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IN THE VERY CONSIDERABLE BODY of mathematical theory relating to popu-
lation genetics, developed initially by Fisher (e.g., 1930), Wright (e.g.,
1931) and Haldane (e.g., 1924-32), and latterly extended by A1Talecot
(1948), Crow (1958), Kimura (1956), Owen (1959) and others, the
more recent studies have tended to be concentrated on the effects of selection
and random processes on gene frequencies. Intermixture, that evolutionary
process which is bringing about some of the most strikingly different gene com-

binations in human populations today, has received rather less attention, al-
though by 193 1 Wright had established the basic formulas relating to the
rate of change of frequency of a gene in a population under immigration, and
the distribution of gene frequencies in an array of intermixing populations,
both where intermixture is the sole process modifyinig frequencies and where
it occurs concomitantly with one or more other such processes. In anthro-
pological problems theory and application have been elementary. Several at-
tempts have been made to examine from demographic data the effect of
observed admixture in restricting random differentiation of gene frequencies
among local populations within larger ones, applying Wright's models of
"island" population structure (e.g., Lasker, 1952; Roberts, 1956) and of
isolation bv distance (Roberts, 1956; Alstrdm, 1958). A second type of prob-
lenm attempted refers to specific cases of hybridiLation between two populations
where observed gene fre(uency data from parental and hybrid groups have
been used to calculate from Bernstein's simple formula the amount of inter-
mixture that had occurred (e.g., Boyd, 1939; Ottensooser, 1944; da Silva,
1948, 1949), while Stevens (1952) examined sone of the attendant statisti-
cal problems. Glass and Li (1953) pointed out that from the same data, the
average rate of gene flow per generation may be calculated, if the number of
generations of intermixture is known; thev gave a formula for one-way genie
flow as exemplified 1b the American Negro, in which, whereas the white
parental population had contributed to the gene pool of the hybrid, the latter
had not contributed to the white; further studies of the Negro in America
followed (Roberts, 1955; Glass, 1955; Steinberg et al., 1960; Saldanha,
1957). Probably more important in human evolution is the situation in which
two or more populations have exchanged genes through occasional intermarriage,
each thereby affecting the other's gene pool and being itself affected; the equa-
tions and procedure relating to this situation are set out here since they are likely
to l)e of relevance in other studies, e.g., in those aiming to measure the extent of
selection or drift in new populations arising from intermixture in a new
environment.
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DYNAMICS OF RACIAL INTERMIXTURE

MODEL I: TWO POPULATIONS, DISCRETE GENERATIONS

This model assumes that generations do not overlap, that migration occurs
at the end of each generation, that populations are panmictic, that migrants
are drawn at random from them and that intermixture 'is the sole process
modifying gene frequencies.

In two populations, let q0' be the original allele frequency at a single locus
in population I, q."1 that in population II; let the subscript refer to the genera-
tion so that q,,' is the gene frequency in population I after n generations Let
nm'(n) be the rate of gene flow into population II from population I, and
Il"(n) that into population I from population II, after the nth generation. Thus
the gene flow rate is the proportion of the recipient population's genes received
by immigration in the given generation; what proportion of the donating popu-
lation emigrates is irrelevant for present purposes. The gene flow rates are
hereinafter referred to as admixture rates. They need not be constant from
generation to generation.

In the gametes of population I after one generation of such admixture, there
will be a component, ml', deriving from population II, in which the allele fre-
quency will be q%,,; in the remainder, 1 - ml', deriving from population I, the
gene frequencies will be unaltered by loss of the emigrants; the frequency will
be in the total population qII = mIIqoII + (1 min) qOI.
After n generations,
=11= [1 - ml(n)) qnl,- + m"1(n) qn11" (U
qll= m'(n) qn-l' + [1 ml(n)} qn-I" (2)
Suppose that

n -qn qn1 and En- qI + qn"
then subtracting (1) - (2):
An [1 - m'(n) -min(n)) A nIl (3)
which is a recurrence relation implying
An-l-[1 - Il(n-l - ml"(n-l)] A-2'
An-2 =[1 - mi(n-2) - mI(n-2)] An-3'

A= [1 - m'(1) - mI(l)} AO
and by back substitution of each equation in the one immediately above it,
A {1 -'m(l) fjL - 'mI(2) - m"I(2)1 ...

