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ABSTRACT

Recent technological development in genetics has made large-scale marker genotyping fast and
practicable, facilitating studies for detection of QTL in large general pedigrees. We developed a method that
speeds up restricted maximum-likelihood (REML) algorithms for QTL analysis by simplifying the inversion
of the variance–covariance matrix of the trait vector. The method was tested in an experimental chicken
pedigree including 767 phenotyped individuals and 14 genotyped markers on chicken chromosome 1. The
computation time in a chromosome scan covering 475 cM was reduced by 43% when the analysis was based
on linkage only and by 72% when linkage disequilibrium information was included. The relative advantage
of using our method increases with pedigree size, marker density, and linkage disequilibrium, indicating
even greater improvements in the future.

THE use of variance component models is rapidly
increasing in the field of QTL analysis (Lynch

and Walsh 1998). As the cost for genotyping decreases,
the sizes of the analyzed pedigrees are likely to increase,
making full genome scans computationally slow or even
infeasible. However, current algorithms commonly used
for variance component estimation were not specifically
developed for QTL analysis and there is a need to re-
evaluate the computational efficiency and robustness of
these algorithms.

Variance component estimation has been included in
general statistical software, such as Proc Mixed in SAS
(Littell et al. 1996), where an arbitrary covariance struc-
ture of the random effect can be given by the user. These
programs have in common that they use iterative pro-
cedures, Fisher’s scoring or Newton–Raphson, to max-
imize the likelihood or the restricted likelihood (Pawitan

2001). More specific programs for applications in animal
breeding have also been developed over the last two de-
cades such as ASReml, DMU, and VCE (see Druet and
Ducrocq 2006 and references therein). These programs
use a mixture of Fisher’s scoring and Newton–Raphson to
maximize the restricted likelihood, called the ‘‘average
information restricted maximum-likelihood (AI-REML)
algorithm.’’ The most computationally demanding part

of AI-REML is the inversion of the variance–covariance
matrix (V) of the response vector (y). This inversion has to
be performed on each iteration. We study a model with
a random QTL effect and a residual effect, with variance–
covariance matrix of the form V ¼ Ps2

v 1 Is2
e , where P is

the symmetric identity-by-descent (IBD) matrix, s2
v is the

QTL variance, I is the identity matrix, and s2
e is the re-

sidual variance. If P is positive definite, then the inversion
of V can be simplified by inverting V in parts. This has
been implemented in the software package ASReml by
setting up the mixed-model equations (MME) (Gilmour

et al. 1995; Johnson and Thompson 1995; Jensen et al.
1997).

The AI-REML algorithm can be implemented by
combining the MME with sparse matrix techniques (as
done in ASReml), which gives fast solutions when the
covariance structure of the random effect is sparse and
positive definite. In traditional animal breeding appli-
cations, the covariance structure is given by the average
relationship between individuals (Lynch and Walsh

1998). This covariance structure is usually sparse and
always positive definite. The IBD matrix is not necessar-
ily sparse or positive definite, however, and the advan-
tage of using sparse matrix techniques together with
inversion of V by means of MME in AI-REML may be
questioned. Lee and van der Werf (2006) found that
the AI-REML algorithm could be faster and more ro-
bust in QTL analysis if direct inversion of V is used, es-
pecially in linkage-disequilibrium linkage (LDL) mapping
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(Meuwissen and Goddard 2000) since the IBD matri-
ces used in LDL are usually dense and positive semi-
definite. The reason for this is that a covariance structure
is added to the base generation alleles (Meuwissen and
Goddard 2000; Hernandez-Sanchez et al. 2006),
which increases the number of nonzero elements in P.

The rank of P at a marker depends on the size of
the base generation and how polymorphic the marker is
(Rönnegård and Carlborg 2007). In a QTL linkage
analysis, the rank of P is twice the size of the base gen-
eration when the marker is fully informative (i.e., all
marker alleles are unique) and the rank does not de-
pend on the total pedigree size, whereas the number of
rows (and columns) in P equals the total number of
individuals in the pedigree, n. Hence, at marker loca-
tions, P will have many eigenvalues equal to zero, and
the number of zero-valued eigenvalues increases with
the difference between the total number of individuals
and the number of base individuals. In nonmarker loca-
tions, the number of eigenvalues in P that approaches
zero, when the distance to the marker decreases, is
equal to twice the difference between the total number
of individuals and the number of base individuals. Thus,
for a dense marker map most eigenvalues in all IBD
matrices will be either equal to zero (in marker posi-
tions) or close to zero (in nonmarker positions).

