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ABSTRACT

In previous work, a modified version of the Bayesian information criterion (mBIC) was proposed to locate
multiple interacting quantitative trait loci (QTL). Simulation studies and real data analysis demonstrate
good properties of the mBIC in situations where the error distribution is approximately normal. However, as
with other standard techniques of QTL mapping, the performance of the mBIC strongly deteriorates when
the trait distribution is heavy tailed or when the data contain a significant proportion of outliers. In the
present article, we propose a suitable robust version of the mBIC that is based on ranks. We investigate the
properties of the resulting method on the basis of theoretical calculations, computer simulations, and a real
data analysis. Our simulation results show that for the sample sizes typically used in QTL mapping, the
methods based on ranks are almost as efficient as standard techniques when the data are normal and are
much better when the data come from some heavy-tailed distribution or include a proportion of outliers.

A variety of statistical methods that can be applied to
locate quantitative trait loci (QTL) exist. The

classical methods like single-marker t-tests (Sax 1923)
and interval mapping (Lander and Botstein 1989;
Haley and Knott 1992) are based on a single-QTL
model and may lead to biased estimators of the QTL
size and location when the trait is influenced by more
than one QTL. Composite-interval mapping (CIM)
(Zeng 1993) and multiple-QTL mapping (MQM)
( Jansen and Stam 1994) account for multiple QTL
by including additional background markers into the
model. Both these methods improve the precision of
locating QTL with significant main effects but they do
not allow detection of epistatic QTL, which influence
the trait only by interacting with other genes. The most
direct approach to locate multiple, interacting QTL
relies on fitting a multiple-regression model, relating
the trait values to marker genotypes. This approach was
adopted, for example, by Kao et al. (1999), Carlborg

et al. (2000), Carlborg and Andersson (2002), Kao

and Zeng (2002), Yi and Xu (2002), Yi et al. (2003),
Bogdan et al. (2004), Narita and Sasaki (2004), Yi

et al. (2005), and Baierl et al. (2006). The most difficult
part in constructing an appropriate regression model is
the decision on the number of its components (i.e., the
QTL number). This decision is particularly important
in cases where the trait is influenced by some linked
QTL. In such situations, the estimated QTL locations

may depend substantially on the number of QTL in the
model. When the size of the model is underestimated,
for example, two linked QTL may be easily represented
as one putative QTL in the middle between two real
QTL locations. The opposite situation occurs when the
size of the model is overestimated, leading to the in-
correct identification of spurious QTL.

Since the size of the chosen model depends on the
level of significance used for including or deleting its
components, the choice of the corresponding thresh-
old value may substantially influence the results of the
analysis. The corresponding problem exists also in the
framework of Bayesian statistics, where the final esti-
mates of the QTL locations depend on the prior dis-
tribution of the QTL number. In the setting of classical
statistics, a systematic approach for the comparison of
different models is provided by model selection criteria.
Different model selection criteria serve different pur-
poses. If the purpose of the study is the choice of
markers for marker-assisted selection, then one should
consider the criteria aiming at minimizing the pre-
diction error, like, e.g., the Akaike information criterion
(Akaike 1974). Note that the prediction does not suffer
much from including several markers closely linked to a
QTL. However, in the case when the purpose of the
study is to identify real QTL, then consistent criteria,
like, e.g., the Bayesian information criterion (BIC)
(Schwarz 1978), seem to be a better choice.

The classical model selection criteria were developed
on the basis of asymptotic arguments and assuming that
the sample size is large in comparison to the size of the
analyzed models. This assumption is no longer satisfied
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in the large-scale genome scans for QTL, where the
number of markers may be comparable to the sample
size. In particular, Broman (1997) and Broman and
Speed (2002) report for the QTL-mapping setting that the
usually conservative BIC has a strong tendency to over-
estimate the QTL number. This problem has been further
discussed in Bogdan et al. (2004), where an appropriate
modified version of the BIC (mBIC) has been proposed.
The mBIC has a strong connection to Bayesian statistics
and allows one to incorporate prior knowledge on the
QTL number and to compare posterior probabilities of
different models. In the case when prior knowledge on
the QTL number is not available, Bogdan et al. (2004)
propose a standard version of the mBIC, based on a fixed
prior distribution for the QTL number. As shown in the
Appendix of Bogdan et al. (2004), the resulting penalty
solves the multiple-testing problem and allows one to
keep the type I error under control under a standard
model setup. In the case when the outcome of the mBIC
suggests that the fixed, relatively conservative prior pro-
posed in Bogdan et al. (2004) is inadequate, Baierl et al.
(2006) propose to repeat the procedure with the prior
adjusted due to the results obtained in the initial search.