[1 -nl(n) - m"(n)J A0
or An = [1 mI(k) - m"(k)X Ao (4)
where ir denotes the product of the expressions[ for k = 1, 2, . . . n.

Adding (1) and (2) gives
Xn = zn-1 + [m'(n) - mi"(n)] An-1 (5)
which is a second recurrence relation, so that
1n-1 = Yn-2 + fm'(n-l) - m"(n-l) An2
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I= 1 + [m'(l) - m"(1)] Au
Summing these equations and canceling equal terms on both sides leaves
="n + [m'(l) - mt"(1)) AO + [mI(2) - m"(2)) A1 + *

+ [m'(n) m"l(n)]I An-i (6)
and this may be written, using (4), as
=n 1. + 1[m'(k) - mI(k)]7r [1 - m'(L) -m"()) A/ (7)
where I is used to denote summation over k 1,2........ n
and 7r now indicates the product of the bracketed expressions following it for
I1 1 2, ... k-1.

The general solution for qn' and qn01 now follows from (4) and (7),
qn= /2½ ho + 1[m'(k) - mI(k) + f7r[l - m'(l) - mII(l)Ao] (8)
qn ½/2 fLo + 1(m'(k) - mII(k) - f]wr1 - m'(l) - m"(l)3A0] (9)
where f = 0 for k*n, f = 1 - m'(k) - m"(k) for k = n.

For constant admixture rates
4r 1 - m'(l) - mI"() = 7r( - ml Mi')

=(1 - m'- mII)k-1
so that
qn= 1/2 f{o + (Min- m")Y(l - ml - mII)k-l AO

+ (1 - MI mII)n AO (10)
qn =½/2 [1 + (MI - MI) 1(1 - m mII)k-l AO

(1 - m'- II)nAO)] (11)
These two expressions' simplify further to those given by Glass and Li (1953)
for the discrete generation case in which there is one-way gene flow,

Mi= 0 and m = mIn, so that
qn 1/2 (YO + AO) =qI (12)
qn" 12 [YO + AO + 2(1 - m)RAJ)

qo01(l - m)n + (1 - (1 - M))]qoI (13)
MODEL II: TWO POPULATIONS, CONTINUOUS MIGRATION

All of the above deals with migrations occurring only at-the end of genera-
tions and the treatment is wholly discrete. It is perhaps more realistic to con-
sider continuous migration during each generation. It is reasonable to expect
that for large values of n the difference between the effects of discrete and
continuous migration will be small. It will be shown that the analogous expres-

'Expressions (10) (11) may be simplified by a slight change in notation:
let m = ml - mII, and let M = 1 m - m
then

qn' = / + A [m + (_m + 1 - M) Mn] (1Oa)

qn =½/2 o + AO + (m -
I

+ M) Mn] (hla)(1 -M]
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sions to (12) and (13) derived by Glass and Li (1953) will be a simple
case of the fuller treatment which follows.

Let ml (t) and mli (t) be the rates of admixture from populations I and II
to each other, respectively, at time (t) so that in the small interval (t, t + At)
the amounts of migration may be written m'(t) St and m"l(t) St.

If further q'(t) and q"1(t) represent the gene frequencies in the two popula-
tions at time t,
q'(t + St) =[1 ml"(t)St] q'(t) ± min (t)St q"(t) (14)
q"l(t + St) m't(t)8t q'(t) + [1 - m'(t)Stjq"(t) (15)

Subtracting,
A(t + St) = S1- St mi(t) - St m"(t)) A(t)

or
A(t + at) - A(t) = [mI(t) + m"l(t)] A(t) St.

Dividing by St and letting St - 0,
dA(t)

dt =- fm'(t) + m"l(t)J A(t)
t,=t

so that flogA(t')] -fot fm'(t') + min(t')] dt'
t'=0

orA(t) = Lo exp -{ ot [m'(t') + m"I(t')) dt'] (16)
On the other hand, adding equations (14) and (15)

1(t + St) = z(t) + St [mI(t) - m"(t)) A(t)

d(t) = [ml(t) - ml(t)) A0 exp [- Jt[ml(t') + ml(t')] dt']
so that
E(t) = Z + Ao Jot [m'(t') m"1(t ) [exp - Jt'rmI(t') +

mil(01) dt'} dt" ( 17)
where t and t are carrying variables for the integration.