In this article we develop a fast genome scan method
for variance component QTL analysis using AI-REML.
The method utilizes an efficient inversion of V that
takes advantage of the fact that P has many eigenvalues
close to zero.

An efficient inversion of V using the Sherman–
Morrison–Woodbury formula: A simple mixed linear
model for QTL detection is given by y ¼ Xb 1 v 1 e,
where X and b are the design matrix and parameter
vector, respectively, for the fixed effects, v is the vector of
QTL genotype effects (length n), v � MVN (0, Ps2

v),
and e � MVN(0, Is2

e ). Thus the variance–covariance
matrix of y is V ¼ Ps2

v 1 Is2
e . Now let the spectral de-

composition of P be GDGT, where G is the matrix of
eigenvectors and D is the diagonal eigenvalue matrix
(superscript T denotes matrix transpose). Using this de-
composition, we approximate P. Let Dred be a subma-
trix of D, where the eigenvalues larger than a threshold
value t are included, and Gred be the matrix of eigen-
vectors corresponding to these eigenvalues. Then an
approximate IBD matrix with reduced rank is given by
Pred ¼ GredDredGT

red. In our applications t was set equal
to li for which the cumulative sum of l1 to li divided by
the total sum of eigenvalues was 0.8, where l1, l2, . . . , ln

are the ordered eigenvalues from largest to smallest. Us-
ing the Sherman–Morrison–Woodbury formula (Golub

and van Loan 1996) we then get an efficient equation
for inverting V: V�1 � Ið1=s2

e Þ � ðs2
v= s2

e

� �2ÞGredDred

Ired 1 ðs2
v=s2

e ÞDred

� ��1
GT

red.
Here Ired is the identity matrix of the same size as Dred.

This approximation dramatically decreases the number

of mathematical operations needed to invert V. Let k be
the rank of Pred; then the number of floating point
arithmetic operations (flops) in calculating the approx-
imated inverse is n2k 1 3nk2, whereas the number of
flops to invert V directly is n3/2. The spectral decom-
position of P requires on the order of n3 flops, but this
computation is performed only once in each REML
estimation, whereas the inversion of V is performed in
each iteration. As an example suppose n ¼ 500, k ¼ 20,
and that AI-REML converges in 10 iterations; then the
total number of flops for inverting V directly is 6.25 3

108 with the direct method and 1.81 3 108 with the
reduced method, giving a 3.5-fold speedup.

Two important questions are then: How are the
maximum log-likelihood values and the variance com-
ponent estimates affected by the approximation? How
much is the computational time reduced in a genome
scan in practice? To answer these questions we tested the
method on chicken chromosome 1 (475 cM) in a Jungle
Fowl–White Leghorn F2 cross, where the measured trait
was body weight at 200 days of age. Kerje et al. (2003)
reported two QTL for this trait on chromosome 1 at 68
and 420 cM. There were 4 F0, 41 F1, and 767 F2 in-
dividuals in the pedigree. In our analysis, population
mean and sex were included as fixed effects. There were
14 genotyped markers located at 0, 27.7, 35.3, 91.3,
124.3, 154.2, 189.7, 209.3, 233.0, 258.8, 337.4, 407.9,
425.9, and 475.4 cM. The IBD matrices were estimated
at every 1 cM using the Markov chain Monte Carlo-based
program package Loki (Heath 1997; Heath et al.
1997). The estimated IBD matrices were dense with
.80% nonzero elements (elements were defined as
nonzero for values $10�3). The likelihood-ratio (LR)
statistic in AI-REML was calculated as twice the dif-
ference between the maximized log(L) and log(L)
with s2

v ¼ 0. The convergence criterion used was change
in log-likelihood ,10�4, with logðLÞ ¼ �1

2 logjVj1ð
logjXTV�1Xj1 yTPyÞ and P ¼ V�1 � V�1X XTV�1Xð Þ�1

XTV�1, and the starting value of s2
v was 0.01 times

the residual variance. The computer code to calculate
Pred and the AI-REML algorithm was implemented in R
(R Development Core Team 2004).