Bogdan et al. (2004) and Baierl et al. (2006) report
the results of extensive simulation studies demonstrat-
ing good properties of the mBIC under a wide range of
possible genetic scenarios and an ideal normal error
distribution. In practice, however, the distribution of
the trait is rarely normal. While, due to the central limit
theorem, moderate deviations from normality do not
have much influence on the properties of the mBIC, we
expect the criterion to lose its good properties when the
error distribution is heavy tailed or when the data
contain some outliers. It is widely known that these
types of violations of model assumptions have a strong
influence on methods based on the comparison of
means and so they will also have a large, deteriorating
influence on all standard methods of QTL mapping.

The classical approach to reduce the influence of
outlying observations on the results of regression is to
use robust regression methods based on M-estimates
(see, e.g., Jurečková and Sen 1996) or MM-estimates
(see, e.g., Yohai 1985). In Baierl et al. (2007), robust
versions of mBIC based on M-estimates were proposed.
Simulation results reported in Baierl et al. (2007) show
that these robust versions perform similarly to the
standard mBIC when the error distribution is close to
normal and have much better properties when the error
distribution is heavy tailed or when the data contain
some outliers. The methods based on M-estimates, how-
ever, require much more computational effort than least-
squares regression. This is a disadvantage in the context
of QTL mapping, where the verification of a large num-
ber of competing models is required.

An alternative solution to the problem of nonnor-
mality of the error distribution is provided by nonpara-
metric methods based on ranks. In the context of QTL

mapping, this approach has been proposed and inves-
tigated, e.g., in Kruglyak and Lander (1995), Broman

(2003), and Zou et al. (2003). A major advantage of
rank-based statistics is that their distribution under the
‘‘null’’ hypothesis does not depend on the error distri-
bution. Moreover, as demonstrated in Zou et al. (2003)
(see also Lehmann 1975), the asymptotic efficiency of
rank tests is only slightly smaller than that of the classical
tests when the error distribution is normal and much
higher when the error distribution is heavy tailed.

In this article, we use the idea of rank tests and pro-
pose a new version of the mBIC that is based on ranks
instead of on the original trait values. For continuous
error distributions and for the standard null model of
no effects, we prove that the asymptotic distribution of
the rank version of the mBIC is the same as the null
distribution of the regular mBIC for normal errors.

Our simulation study demonstrates that this asymptotic
approximation works very well already for sample sizes
n $ 200. The results also indicate that the rank version of
the mBIC performs similarly to the standard version
when the error distribution is normal and much better
in the case when it is heavy tailed or the data contain
some proportion of outliers. A real data analysis points
also at advantages of using the rank version of the mBIC.

METHODS

We start by reviewing the use of multiple regression in
the case of locating QTL in a backcross population.
Suppose that we observe values fY1;Y2; . . . ;Yng, of
some quantitative trait for n individuals. Let Xij denote
a variable that describes the genotype of the ith in-
dividual at marker j. In backcross populations, this
variable would take one of only two values, 1

2 and �1
2,

depending on whether the individual is heterozygous or
homozygous at locus j. By Nm we denote the number of
available markers. To detect QTL, we look for neigh-
boring markers, using a multiple-regression model

Yi ¼ m 1
X
j2I

gj Xij 1
X
ðv;wÞ2U

dvwXivXiw 1 ei ; ð1Þ

where I is a certain subset of the set N¼ {1, . . . , Nm}, U is
a certain subset of the Cartesian product N 3 N (N 3 N
is the set of all pairs of elements of N ), and ei is the
error term. The third term in Equation 1, XivXiw, corre-
sponds to pairwise interactions, the so-called epistatic
effects. There are at most Ne ¼ Nm(Nm � 1)/2 possible
interactions.

As we do not know the QTL number or their loca-
tions, we use a model selection procedure to choose the
best markers in model (1). One popular method for this
purpose is the BIC proposed by Schwarz (1978).
However, in the case of locating QTL, the BIC has a
tendency to overestimate the QTL number (see, e.g.,
Broman and Speed 2002). Therefore, in Bogdan et al.
(2004), a modified version of the BIC, called the mBIC,
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has been proposed. The mBIC allows us to take prior
information on the number of QTL into account.

Let p and r denote the number of main and epistatic
terms included in the regression model of the form (1).
By E(P) and E(R), we denote the expected values of the
corresponding prior distributions. With the mBIC, the
model that minimizes the expression

mBIC ¼ n logðRSSÞ1 ðp 1 rÞlogðnÞ1 2p logðl � 1Þ
1 2r logðu � 1Þ

ð2Þ

is chosen. Here RSS denotes the residual sum of squares,
l ¼ Nm/E(P), and u ¼ Ne/E(R). In the case of no prior
information, Bogdan et al. (2004) suggest using

l ¼ Nm

2:2
and u ¼ Ne

2:2
:

As shown in Bogdan et al. (2004), this choice takes
the multiple-testing problem into account and guaran-
tees that the overall type I error does not exceed 0.08 for
a sample of size 200 and .30 markers when the error
term is normal; i.e., ei� N(0, s2). Due to the consistency
of the mBIC, the type I error decreases when the sample
size increases.

