial phase there are many attempts to
generate a CO; one commonly estimates the number of
double-strand breaks potentially initiating a CO to be
10–40 times larger than the final number of COs that
succeed in doing so (Moens et al. 2002; Anderson

and Stack 2005; Chelysheva et al. 2005; see review in
Mezard et al. 2007). When one of those attempts suc-
ceeds, we hypothesize that it then inhibits nearby at-
tempts in progress. Such an inhibition could be steric
and molecular based, but its mechanism is still un-
known. Note that when m ¼ 0, the chi-square model
coincides with the Haldane model of no interference,
while the FIC coincides with a count location model
(Karlin and Liberman 1978) where zero CO events are
forbidden.

Within the FIC model, we place the first CO along the
chromosome with the uniform distribution as measured
in IRD space. However, this first CO may be placed by
following another distribution. For instance, one may hy-
pothesize that this density distribution is that observed
for early recombination nodules along the bivalent.

TABLE 2

Sum of squares of differences between simulated and experimental frequencies of (1) MLH1 foci in 10 different bins along
bivalents having one, two, and three or more foci (patterns of MLH1 density) and (2) bivalents with zero, one, two, and

three or more MLH1 foci (frequency of bivalent classes) for the chi-square and FIC models

Patterns of MLH1 density (1) Frequency of bivalent classes (2)

Chromosome x2 FIC Ratioa x2 FIC Ratioa

1 2.45 3 10�3 1.16 3 10�3 2.11 8.48 3 10�4 2.86 3 10�4 2.97
2 5.00 3 10�3 3.30 3 10�3 1.52 6.07 3 10�3 2.92 3 10�3 2.08
3 8.88 3 10�3 6.61 3 10�3 1.34 1.98 3 10�5 1.63 3 10�4 0.12
4 3.30 3 10�3 2.81 3 10�3 1.17 1.29 3 10�4 2.07 3 10�4 0.62
5 2.31 3 10�3 3.24 3 10�3 0.71 6.22 3 10�4 2.74 3 10�4 2.27
6 4.20 3 10�3 2.29 3 10�3 1.83 5.68 3 10�3 1.25 3 10�5 454.68
7 2.74 3 10�3 2.54 3 10�3 1.08 2.30 3 10�3 4.74 3 10�5 48.62
8 1.53 3 10�3 1.01 3 10�3 1.51 1.48 3 10�3 1.32 3 10�3 1.12
9 2.41 3 10�3 1.50 3 10�3 1.61 1.87 3 10�3 3.37 3 10�4 5.55
10 4.51 3 10�3 3.33 3 10�3 1.36 6.43 3 10�3 1.59 3 10�3 4.04
11 1.74 3 10�3 1.29 3 10�3 1.35 7.10 3 10�4 2.45 3 10�4 2.90
12 1.73 3 10�2 3.88 3 10�3 4.46 4.28 3 10�2 7.79 3 10�4 54.91
13 1.50 3 10�2 1.68 3 10�3 8.93 5.24 3 10�2 3.30 3 10�3 15.89
14 1.46 3 10�3 7.46 3 10�4 1.95 9.46 3 10�4 3.68 3 10�4 2.57
15 1.13 3 10�2 3.19 3 10�4 35.36 2.87 3 10�2 1.16 3 10�3 24.82
16 1.51 3 10�2 1.66 3 10�3 9.09 5.70 3 10�2 4.46 3 10�3 12.77
17 9.45 3 10�3 6.25 3 10�4 15.12 3.68 3 10�2 1.08 3 10�3 34.13
18 1.08 3 10�2 1.29 3 10�3 8.36 5.08 3 10�2 3.06 3 10�3 16.59
19 4.19 3 10�3 3.45 3 10�4 12.14 8.99 3 10�3 5.05 3 10�4 17.81
Pooled 2.27 3 10�3 4.42 3 10�4 5.15 7.93 3 10�3 5.17 3 10�4 15.34

a Ratios between sums of squares of differences obtained for chi-square and FIC models: ratio values ,1 indicate a better fit to
the data for the chi-square model, whereas values .1 indicate a better fit for the FIC model. Data are given for individual chro-
mosomes (1–19) and by pooling MLH1 foci or bivalent counts over all chromosomes (pooled).
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Validation of the FIC model: Our FIC model incor-
porates both the obligate chiasma and interference
effects of the chi-square model type. This FIC model
gives a very good fit to mouse experimental data, both
for MLH1 foci distribution along the SC and for CO
distribution along the genetic map. The mouse data are
especially appropriate in this respect because interfer-
ence is strong there, but in certain other organisms
achiasmatic bivalents have been reported so the FIC
model will be less appropriate for them. In both simu-
lated and experimental data, when there are two COs,
they tend to be away from the middle of the chromo-
some, whereas single COs are clustered toward the mid-
dle. Such a patterning was commonly observed a long
time ago in experimental data sets ( Jones 1984), for
example, from Drosophila (Charles 1938) and from
humans (Laurie and Hulten 1985).