Adding and subtracting (16) and (17) will now lead to general expres-
sions for ql(t) and q"l(t) which are
q'(t) = ½/2(Zo + Ao lot [mI(t") -m"(t)] exp - fot [ml(t) +

min(t)) dt'] dt" + A0 exp [- fot[m'(t') + ml"(t')) dt]) (18)

qll(t) = 1/2 (Zo + A0o otJ[m(t') - mI"(t-)) exp [ - lot [m'(t') +

mII(tD)} dt] dt' - Ao exp- lot [m'(t') + mll(t')) dt]) (19)
These expressions cannot be simplified further and represent the most general
solution to this problem for continuous migration at varying rates between two
populations.

It is possible to write down general simpler forms for (18) and (19) if
one of the rates is zero. Say mli = 0. Then
qi(t) 1/2 [Z0 + A0 e-2jnl (t) dt] (18a)

q"l(t) = /2½ Z - 2 AO ei I (t dt + A0o fe-2Im I t) dt] t o) (19a)
where the integrals in these two expressions are all indefinite.
Another simple solution occurs if both rates are equal, say
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ml = min = m. Then
q'(t) = (/2( + Ao e-2fotmft) dt) (18b)

qII(t) = 1/2 (yo - , e-2iotm(t) dt) (19b)
Again, if mT(t) and mI"(t) are assumed to be the constants ml and mI", the

simplified solutions for this case are obtained after integrating in (18) and
(19) as

q1(t)1/2
(in' - in" 2ml ALo e -(in' + m"1)t~q'(t) = ½/2{>o + (in' +inm ) + (iMn + in") (20)

(mi + mil) (ml + mil) (21)

Simplifying further for the case of unidirectional gene flow at a constant
rate (mi" = 0, mT = m) leads to the equation of Glass and Li
q'(t) 1/2 [.o + AO] qo' (22)
q"(t) 1/2 [Yo + AO 2A0 e-ntJ

qo0 - (qoI - qo01) e-mt (23)
In equations (20) and (21) it is interesting to observe that the asymptotic

values (as t -* oo )
q'(oo ) = q(Co ) = 1/2 [0 + A0 (mi l i")) (24)
are identical with the corresponding values for the discrete case,
q I, q"I, which may be obtained from equations (10) and (11).
A further simple case is that in which gene flow is unidirectional but at a

rate increasing hyperbolically with time, e.g., a situation in which initial strong
resistance to mating with immigrants broke down more and more rapidly.
Substituting in formulas ( 22), ( 2 3)

c
ml= 0, ml a -tmlI °} ml-a t

where a and c are suitable constants for this model, not necessarily integers,
gives solutions
q'(t) = 1/2 (o + A0) = qoI (25)

qlI(t) 1/2½{ +A0 -AO02(a-t) I

ac

(a-t>qoI -- (qoI - q,11) ac (26)

A similarly simple case is that where rates of gene flow in both directions are
equal at any given time, but are both increasing as above, i.e.,

c
Ml = MII = a -t

q'( 1r IL(a-t)2cq'(t) =½I/2 {Y0 + A0 ((27)

q"'(t) = ½/2 4fo- A t ' (l2o8 )
L a2c r28

If a constantly increasing rate is needed, such as when m'l at2 + bt + c,
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so that -m = a (a constant) and dim = at + b (linearly increasing). Tlhen,dt2~~~~~~d
if ml" 0, (18a) and (19a) give
(I' (t) q.

(I"(t) _ q0' - 2A, e -0 + 1,1at + 1.0
If mil ml, ( 18b) and ( 19b) give

' (t) = 1/2 [t, + A, e -2( 1>3 at . + 1,0)0 + et)

(j"(t) = /2 [ .4 -_ A A, : + %t.bt + et)]

MODEL III: MORE THAN TWO POPULATIONS, CONSTANT MIGRATION RATE

The above theory may be extended to cover N = 3 or more populations bv
writing
-1 .Mq., (29)
where M represents the matrix of coefficients of the elements q'n-0 of i = 1, 2.