The mBIC criterion has been designed under the
assumption of normal errors. Therefore it works well,
i.e., has a high power and is consistent, as long as the
error term is close to normally distributed. However,
we expect the properties of the mBIC to strongly dete-
riorate when the error terms come from a distribution
with heavy tails or when the data contain a certain
proportion of outliers. A typical solution in the situation
where the data are not normal is to use a nonparamet-
ric method based on ranks; see, e.g., Kruglyak and
Lander (1995) and Zou et al. (2003). In both articles,
the authors demonstrated that the loss in efficiency of
rank-based QTL mapping is very small compared to
classical methods in the case when the error term comes
from a normal distribution. On the other hand, a non-
parametric method can be much more efficient when
the errors come from a distribution with heavy tails.
Motivated by these findings we define a new version of
the mBIC based on ranks.

Rank-based model selection and the modified BIC:
When applying rank-based model selection, one ex-
changes the trait values by their ranks. A major advan-
tage of using ranks is that the distribution of the test
statistic under the null hypothesis of no QTL does not
depend on the distribution of the error terms. Using
ranks strongly reduces the influence of heavy tails and
outlying observations.

Let ~Xi 2 Rk denote the row vector of regressors, i.e., of
markers Xij and interactions XivXiw in the model (1) for
the ith individual. The k-dimensional column vector of
corresponding regression parameters gj and dvw is de-
noted by b. Consider a regression model PðYi , y j ~XiÞ ¼

F ðy � ~XibÞ, where F is an unknown distribution. We
want to test the hypothesis of no QTL evidence, H0:
b ¼ 0, on the basis of the sample consisting of n indi-
viduals. For this problem, Zou et al. (2003) used the
Wilcoxon score statistic both in the simple- and in the
multiple-regression case. Let X ¼ ð1=nÞ

Pn
i¼1

~Xi be a
vector of regressor means, and let Ri denote the rank of
the ith observation. The Wilcoxon score statistic takes
the form Ln ¼ ð1=ðn 1 1ÞÞ

Pn
i¼1ð ~Xi � X ÞRi . Let Cn ¼

ð1=nÞ
Pn

i¼1ð ~Xi � X Þ9ð ~Xi � X Þ be the estimate of the
covariance matrix of the regressor variables, and let
C�n be its generalized inverse. The Ln-statistic has an
important asymptotic property: when the covariance
matrix between regressor variables is positive definite
then under the null hypothesis of no QTL Z 2 ¼
12ðn 1 1ÞLnC�n L9n has asymptotically a chi-square distri-
bution with k d.f. (see, e.g., Puri and Sen 1985). As is
shown in the appendix, there is a connection between
the Z 2-statistic and the robust version of the BIC.

Our proposed construction of the robust (r)BIC, the
rank version of the mBIC, is very simple. Let X denote a
standard design matrix, with the ith row Xi ¼ ½1; ~Xi �;
i ¼ 1; 2; . . . ;n. After substituting the trait values by their
ranks, we calculate the rank residual sum of squares,
rRSS ¼

Pn
i¼1ðRi � ~RiÞ2, where ~R ¼ X ðX 9X Þ�1 X 9R . By re-

placing RSS with rRSS in Equation 2, we obtain

rBIC ¼ n logðrRSSÞ1 ðp 1 r ÞlogðnÞ1 2p logðl � 1Þ
1 2r logðu � 1Þ: ð3Þ

Remark 1. Lemma 1 below shows that independent
of the distribution of the error term, the asymptotic
null distribution of rBIC is the same as the distribution
of mBIC when the error term is normal. Therefore to
keep the type I error at the desired level, the penalty
coefficients l and u are chosen in the same way as for
mBIC ½see (2)�.

For the previously defined model we have the fol-
lowing proposition.

Proposition 1. If the trait distribution F is continuous,
rBIC is distribution free under the null hypothesis H0: b ¼ 0.

The result follows from the fact that the distribution
of the vector of ranks R1, . . . , Rn is independent of the
distribution F under the hypothesis H0: b ¼ 0, if F is
continuous (see, e.g., Lehmann 1975 or Hájek et al.
1999). As the rBIC depends on the observations only
through their ranks, it is distribution free.