The fits on individual chromosomes show some lo-
cal discrepancies (see supplemental Figures 2 and 3
at http://www.genetics.org/supplemental/ for details)
whereas this is not the case when data are pooled for all
chromosomes. In the case of MLH1 foci, such local
discrepancies may be interpreted as local variations of
interference. Indeed, such local variations of interfer-
ence along chromosomes have already been demon-
strated in humans (Lin et al. 2001) and in A. thaliana

(Drouaud et al. 2007) although they are difficult to
observe. In the case of COs, local discrepancies can be
explained either by local variations of interference or by
local variations of the intensity of the non-MLH1
pathway, also referred to as the noninterfering pathway
(Mezard et al. 2007).

The values of the interference parameter mMLH1 (see
Table 1) that we obtained by fitting the distribution of
inter-CO distances may be interpreted as a measure of
the intensity of interference between MLH1 foci in
mouse male meiosis. However, the values of the param-
eter n of the gamma function estimated by de Boer et al.
(2006) were, respectively, 11.5 and 11.8 for chromo-
somes 1 and 2, which is not really in accordance with our
estimates of m, although the observations were made in
both cases with MLH1 foci during mouse male meiosis.
In their work, de Boer et al. (2006) estimated n by fitting
the histogram of inter-MLH1 distances (based on SC
distances) to a gamma function and applied subsequent
corrections for the finite length of the chromosome and
for the limited resolution of immunofluorescent obser-
vations. These histograms were based on the SC distance
between MLH1 foci, so the underlying model corre-
sponded to a modified gamma model in which the SRP
would be applied along the SC coordinate space instead
of the genetic space. On the other hand, the SRPs used

Figure 3.—Experimental and simulated frequencies of MLH1 foci along individual synaptonemal complexes (SCs) from cen-
tromere (left end) to telomere (right end), for bivalents having one (circles) or two (triangles) MLH1 and for all bivalents (dia-
monds). Experimental data (open symbols and dashed lines) come from cytogenetical observations of MLH1 foci on male mice
bivalents by Froenicke et al. (2002). Simulations (solid symbols and lines) are computed using the chi-square model or our FIC
model (see text). Chromosome length (in morgans) is calculated as half the average number of MLH1 foci per bivalent in ex-
perimental data (see values in Table 1). The interference parameter m is adjusted for each chromosome on the basis of the dis-
tribution of inter-CO distances (see text; values in Table 1) and adjusted independently for the chi-square model and the FIC
model. x-axis: relative position of the middle of the bin along the synaptonemal complex (SC), expressed in relative SC distance.
All bin sizes are 0.1. Frequencies are shown for chromosomes 1 (long) and 16 (short) and for all 19 autosomes pooled (see text).
Graphs of other individual chromosomes are given in supplemental Figure 2 at http://www.genetics.org/supplemental/. All sim-
ulations are based on 5 3 105 simulated meioses.
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in our approach are based on genetic distance just as the
standard gamma and chi-square models (McPeek and
Speed 1995). Given the high heterogeneity of MLH1
foci density along SC distances (Figure 7), it is not sur-
prising that the two methods lead to different estimates
of m.

As discussed above, local variations of interference
along chromosomes have been demonstrated in some
organisms. In such cases, the use of a constant value for
m in both chi-square and FIC models is questionable
and should probably be restricted to chromosome seg-
ments where interference may be considered homoge-
neous. Moreover, the use of a constant value for m has
also been seriously challenged in yeast by the fact that
the ratio crossovers/noncrossovers increases as the fre-
quency of double-strand breaks decreases, which is
referred to as ‘‘crossover homeostasis’’ (Martini et al.
2006). To us this suggests that the interference in IRD
space extends over distances that are not sensitive to
precursor density; IRD distance itself is then the main
factor determining the strength of interference. Fur-
ther developments toward interference models includ-
ing possible variations of m would be highly valuable
provided that enough high-resolution data are available
to estimate the parameters.