N of the vector q0,,. The matrix equation (29) is the N-dimensional
analogy of the equations ( 10) and ( I1 ) for the N = 2 case already considered.

As before, it is desired to express qn in terms of q0, the vector of initial fre-
quencies, and n, the number of generations where tie generations are discrete.
Such an expression is, for constant gene flow rates,

qn =Ml q. (30)
where Mj means the matrix multiplied by itself n times; this is one possible
way of calculating its value. When however its latent roots are distinct, AM may
be written as a linear combination of N particular matrices, M*, with the
property
Mn A=ni Mi (31)

where the summation extends over i = I, ... N and the xi are the latent roots
of Mg. Such an expression of the matrix M is termed its spectral resolution and
this property can be exploited in the calculation of qn using (30) in the form:
q1= >i %O (32)
to construct the spectral set of matrices Mi it is first necessary to obtain the

latent roots of M in the usual way (see for instance Aitken, 1956) and use
them to find N pairs of vectors si and to such that
M s', = Ax and 6, M = A1t, where s' is the transpose of s, and t' of t.

The spectral set is the set of matrices
11 LS[ ti} /A'ii (i = 1, 2p......N) (33)
For N = 3 or more populations the solutions cannot be written down in the

manner of the earlier cases but the brief description given above together with
the following examples should be sufficient to indicate how such solutions may
be obtained.

EXAMPLES

1. Front the northern Nilotes
To illustrate the problems that can be dealt with by this procedure, consider,

among the northern Nilotic populations of the southern Sudan, the group com-
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prising the Nuer, Dinka and Shilluk. Observations were made on the incidence
of intermarriages in these peoples, and with these data the trends in gene fre-
quencies can be examined, if the necessary assumptions are made. One assump-
tion is that the observed gene frequencies are the real gene frequencies of the
populations. The second is that for the purpose of the present model the inter-
mixture rates are taken to be constant, an assumption that does not seem too
unrealistic from what is known of the cultural inertia of primitive folk, and
which appears to be supported by comparison of the two generations embraced
in the present data. The populations are considered as panmictic, though the
area over which they are settled makes this unlikely, and intermixture would
be expected to be more frequent in those communities of Nuer and Dinka near-
est geographically to the territorial confines. However, the observed intermixture
rates can be regarded as those of the populations as a whole since the samples
on which they are based covered villages throughout the whole of the southern
half of Shillukland, the northern block of Dinka tribes from the Ageir to the
Ruweng and Ngok, and the whole of the Nuer tribes from the Eastern Jikany
to the Bul tribes.

In 288 marriages in Dinka villages, whose progeny would come to be regard-
ed as Dinka, 8 spouses were Nuer and 5 were Shilluk, giving admixture rates
of .01389 and .00868; in Shilluk villages, out of 255 marriages, 5 spouses
were Dinka and none were Nuer (two further spouses were "Arab," omitted
from the present analysis), giving admixture rates of .00980 and 0; and in
200 Nuer matings, one was with a Shilluk woman and 5 were with Dinka,
giving admixture rates of .0025 and .0125. These admixture rates may be set
out in the form of a table, the principal diagonal comprising the proportion of
spouses each recipient population receives from itself.

RECIPIENT POPULATION DONATING POPULATION
Nuer Dinka Shilluk

Nuer .9850 .0125 .0025
Dinka .0138 .9775 .0087
Shilluk 0 .0098 .9902
These data can be used in the calculation of gene frequencies at any given
generation in the past, or in the future. For simplicity, the latter situation is
illustrated first.

(a) Given the constant admixture rates and the present gene frequencies, to
find the frequencies in some future generation.