By simulations and theoretical calculations, Bogdan

et al. (2004) and Baierl et al. (2006) showed that the
mBIC criterion controls the type I error when the error
terms come from a normal distribution. Let us denote
by RSSk the residual sum of squares related to a given
model with k regressors, and let RSS0 be the residual
sum of squares for the null model with no QTL. Note
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that the mBIC prefers a model with k regressors over the
null model if �n logðRSSk=RSS0Þ is greater than the
penalty specified on the right-hand side of Equation 2.
Note also that under the null hypothesis of no QTL
�n logðRSSk=RSS0Þ has asymptotically a chi-square dis-
tribution with k d.f. In the following lemma, we show
that the asymptotic null distribution does not change
when the trait values are replaced by their ranks. The
result does not depend on the distribution of the error
term and suggests that the type I error of the rBIC will be
close to that of the mBIC.

Lemma 1. Consider a regression model PðYi , y j ~XiÞ ¼
F ðy � ~XibÞ, where F is continuous and ~Xi 2 Rk is the vector of
regressors. Let rRSSk denote the corresponding rank residual
sum of squares and let rRSS0 denote the rank residual sum of
squares under the null model of no QTL. If the matrix of
covariances between regressor variables is positive definite, then
the expression

�n log
rRSSk

rRSS0

has asymptotically a x2(k) distribution under the null hypo-
thesis H0: b ¼ 0.

A proof is given in the appendix.

Remark 2. In the case of QTL mapping, the covari-
ance matrix between regressor variables is positive def-
inite, if the recombination fraction between any pair of
markers is larger than zero.

Remark 3. In the case of a one-QTL model, there is
a close relationship between �n logðrRSS1=rRSS0Þ and
the Wilcoxon rank statistics Ws, namely

�n log
rRSS1

rRSS0
¼ �n log 1� Ws � EWsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn � 1ÞVar Ws

p
 !2 !

� n

n � 1

Ws � EWsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ws
p

� �2

;

where EWs and Var Ws are the mean and the variance of
Ws. In this case, Lemma 1 confirms a well-known result
on the asymptotic normality of Ws.

If F is discrete, ties usually arise among the observed
values. A discrete F may be due to a genuinely discrete
quantitative trait or due to a limited measurement
precision. For tied (equal) observations ranks are not
well defined, and therefore some modifications are
necessary to apply a rank-based statistic. One of the
methods to handle such a situation is to use midranks.
Let d1, . . . , de be the number of observations tied at the
smallest value, the second smallest, and so on. The
corresponding ranks are 1, 2, . . . , d1 in the first group,
d1 1 1, d1 1 2, . . . , d1 1 d2 in the second, etc. To each
observation in group t, we assign the average of the dt

ranks in this group. These averages are called midranks.
Conditional on the quantities e, d1, d2, . . . , de, the distri-
bution of the midranks is independent of F (Lehmann

1975). Hence rank statistics and in particular the rBIC
will still be conditionally distribution free, if we use mid-
ranks. Thus the performance should again not depend
on the error-term distribution.

In the next section, we investigate the performance of
the rBIC for a model with additive and epistatic terms
under different error distributions.

SIMULATIONS

To investigate the performance of the rBIC, we per-
formed computer simulations. To simulate the distribu-
tion of marker genotypes, we used the Haldane model
with no interference.

We consider two setups. Setup 1 involves two chro-
mosomes each of length 100 cM with markers equally
spaced every 10 cM. In this setting, we consider both the
null model involving no effects and a three-QTL model
involving one main (chromosome 1 at 20 cM, effect size
0.55) and one epistatic effect (chromosome 2 at 20 and
at 70 cM, effect size 1.2). Setup 1 has also been con-
sidered in Baierl et al. (2007).

In the second setup, we consider three chromosomes
each of length 100 cM with seven, eight, and seven
markers, respectively, distributed randomly across the
chromosome. The distances between the markers range
from 1 to 29 cM with a mean distance of 15.79 cM. To
narrow these intervals and to enable a location of QTL
at a finer scale, we used regression interval mapping
according to Haley and Knott (1992). This method
relies on imputing putative QTL between markers and
replacing their missing genotypes by expected values,
calculated on the basis of neighboring markers. Using
this approach, we imputed additional marker genotypes
to reduce the intervals between adjacent markers to a
maximum of 10 cM. The second setup is considered
under the null model of no effects and an alternative
model involving three main and three epistatic effects.
The locations and sizes of the main QTL effects are as
follows: QTL1 is on chromosome 1 at 20 cM with g1 ¼
0.8, QTL2 is on chromosome 2 at 20 cM with g2 ¼ 0.7,
and QTL3 is on chromosome 3 at 1 cM with g3 ¼ 0.6.
The epistatic effects are specified as follows: interaction
1 involves QTL1 and QTL3 with d1 ¼ 1.6, interaction 2
involves QTL2 and a new QTL on chromosome 3 at
75 cM with d2 ¼ 1.4, and interaction 3 involves two new
QTL, both on chromosome 1 at 27 and 60 cM, respec-
tively, with d3 ¼ 1.2. The locations of the QTL, markers,
and imputed positions are shown in Figure 1.