Relevance of OC modeling: Our comparison of FIC
and chi-square models for their ability to reproduce the

histograms of relative frequencies of mouse bivalents
with zero, one, two, and three or more MLH1 foci shows
better adjustments with the FIC model for most of the
individual chromosomes as well as for all chromosomes
pooled (Figure 2). Considering the patterns of MLH1
foci along mouse bivalents with one and with two foci,
the FIC model also globally gives better results than the
chi-square model without obligate chiasma. Note, how-
ever, that the difference is clearly visible in this second
case only for some chromosomes, especially the shortest
ones, and nearly visible when all chromosomes are
pooled (Figure 3; supplemental Figure 2 at http://www.
genetics.org/supplemental/). Furthermore, there is no
case where the chi-square model gives a clearly better
adjustment than the FIC model even though both mod-
els involve just one adjustable parameter. In addition,
the FIC model leads to better goodness-of-fit values for
(1) the frequencies of bivalents with zero, one, two, or
three or more MLH1 foci and (2) MLH1 densities in
different bins along chromosomes. It is thus relevant,
given today’s high-quality data, to use models incorpo-
rating the OC constraint in mouse and maybe in other
organisms with OC too.

In our approach (the FIC model), we forced explicitly
the presence of an initial chiasma, so the OC rule was
absolutely respected. In other approaches such as
the beam-film model (Kleckner et al. 2004) or the

Figure 4.—Simulated distribution of CO frequency along the genetic map for gametes having one, two, or three COs. Symbols
and other elements are the same as described in the Figure 1 legend. Here, the model randomly suppresses on average half of the
COs from the bivalents to go to the chromatid level.

Patterns of Crossover Density 1463



polymerization model (King and Mortimer 1990), there
are numerous precursor sites from which at least one chi-
asma later should appear, nearly always enforcing the OC
hypothesis in practice. Mixture models including one in-
terfering and one noninterfering pathway (Copenhaver

et al. 2002; Stahl et al. 2004) may also lead to few ach-
iasmatic bivalents.

But we also saw that the Froenicke et al. (2002) data
set gave rise to 20 bivalents without MLH1. These bi-
valents cannot be accounted for with our FIC model,
even though their frequency is ,1%. Two possible ex-
planations may be considered:

1. MLH1 foci may escape cytological observation, as
discussed by Froenicke et al. (2002). These authors
explain that the number of MLH1 foci may be un-
derestimated if ‘‘some MLH1 protein was lost during
the spreading procedure or was not accessible to
antibodies’’ or because of synchronism issues.

2. MLH1 foci do not mark all COs, so that given the
probable existence of�10% MLH1-independent non-
interfering COs in mouse (de Boer et al. 2006), it
may simply be concluded that 20 bivalents had only

MLH1-independent COs. This shows the need for
more global models incorporating both the OC fea-
tured in the FIC model and mixtures of interfering
and noninterfering pathways as used by Copenhaver

et al. (2002) in Arabidopsis and by Stahl et al. (2004)
and Malkova et al. (2004) in yeast.

Heterogeneity in the CO rate along chromosomes:
The correspondence between physical and genetic dis-
tance is determined by the recombination rate along
each chromosome. In all organisms, these rates vary a
lot with in particular a frequent strong suppression
effect in and near the centromeres and typically en-
hancements near the telomeres ( Jones 1984; Mezard

2006). Many forces shape these variations: (1) the dis-
tribution of chiasma precursors, which may be ap-
proached by counting early recombination nodules;
(2) chromatin compaction, leading in particular to the
centromere effect (Choo 1998); and (3) factors that
may determine the way precursors commit or not to
turn into COs, including the forces behind interference
and obligate chiasma effects. In the case of mouse chro-
mosomes, where the centromere is at one end and the