Accuracy and efficiency of the method: At individual
chromosomal locations, our method was up to five times
faster than the direct inversion of V and taken over the
whole chromosome it reduced the computation time by
43% (Figure 1). It was faster at all tested locations,
except at positions .30 cM from the closest marker. The
rank of Pred was smallest close to marker positions,
where also the greatest speedups were achieved.

The correlation between the LR values obtained with
P and Pred was 0.9999. Both methods resulted in
maximum LR values at 54 and 426 cM (Figure 2). The
relative difference in LR between the two methods was
0.5 and 4.3% at these locations, respectively. In our
experience, the shape of the likelihood-ratio curve is
not substantially affected by the inclusion of polygenic
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effects in the variance component QTL model, which
was confirmed in our analysis (Figure 2). Both the full
model including polygenic effects and our method
identified the same two peaks, with a relative difference
in LR of 2.7% at 54 cM and 8.1% at 426 cM.

In LDL mapping, a correlation structure is added to
the base generation individuals in a pedigree with a
varying degree of positive correlation between alleles. In
a second analysis of our chicken data, we computed P

assuming fixation within lines. This is an extreme case of
LDL mapping, where the base generation alleles are
assumed fully correlated within lines. Assuming fixation
of QTL alleles within lines is equivalent to fitting a line
effect, and for a fully informative marker the rank of P

will therefore be 2. The rank of Pred was consequently
reduced further in this example, where the rank was 2 in
all positions except at positions .30 cM from the closest
marker. In this case our method was up to five times
faster than direct inversion in specific positions and
reduced the computations over the whole chromosome
by 72%. Both models with either P or Pred gave similar
LR values (correlation 0.9999) with QTL at 60 and 430
cM. The relative differences in LR were 1.2 and 0.7%,
respectively, for the two QTL.

Conclusions: Our efficient AI-REML method approx-
imates the likelihood-ratio statistic very well. It is,
therefore, a useful method to locate the regions in the
genome with the strongest support for a QTL. The
efficiency of the method increases when a covariance
structure is added to the base generation alleles, which
is the case in LDL mapping. This increase in efficacy was

illustrated with an extreme covariance structure where
the QTL alleles were assumed fixed within lines.

For accurate testing and estimation of the variance
components at the QTL identified using this fast method,
we suggest that a full model including polygenic effects
should be used. Our results indicate that inclusion of
polygenic effects is not important in the variance com-
ponent model when the aim is to detect the location of
potential QTL. Other studies have shown that the risk of
getting false positives increases in QTL studies if poly-
genic effects are not included (Kennedy et al. 1992), but
this will not be a problem in our suggested application.

Meuwissen and Goddard (2000) did not include
polygenic effects in their presentation of their LDL-
mapping model, but accounted for different kinds of
population substructures by modeling a general residual
variance–covariance matrix R, where V ¼ Ps2

v 1 Rs2
e .

This is also possible in our model, and V may then be
inverted using the more general version of the Sherman–
Morrison–Woodbury formula (Golub and van Loan

1996) V�1 ¼ R�1ð1=s2
e Þ � ðs2

v= s2
e

� �2ÞR�1Gred Ired 1 ðs2
v=

�

s2
eÞGT

redR�1GredDredÞ�1
GT

redR�1. The inversion of R has
to be performed only once for the whole genome scan,
since it does not change between positions, and the
loss in computation time merely depends on how sparse
R�1 is.

We have not developed the method for several QTL
(see Lee and van der Werf 2006). In principle, the
method should be extendable to several QTL, either by
developing a more general version of the Sherman–
Morrison–Woodbury formula or by developing an
orthogonal model where the variance components can
be tested one at a time (following Thomsen 1975).

In our analysis we used Loki to estimate P. If, however,
an approximate decomposition of P could be rapidly
estimated directly from the marker data, then the spec-
tral decomposition would be redundant and the speed

Figure 1.—The rank of Pred (right axis) and the relative
computation time (left axis) along chicken chromosome 1.
The relative computation time is the ratio of the total number
of flops used in AI-REML for the inversion of V by the re-
duced method and direct inversion. This is ½n3 1 Nred(n2k 1
3nk2)�/½Nfulln

3/2�, where Nred and Nfull are the number of
iterations until convergence using Pred and P, respectively,
n is the number of observations, and k is the rank of Pred.
A marker position is given by an ‘‘X’’ along the x-axis.