Setup 1 involves backcross populations of size 200,
whereas in setup 2 population sizes of both 200 and 500
are considered. Both the mBIC and the rBIC criterion
are applied in the standard form with l ¼ Nm/2.2 and
u ¼ Ne/2.2. To solve the problem of searching over a
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large class of possible models, we follow Bogdan et al.
(2004) and use a forward selection. At every step of this
procedure a new regression model is built by adding an
explanatory variable that leads to the largest decrease in
RSS. The forward selection strategy is terminated after
30 steps, resulting in 31 regression models. Then we use
mBIC or rBIC to chose the ‘‘best’’ of these models.

The simulation results are based on 3000 replications.
To investigate the robustness of our proposed crite-

rion, we consider five different error term distributions,
which are defined according to Baierl et al. (2007):

1. Normal: 1.11 3 N(0, 1).
2. Laplace: 1.08 3 Laplace(0, 1).
3. Cauchy: Cauchy(0, 0.75).
4. Tukey’s gross error model: 1.081 3 Tukey(0.95,

100, 1).
5. x2 with 6 d.f. centered around the mean: 0.342 3

(x2
6 � 6).

In Tukey’s gross error model, the error distribution is
a mixture of two normal distributions leading to a cer-
tain percentage of outliers. More specifically, Tukey(a,
t, s)¼ l 3 N(0, s2) 1 (1� l) 3 N(0, t 3 s2), where l�
Binomial(1, a).

A main effect is assumed to be correctly identified, if
at least one of the chosen markers is within 15 cM of
the true QTL. Every additionally selected marker within
this range is counted as a false positive. An epistatic ef-
fect is assumed to be correctly identified, if both mark-
ers of the chosen interaction term are within 15 cM of
the respective QTL.

The application of a 615-cM detection window is
motivated by the fact that for n ¼ 200, the standard
deviation of the estimates of QTL location is close to
10 cM, if their magnitudes are similar to our simulated
effect sizes. In the case of the Cauchy distribution, the
standard error of QTL localization reaches even 15 cM
and in this case a 15-cM detection window is somewhat
restrictive, leading to an underestimation of the power
and an overestimation of the false discovery rate. The
observed errors related to QTL location are inherent to
any QTL-mapping procedure in a backcross popula-
tion. They result from a strong correlation between
neighboring markers and from propagating the QTL
signal over all linked markers. A discussion of this phe-
nomenon in the case of standard interval mapping can
be found in Bogdan and Doerge (2005).

The false discovery rate (FDR) (Benjamini and
Hochberg 1995) is estimated as

FDR ¼
P

N
i¼1 FDRi

N
;

where N is the number of replications of the simulation
experiment and

FDRi ¼
FPi

ci 1 FPi
; if ci 1 FPi . 0

0; if ci 1 FPi ¼ 0:

8<
:

Here ci stands for the number of correctly identified
terms, both main and epistatic, at replication i, and FPi

is the number of false positives that appear at replica-
tion i. Under the null model, the false discovery rate is
equivalent to the multiple type I (or familywise) error of
detecting at least one incorrect effect.

RESULTS AND DISCUSSION

For setup 1, the type I errors under the null model of
no effect are summarized in Table 1. The differences
between the results for the mBIC and the rBIC depend
on the error term distribution and are small in most
cases (Cauchy error is an exception). According to Pro-
position 1, the distribution of the rBIC under the null
hypothesis does not depend on the error distribution
and the slight differences in type I error observed for
different error distributions are due to random simula-
tion errors.

In the context of setup 1, we compare the power
and FDR of our proposed rank-based method to the
M-estimates investigated by Baierl et al. (2007) as well as
to the classical BIC. In regression, M-estimates are ob-
tained by minimizing more general measures of dis-
tance instead of the residual sum of squares. In Baierl

et al. (2007), the following three contrast functions have

Figure 1.—Summary of simula-
tion setup 2. The marker loca-
tions and imputed positions are
indicated by long and short ver-
tical bars, respectively. QTL are
indicated by 3’s. The exact posi-
tions and effect sizes are given
in the Simulations section.

TABLE 1

Type I errors under the null model (no QTL) for setup 1

Error distribution

Normal Laplace Cauchy Tukey Chi2

mBIC 0.052 0.050 0.196 0.070 0.051
rBIC 0.052 0.058 0.045 0.048 0.050
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been considered as a measure of distance: Huber’s, the
Bisquare, and Hampel’s contrast function. Their simu-
lations indicate that the use of the above-mentioned
robust contrast functions leads to much better results
than those obtained by least-squares regression in cases
when the error terms come from a heavy-tailed distribu-
tion. In the normal case, both methods work comparably.