The present frequencies of the blood group M gene are .5750, .5670 and
.5047, in Nuer, Dinka and Shilluk, respectively (Roberts, Ikin and Mourant,
1955).
In equation (30), the vector of initial gene frequencies qO =
C.5750 r.9850 .0125 .0025.56701 and the matrix of admixture rates M = 10138 .9775 .00871
.5047 1 0 .0098 .9902

The latent roots of M are 1, .986937, .965 763, so the spectral resolution of M
(equation 31)
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r.302388 .328683 .768929
\ 1 I .302388 .328683 .768929

I L.302388 .328683 .768929)
.419578 .058890 -.478469

+ .162804 .022850 -.185654 (.986937)"
-.488945 -.068626 .557571J

r .278033 .387572 .109539' 1
+ -.465191 .648467 -.183276 (.965763)n" (34)

1 .186557 -.260057 .073500 J
Multiplying, as indicated in equation (32), the right hand side of equation
(34) by the vector q. gives

r.5464351 .0331651 C.004600-
qn .546435 1 + .012869 (.986937)" + .007697 (.965763)n

L.546435) .038648J t-.003087_

In this form the
tained as in table

(34a)
vector of frequencies for any generation may be readily ob-
I and in Fig. 1.

TABLE 1.

n = 5 10 15 20 30 40 60
Nuer .5736 .5723 .5709 .5696 .5672 .5649 .5610
Dinka .5650 .5632 .5616 .5602 .5578 .5559 .5532
Shilluk .5076 .5104 .5129 .5152 .5193 .5228 .5285

z
LUJ

a
LU

LUJ
-J
LJ
-J-j

GENERATIONS
FIG. 1. Predicted approach through intermixture of frequencies of the gene for blood

group M in the Northern Nilotes.
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The asymptotic value is the first vector on the right hand side of equation
(34a), so that the ultimate allele frequency that all three populations will
attain is .5464.

(b) Given the constant admixture rates and the present gene frequencies, to
find the frequencies in a previous generation.
The similarity in blood group gene frequencies of these peoples has been

interpreted as indicating a derivation from a common original stock (Roberts
et al., 1955). A possible alternative explanation is that the gene frequencies
in three populations formerly diverse came to resemble each other more and
more closely as a result of continued intermixture so that some at least of the
slight frequency differences now observed, instead of being attributable to
sampling error, represent the end stages of this process. With the available
data this hypothesis can be examined.

The value of n is taken as 20 for the present analysis, for the Shilluk
according to folklore seem to have entered their present territory about 1500
A.D. The matrix M is as before, but the present gene frequencies are taken as
the vector qn. From the equation q. = in XAnM1, where the Mi are now the
spectral matrices of the reciprocal matrix M-l, the frequencies in the three
populations 20 generations ago of the four alleles (out of those available) at
which the Shilluk are today most divergent, viz., those of genes M and S of
the MNS blood group system, of gene d of the Rh system, and of the gene
for blood group B, may be calculated to be as shown in table 2.

TABLE 2.

q. (ca. 1500 A.D.) qn
M S d B M S d B

Nuer .5803 .2559 .1766 .1324 .5750 .2254 .1782 .1270
Dinka .5786 .1197 .1566 .1158 .5670 .1505 .1759 .1155
Shilluk .4900 .1501 .2709 .0894 .5047 .1477 .2523 .0941

The over-all effect of intermixture, on the assumptions previously stated,
has been quite slight. It seems that 20 generations ago the three peoples were
still very similar in their gene frequencies; in Nuer and Dinka the M allele
frequencies were even closer than today, while the Shilluk were a little more
divergent from the other two populations in frequencies of three of the alleles
as expected, though not in the fourth. The importance of initial distance be-
tween frequencies for the results of intermixture is well shown by comparing
B and M frequencies. In these, Dinka initially occupied an intermediate posi-
tion between the other two populations, in the former being almost equidistant
from both, but in the latter being very close to the Nuer. The same inter-
mixture has brought the Dinka away from the Nuer in M frequency, but has
brought the Nuer closer to the Dinka in B frequency. The course followed
by the three populations in gene S (Fig. 2) shows that the positions of popula-
tions relative to each other with regard to the frequency of a gene are not
necessarily constant during the approach to the asymptotic value.
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26b

24

>_ NUERU .22
LU

0

JU .2eU-

*I"
__J

*16
, ~~~~~~~~DINKA

~~-~~~~-- ~ ~ ~ H LLULLK*14

12
-20 -la -16 -14 -12 -10 -8 -6 -4 -2 0 Present

GENERATION S
FIG. 2. Calculated past approach of frequencies of the gene for blood group S.

(c) Given gene frequencies of different generations, to find the constant
intermixture rates.