Figure 2.—QTL likelihood-ratio curves for body weight at
200 days of age along chicken chromosome 1 for three differ-
ent variance component models.
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of AI-REML would increase significantly. This decom-
position can be made in LDL mapping if the number of
possible haplotypes is limited, as shown by Meuwissen

and Goddard (2000). Furthermore, Rönnegård and
Carlborg (2007) have recently developed a general
method for estimating a decomposition of P directly
from marker information. Their method is based on
single-marker information, but is in principle extend-
able to a multiple-marker framework. In our analysis of
chicken chromosome 1 the number of flops to invert V
would have been decreased by 98% if a decomposition
of P had been estimated directly. In Table 1, we have
also compared the potential of our method when ap-
plied to an existing commercial chicken pedigree (Rowe

et al. 2006) and an outbred pig cross (M. S. Lund, per-
sonal communication; Danish Institute of Agricultural
Sciences).

In conclusion, the efficiency of our method will
increase when the ratio between the total pedigree size
and base generation size increases, the density and
informativeness of markers increases, and the correla-
tion between base generation alleles increases. Hence,
the relative efficacy of the method can be expected to
increase in the future as deeper pedigrees and more
markers become available.

LITERATURE CITED

Druet, T., and V. Ducrocq, 2006 Innovations in software packages
in quantitative genetics. Paper no. 27-10. World Congress on Ge-
netics Applied to Livestock Production, Belo Horizonte, Brazil.

Gilmour, A. R., R. Thompson and B. R. Cullis, 1995 Average in-
formation REML: an efficient algorithm for variance parameter
estimation in linear mixed models. Biometrics 51: 1440–1450.

Golub, G. H., and C. Van Loan, 1996 Matrix Computations, Ed. 3.
Johns Hopkins University Press, Baltimore.

Heath, S. C., 1997 Markov chain Monte Carlo segregation and
linkage analysis for oligogenic models. Am. J. Hum. Genet. 61:
748–760.

Heath, S. C., G. L. Snow, E. A. Thompson, C. Tseng and E. M.
Wijsman, 1997 MCMC segregation and linkage analysis. Genet.
Epidemiol. 14: 1011–1015.

Hernandez-Sanchez, J., C. S. Haley and J. A. Woolliams, 2006 Pre-
diction of IBD based on population history for fine gene mapping.
Genet. Sel. Evol. 38: 231–252.

Jensen, J., E. A. Mantysaari, P. Madsen and R. Thompson, 1997 Re-
sidualmaximum likelihood estimationof (co)variance components
in multivariate mixed linear models using average information.
J. Indian Soc. Agric. Stat. 49: 215–236.

Johnson, D. L., and R. Thompson, 1995 Restricted maximum likeli-
hood estimation of variance components for univariate animal
models using sparse matrix techniques and average information.
J. Dairy Sci. 78: 449–456.

Kennedy, B. W., M. Quinton and J. A. Van Arendonk, 1992 Esti-
mation of effects of single genes on quantitative traits. J. Anim.
Sci. 70: 2000–2012.
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TABLE 1

Pedigree structure of a commercial chicken pedigree and an outbred pig cross used for QTL mapping

Pedigree structure
Computational reduction

Size of
base

Total
size

% highly
informative

markersa

% fully
informative

markersb

Commercial chicken pedigreec 146 2.708 43 71
Duroc–Landrace/Yorkshire crossd 710 11.000 36 64

The reduction in the number of flops to invert V with our method compared to direct inversion is given for
two cases: (1) highly informative and moderately dense markers (,10 cM apart) and (2) a fully informative
marker at each tested position.

a Rank of Pred is twice the size of the base generation, the number of AI-REML iterations is assumed to be
seven, and spectral decomposition of P is included in calculations.

b Rank of P is twice the size of the base generation, and decomposition is estimated directly from the data.
c Pedigree structure is from Rowe et al. (2006).
d Pedigree structure is from M. S. Lund (personal communication; Danish Institute of Agricultural Sciences).
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