The results for the first setup in the case of two effects
are presented in Figures 2 (average percentage of cor-
rectly identified effects) and 3 (FDR). (Exact numbers
can be found in Table 2.) In the case of nonnormal dis-
tributions, the percentage of correctly identified effects
for the rank method is comparable to the best values
obtained by M-estimates. None of the M-estimators per-
forms significantly better for every type of error term. In
Figure 3 on the other hand, we observe that our rank
method leads to slightly higher FDRs. Overall, the rank
method works well compared to other robust methods
of QTL detection. In addition, the method is very
simple to use and computationally less demanding than
M-estimates.

Note that the original BIC criterion leads to a con-
siderably higher percentage of correct identification
but also (see Figure 3) to extremely high false discovery
rates.

Next we consider the second setup, which is more
realistic in terms of the marker distribution. Our simu-
lations indicate that the type I error is smaller in most
cases for the rBIC than for the mBIC (see Table 3). The
largest differences are observed for the Cauchy and
Tukey error distributions.

For the six-effect model in setup 2 and a 15-cM
identification window, the FDR for the rBIC ranges
from 12 to 14% for n¼ 200 and from 3 to 9% for n¼ 500
(see Table 4). The relatively large FDR values for n¼ 200
are caused by a large standard deviation of the estimates
of QTL location. Our additional simulations demon-

strated that this standard error reaches 15 cM for our
simulated QTL and both sample sizes when the error
term is Cauchy distributed. Thus a significant propor-
tion of ‘‘false positives’’ is due to correctly identified but
imprecisely localized QTL. When applying a more lib-
eral 630-cM detection window we recorded the FDR at
a level of 3–8% for n¼ 200 and at a level of 0.5–1.5% for
n ¼ 500.

Results included in Table 4 demonstrate that the FDR
for the rBIC is comparable to or smaller than the FDR
for the standard mBIC independently of the error
distribution. We also observe that the rBIC is slightly
less efficient than the mBIC, if the error distribution is
normal. The corresponding loss of power is equal to
4 percentage points for n¼ 200 (from 41 to 37%) and to
2 percentage points for n ¼ 500 (from 88 to 86%). For
all other investigated error distributions, the rBIC has
a larger power than the mBIC. A particularly large dif-
ference occurs for the Tukey distribution, where the
power of the rBIC is 79% compared to 16% for the
mBIC when n ¼ 500. For the Cauchy distribution
the mBIC completely fails (the power is ,1%), whereas
the power of the rBIC for n ¼ 500 is 51%. Note that

Figure 2.—Percentage of correctly identified main and
epistatic effects taken from Baierl et al. (2007) (shaded bars)
and for the rank-based method (horizontal solid lines).

Figure 3.—False discovery rates from Baierl et al. (2007)
(shaded bars) and for the rank-based method (horizontal
solid lines).

TABLE 2

Results for setup 1 (two-effects model)

mBIC rBIC

Error FDR % corr FDR % corr

1. Normal 0.149 0.469 0.146 0.448
2. Laplace 0.120 0.209 0.137 0.329
3. Cauchy 0.189 0.036 0.142 0.222
4. Tukey 0.087 0.067 0.152 0.368
5. x2 0.142 0.403 0.156 0.508

% corr, percentage of correctly identified effects.
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both the Tukey and the Cauchy distribution lead to a
certain proportion of outliers.

Overall the results confirm that the rank-based method
works comparably as well as the mBIC for normal errors,
but much better when outliers are present.

Real data analysis: To verify the performance of the
rBIC in the case of real data, we reanalyze a data set from
Mähler et al. (2002). The data concern colitis suscep-
tibility strains that carry a deficient IL-10 gene that is
important in limiting the immune response against in-
testinal antigens. We consider their data from a back-
cross to the less susceptible B6 strain. We analyze two
quantitative traits, MidPC1 and CecumPC1, which are
the first principal components of four scores measuring
the severity and type of lesions on middle colon and
cecum, respectively. As demonstrated in Figures 4 and 5,
the distribution of the trait strongly deviates from the
normal distribution in both cases.

The data set contains 203 individuals and 12 markers
on 9 chromosomes that were selected from a prelimi-
nary genome scan on 40 individuals and 67 markers
spread across all 20 chromosomes.

Mähler et al. (2002) report one main effect on
chromosome 12 for the trait MidPC1 (D12Mit214) and
one suggestive QTL for CecumPC1 on chromosome 13.
They do not detect any interactions.