In the former cases the procedure was carried out for a single allele at a
time. For a solution to be obtained in this third type of problem data on fre-
quencies of at least as many independent alleles as there are intermixing
populations are required. A further factor has also to be considered. Deter-
minations of gene frequencies are subject to sampling error, so if there are
more than the minimum available the estimate of intermixture derived from
one set of allele frequencies may not coincide with that from a different set.
What is required is the most probable estimate of intermixture. The best
estimates derive from a group of independent loci, at which the allele frequen-
cies in the parent populations are well separated. The Rh genes are rather too
heavily represented in the examples which follow.

For N intermixing populations, the frequencies of k loci are known in gen-
erations n and o. Form from k vectors qn an N x k matrix Qg, and similarly
form from k vectors q0 another matrix go, so that

n = M 0 (corresponding to equation 30)
Qng~o = M0201 (where go' is the transpose of 9O)

and Mn QnQo' [goQo'] -I
Mncan now, if its latent roots are distinct, be spectrally resolved into N ma-
trices Ml (i = 1, 2, . . ., N), and, if the latent roots corresponding to these
spectral matrices are indicated by sn,
Mn = I nmi (35)
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DYNAMICS OF RACIAL INTERMIXTURE

From this relation the matrix MI may be determined uniquel1C, since each
latent root Xi,, is a real positive number 2 and therefore has a single real positive
root which will be called xi. Since the resolution of M1"n exists and is unique
for distinct latent roots of this matrix there is a single matrix NI whose nth
power satisfies (35), and it may be obtained from

NI = AjN\j (36)
where the xi are the nth roots of the latent roots ill. It may be noted that this
is the "least squares" solution for MIn given Qn and Q,. In the situation how-
ever in which two latent roots of NI"l are equal or nearly so, the nth root (i.e., Nj
the migration rate matrix) cannot be obtained by the above method and NIL
is the only answer available, representing the accumulated component from
each source in each population;: in such a case, however, it may be possible to
obtain an algebraic solution, as in footnote 4.

In the estimation of NIn by this procedure, sampling error in Qo or Qn may
cause the row sumis of NIn to deviate from unity and the migration rates to fall
outside the range 0 to 1. (Indeed it may be that such error will be large enough
to cause NIn not to have positive latent roots, in which case derivation of NI by
the above method will not be possible.) Before actually carrying out the resolu-
tion, therefore, the matrix obtained should be modified first by adding the
largest negative element in a rowv to all elements in that rowv (to make all
elements positive), and then by dividing each modified element by the new
row sum. Until such time as the errors of the estimates involved in the present
procedure have been established, departure from unity of the unmodified row
sums of NIn may be taken as a guide to the reliability of the elements of jnP;
there would be no departure at all if there were no error in Qn and Q0.

The working of this type of example may be demonstrated, for purposes of
illustration only, from the data obtained in example (b) above; n is taken as 20
tYenerations, Qo and Qn are, respectively, the left and right sections of table 2,
so that the calculations are as in table 3.

II. Fromi tHe Amnerican Negro and Indian

The third type of example dealt with above may be applied to the American
Negro. Roberts (1955) pointed out that the average rate of European gene
flow into the American Negro of .02 - .025 per generation, estimated from a

model involving two parental populations, would be an overestimate if the
American Indian had made an appreciable contribution to the hybrid. Glass
(1955) argued that there had been no significant American Indian contribu-
tion to the American Negro gene pool. As the former paper demonstrated,

2The latent roots are real positive numbers if the sum of the elements on the principal
diagonal of the matrix is greater than unity (m11 + M2) + man > 1). In the model
envisaged where most mating occurs within each population, this condition is always
satisfied.

:A further inequality must also be satisfied for the latent roots to be distinct, viz..
(M22 - m12) (m3a - M13) > (m32 - M12) (m23 -m13). This condition holds when there
is some migration into all three populations, but not for instance if there is migration into
only one of them, i.e., if some of the off diagonal elements in the matrix are zero. See
examples.
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there is considerable variation in the estimate of admixture according to which
African populations are regarded as providing the original frequencies for the
American Negro. So too will there be variation according to which frequencies
are taken as representative of the original American Indian. For the present
analysis, however, figures from those used by Glass are applied, i.e., the pooled
gene frequencies for all relevant African populations, the pooled figures for the
lresent American Negro and those selected to represent the American Indian
original frequencies (table 4), and data on a further allele (Kell) have been

TABLE 4.