Figure 5.—Experimental and simulated distributions of COs. Experimental data come from mouse female meiosis analyzed via
mapping experiments Broman et al. (2002). Simulations are computed using our FIC model. Values of genetic chromosome
length (in morgans) and interference parameter m used for simulations are calculated from Broman et al. (2002) respectively
as the average number of COs per gamete in experimental data and the estimated parameter n of the gamma model � 1
(see values in Table 1). For chromosomes 17 and 18, where Broman found genetic lengths ,50 cM, we use a length of 50 cM
for simulations (see text). (a and d) Chromosome 1 (long); (b and e) chromosome 16 (short); (c and f) frequencies from pooled
numbers of gametes or COs over all 20 chromosomes. Graphs of other individual chromosomes are given in supplemental Figure
3 at http://www.genetics.org/supplemental/. (a–c) Frequency of gametes with zero, one, two, and three or more COs (x-axis) in
experimental and simulated data. Open bars indicate experimental data, and solid bars indicate simulated data. Error bars in-
dicate 95% confidence intervals (see text). (d–f) Frequency distribution of COs along the genetic map, from centromere (left
end) to telomere (right end) for gametes with exactly one (circles) or two (triangles) COs. x-axis: relative position of the middle of
the bin along the genetic map. All bin sizes are 0.1. Open symbols and dashed lines indicate mouse experimental data. Solid
symbols and lines indicate simulated data. Simulated CO frequencies are calculated from 5 3 105 simulated meioses using
our FIC model.
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telomere at the other end, this second force may explain
the strong asymmetry observed in the experimental
curves of Figures 3 and 7. Qualitatively, the theoretical
smile shown by our FIC model can be understood as
related to the third force and may be explained as
follows. In our model of obligate chiasma, the first CO is
distributed uniformly, and the next ones are produced by
a stationary renewal process. When the interference is
positive and acts out to a distance comparable to the
length of the chromosome, putting down a second CO
will be possible only when the first one is toward one
end of the chromosome; this leads to an enhancement
of the CO density toward the ends. The simulations

proceed in an ‘‘interference’’ coordinate system that is
not known ahead of time; there the density of COs
shows a smile effect, with an enhancement toward the
ends of the chromosome. Similar end effects arise in
other models of interference such as the beam-film
(Kleckner et al. 2004) and polymerization (King and
Mortimer 1990) models. It is not unreasonable to con-
sider that this interference-relevant coordinate system is
tied to physical space (in micrometers) and the SC
coordinate system is a natural candidate. Using the FIC
model with OC then reveals a hitherto underappreci-
ated fact that a combination of effects due to OC, inter-
ference, and genetic length of the chromosome may
give rise to the enhancement of recombination at the
ends.

We saw that this predicted smile effect appeared in
the MLH1 data of Froenicke et al. (2002), though with a
much larger enhancement effect at the telomere than
predicted by our FIC model. However, male and female
meioses behave differently in mice (de Boer et al. 2006).
de Boer et al.’s Figure 1.E compares the densities of male
and female mice along the SC and shows a much steeper
rise near the telomere in males compared to females.
Our model thus seems more applicable to the case of
female meiosis.

In male mice, other forces must be driving the telo-
mere enhancement of recombination. They can be due

Figure 6.—Simulated frequencies of COs along gametes.
Positions are expressed in the interference-relevant distance
(IRD) space (see text). The initial CO is uniformly distributed
except for the curves with centromere effect. Genetic size of
chromosome: 100 and 60 cM. Interference is modeled using
our FIC model with interference parameter m. Triangles, m ¼
0; circles, m ¼ 4; squares, m ¼ 12, without centromere effect
(solid symbols and lines) or with all recombination sup-
pressed between positions 0.4 and 0.6 (centromere effect,
open symbols and dashed lines). x-axis: relative position of
the middle of the bin along the IRD space. All bin sizes are
0.05. CO frequencies are calculated from 5 3 107 simulated
meioses.

Figure 7.—Experimental frequencies of mouse MLH1 foci
along synaptonemal complexes (dashed line and open sym-
bols) compared to simulated frequencies of crossovers (COs,
solid line and symbols) under the hypothesis that IRD dis-
tance is the same as SC distance. MLH1 foci and simulated
COs are first counted for each chromosome independently
and then pooled. Experimental data come from cytologenet-
ical observations of mouse chromosomes by Froenicke et al.
(2002). Simulations are computed using our FIC model with
obligate chiasma, without any centromere or telomere effect.
Genetic sizes of the chromosomes and values of the interfer-
ence parameter m for each chromosome are the same as in
Figures 2 and 3. x-axis: classes of relative SC position along
chromosome. Simulated CO frequencies are calculated from
5 3 105 simulated meioses.
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to heterogeneity in the distribution of recombination
precursors, leading to an enhancement of CO near
telomeres. This is not specific to the mouse: in maize,
the distribution of early recombination nodules mark-
ing precursors increases from centromere to telomeres
(Stack and Anderson 2002) but this increase is less
pronounced than the one of late recombination nod-
ules (chiasmata). So both effects, distribution of pre-
cursors and the smile, may shape the final distribution
of COs. On the centromere side, it is more difficult to
conclude anything: the experimental data do show a
local maximum in the density of MLH1 foci, but this
density is strongly lowered when one approaches too
much the centromere. Clearly it would be necessary to
go beyond our all-or-none modeling of centromeric
suppression. Nevertheless, the local maximum observed
in experimental data suggests that our smile effect might
be somewhat at work in mouse meiosis.
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