Due to missing trait or genotype information, we
removed 16 (CecumPC1) and 15 observations (MidPC1)
from the data set before applying our method. In
addition, we excluded marker D17Mit88, which had

missing genotypes for 62 individuals. Imputation of
missing genotype data was not feasible because of the
low marker density.

The considered traits are summaries of discrete mea-
sures (scores). Of 187 observations for CecumPC1, there
are 32 different trait values, 45% of the observations fall
within 1 of 4 most frequent values, and the most numer-
ous group contains 13% of the observations. There are
also only 19 different values for MidPC1. Among the 188
observations of this trait, 42% are equal to the most
frequent value and 11% to the second-most frequent. To
derive ranks for individuals with identical trait values,
midranks as discussed in methods were calculated.

Since we do not have any prior information, we use
the standard versions of the mBIC and the rBIC with l¼
Nm/2.2 and u ¼ Ne/2.2.

Applying both the mBIC and the rBIC to the MidPC1
data set, we find two effects, one main and one epistatic.
The main effect found by our approach is the same as
in Mähler et al. (2002). However, we also detected an
epistatic effect between markers on chromosomes 4 and
7 that considerably improves the fit of the model to the
data. The fraction of the variance explained by the
model, the R 2, increases from 0.0768 for the one-effect
model to 0.1397 for the model that also includes the
interaction term.

For the second trait, CecumPC1, the mBIC does not
find any effects. When using the rBIC on the other hand,
we get one main effect on chromosome 5 (D5Mit205).
This effect is different from the one that was suggested
by Mähler et al. (2002). This difference is explained in
Figure 6, which shows the relationship between regular
t-test statistics and Wilcoxon rank statistics, for each of
the considered 11 markers. The plot demonstrates that
values of the Wilcoxon statistic are strongly correlated
with values of the t-statistic. However, the ranking of
markers according to the Wilcoxon statistic differs from
the ranking due to t-test results. In particular marker 9,
identified by Mähler et al. (2002) and having the largest
absolute value of the t-statistic, has a smaller value of the
Wilcoxon rank statistic than marker 3, identified by
rBIC. The respective P-values of the Wilcoxon test are

TABLE 3

Type I errors under the null model (no QTL) for setup 2

Error distribution

Normal Laplace Cauchy Tukey x2

200 mBIC 0.031 0.035 0.099 0.054 0.033
200 rBIC 0.033 0.034 0.037 0.029 0.031

500 mBIC 0.019 0.016 0.088 0.028 0.015
500 rBIC 0.020 0.022 0.023 0.017 0.014

TABLE 4

Results for setup 2 (six-effect model)

n ¼ 200 n ¼ 500

mBIC rBIC mBIC rBIC

Error FDR % corr FDR % corr FDR % corr FDR % corr

1. Normal 0.122 0.407 0.124 0.370 0.034 0.875 0.036 0.856
2. Laplace 0.139 0.179 0.137 0.232 0.067 0.630 0.054 0.723
3. Cauchy 0.095 0.008 0.128 0.136 0.080 0.007 0.087 0.508
4. Tukey 0.102 0.051 0.137 0.292 0.118 0.165 0.044 0.789
5. x2 0.138 0.354 0.129 0.382 0.040 0.841 0.034 0.865

% corr, percentage of correctly identified effects.
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0.0089 for marker 9 and 0.0026 for marker 3, which
supports the choice of marker 3. For the t-test, the
P-values are 0.0061 for marker 9 and 0.0066 for marker
3. After correcting for multiple testing, none of the t-
statistics were significant and none of these effects were
detected by the regular mBIC criterion. The marker
D5Mit205 (marker 3) was also detected by the robust
version of mBIC proposed in Baierl et al. (2007), which
additionally detects effect no. 9.

Summary: We defined a new version of the mBIC
based on ranks. In our approach, we followed Kruglyak

and Lander (1995) and Zou et al. (2003), who proposed
rank-based methods for QTL mapping and demon-
strated their good properties.

Our results show that the rank version of the mBIC
performs very well, at least when n $ 200. This phe-
nomenon is in accordance with asymptotic limit theo-
rems on the distribution of rank statistics, given, for
example, in Puri and Sen (1985) or Hájek et al. (1999).
The classical central limit theorem can be used to
explain the relatively good performance of the original
mBIC under the chi-square or the Laplace error distri-
bution. However, in the case when the error distribution
is heavy tailed or when the data contain some propor-
tion of outliers, the rank version of the mBIC performs
much better than the standard version. Our results also
suggest that the rank version of the mBIC performs
comparably to robust versions of this criterion based on
M-estimates but is much easier to handle computationally.

The main purpose of our simulations was the com-
parison of standard and rank-based (robust) regression.
The simulations were performed under an ideal situa-
tion of no missing genotype data or genotype errors.
However, the simulations for setup 2, which used Haley

and Knott (1992) interval mapping to fill the geno-
types of putative QTL, demonstrate that the rBIC can

perform very well when some missing genotype data are
replaced with their expected values. Some additional
simulations demonstrating a good performance of the
mBIC under missing genotype data can be found in
Baierl et al. (2006). We also expect that the main con-
clusions resulting from the comparison of the standard
and rank-based regression would hold in the case of the
genotyping errors, since both these methods of data
analysis would be similarly affected. The nonnormal
error distribution causes additional problems for stan-
dard methods of QTL mapping, which can be solved by
applying rank-based regression.

To obtain best results the mBIC and the rBIC should
be used with an all-subsets model selection. The applica-
tion of forward selection in our simulation study was

Figure 4.—Distribution of MidPC1 in the set of 203
individuals from the backcross B6 population.

Figure 5.—Distribution of CecumPC1 in the set of 203
individuals from the backcross B6 population.

Figure 6.—Absolute values of the t-test statistics vs. absolute
values of the Wilcoxon statistics, for the 11 markers used in
the analysis of the CecumPC1.
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motivated by the computational constraints related to
the large number of replications needed to estimate the
power and FDR of our procedure. According to the
results reported in Broman (1997) and Broman and
Speed (2002) and our experience, forward selection
performs relatively well in the context of QTL mapping,
even though it has a slight tendency to include some
extraneous markers. We believe that the estimates of
power obtained from our simulation study are good
indicators of the performance of the rBIC under an all-
subsets model selection, while the FDR might be slightly
overestimated.

This article is focused on backcross populations and
the standard version of the mBIC and the rBIC. How-
ever, we expect to see similar patterns when the methods
are used for different experimental designs (see, e.g.,
Baierl et al. 2006) or when prior knowledge is used to
modify the penalty.

The methods described in this article have been
implemented in Matlab and are available at http://
www.im.pwr.wroc.pl/�mzak/rBIC.

We thank Pawe1 Koteja for helpful discussions and two anonymous
referees for helpful suggestions.
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Carlborg, Ö.,andL.Andersson, 2002 Theuseof randomisationtest-
ing fordetectionofmultipleepistaticQTL.Genet.Res.79:175–184.
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APPENDIX: PROOF OF LEMMA 1

We show that when the covariance matrix of regressor variables is positive definite then under the null hypothesis of
no QTL, H0: b ¼ 0, the statistic

�n log
rRSSk

rRSS0
ðA1Þ

has an asymptotic x2(k) distribution. For the multiple-regression model, we have that

�n log
rRSSk

rRSS0
¼ �n log 1� R9ðX ðX 9X Þ�X 9� ð1=nÞ1 3 19ÞR

ðR � RÞ9ðR � RÞ

� �
:

Locating QTL Using a Rank-Based Criterion 1853



We compare the right-hand side expression under the logarithm with the statistic

Z 2 ¼ ðn � 1ÞR9ðX � 1 3 X̂ ÞððX � 1 3 X̂ Þ9ðX � 1 3 X̂ ÞÞ�ðX � 1 3 X̂ Þ9R
ðR � RÞ9ðR � RÞ :

Here X̂ denotes the 1 3 (k 1 1) vector of column averages. According to Puri and Sen (1985) Z 2 has an asymptotic chi-
square distribution with k d.f.

To compare (A1) with Z 2 we at first show that

X ðX 9X Þ�X 9� 1

n
1 3 19

� �
¼ ðX � 1 3 X̂ ÞððX � 1 3 X̂ Þ9ðX � 1 3 X̂ ÞÞ�ðX � 1 3 X̂ Þ9:

Multiplying both sides by X 9 from the left and by X from the right and using the properties of the generalized inverse
matrix we get

X 9X � nX̂ 9X̂ ¼ X 9ðX � 1 3 X̂ ÞððX � 1 3 X̂ Þ9ðX � 1 3 X̂ ÞÞ�ðX � 1 3 X̂ Þ9X : ðA2Þ

On the right-hand side, we now substitute the first and last X by ðX � 1 3 X̂ 1 1 3 X̂ Þ.
It is easy to check that the expression becomes ðX � 1 3 X̂ Þ9ðX � 1 3 X̂ Þ ¼ X 9X � nX̂ 9X̂ after these transformations,

which is exactly the left side of (A2). Thus

�n log
rRSSk

rRSS0
¼ �n log 1� 1

n � 1
Z 2

� �
:

As n tends to infinity, the expression ð1=ðn � 1ÞÞZ 2 tends to 0, and we can use the approximation log(1 1 x) � x
to obtain

�n log
rRSSk

rRSS0
� n

n � 1
Z 2;

which is asymptotically x2(k) distributed.
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