QO Q.,,
Original frequencies Present frequencies

West American American American
African White Indian Negro White Indian

R° .5512 .0279 0000 .433:2 .0279 0000
S .1344 .3374 .3416 .17(8 .3374 .3416
ikb .217 .482 .230 .269 .482 .230
M .47881 .540 .718 .489 .540 .718
1O .0692 .4203 .3367 .158,2 .4203 .3367
R ' .0861 .1499 .5303 .108;8 .1499 .5303
r .2111 .3842 0000 .2663;7 .3842 0000
k .9912' .93 36: 1.0000' .982'35 .93 36:; 1.0000'

'Modified from Glass (1955).
2Barnicot and Lawler (1953).
::Wiener and Gordon ( 19 5 1).
4Chown and Lewis (1953).
:Miller, Rosenfield and Vogel (1951).

added. The Negro is assumed to have made no contribution to the gene pool
of the European or the Indian and the Indian no contribution to the European.
From the frequencies of the eight characters set out in table 4 it can be cal-
culated that in the American Negro there is a total white component of 23.2
per cent and no Indian component. In this case two of the latent roots of Mn
are equal so NA cannot be obtained by the present method; however, the admix-
ture rates may be calculated algebraically by the procedure set out in the foot-
note4, giving a gene flow from White to Negro of .0)26 per generation over 10
generations.
A second estimate may be obtained using the frequencies for the original

American Indian population suggested by Chown and Lewis (1953), again on
the assumption that gene flow was in one direction only into the Negro from
\Vhite and Indian. Again the calculations indicate in the American Negro a
\vhite component of 23.4 per cent and an Indian of zero.

It is possible that estimates of admixture employing gene frequencies of

4Suppose
M I 0 ° M1l- I 0 0
i O 1 0

1 0 0 }
m.,1 M.12 m33 t mt m,-.nM m12InJi

then it can be shown that
Mi2(n) (1 -iM,,) ml,(n) (1 - ml,)Ml = i;/ mil(n); m,

( - in1 n) , m" = (1 = mn1")
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Indian groups as far away from the major centers of Negro influx as the Chip-
pewa may be inaccurate on account of regional variations in American Indian
gene frequencies. Recent studies of remnant groups of southeastern Indians have
made up for the former lack of information on them, and a third estimate of
admixture has been obtained using Pollitzer's unpublished data on Cherokee
frequencies. Assuming that the frequencies observed in present day Cherokee
"fullbloods" are those of the parental Indian population, and again that gene
flow was in one direction only, into the Negro from white and Indian, the cal-
culations indicate in the American Negro a white component of 26.3 per cent
and an Indian of zero. Again, taking the present Cherokee fullblood frequencies
as those of the ancestral Indian population, the frequencies in all Cherokee
samples as those of the present Indian population (allowing for gene flow in
two directions, into the Negro and Indian but not into the White), the same
admixture figures appear for the American Negro while the present Cherokee
are seen to be 6.1 per cent white and zero Negro. The Cherokee phenotypic
frequencies do not allow differentiation of the Rh gene combinations cDe, and
cde, and in the above calculations all such (.0385 fullblood, .0460 whole
group) were assigned to cde and none to cDe. If, however, as a less satisfactory
alternative all are assigned to cDe and none to cde, then the present Cherokee
are 1.1 per cent white and zero Negro, and the present Negro are 26.0 per cent
white and zero Indian.
A further example in which the frequencies in all three populations were

changing may be drawn from American populations again employing eight
alleles (table 5). The West African and American Negro frequencies were

TABLE 5.

Qo Qn
West Full American Minnesota Present

African European Chippewa Negro White Chippewa

RO .5512 .0206 0 .4332 .0573 .0354
S .1344 .3278 .3416 .1708 .2841 .3555
M .4788 .5470 .7205 .4890 .5983 .5940
RI .0692 .4235 .3367 .1582 .4127 .3841
R2 .0861 .1483 .5303 .1088 .1294 .4287
r .2111 .3907 .0803 .2637 .3866 .1204
Fyb .8914 .5872 .1364 .8602 .5656 .2917
k .9912 .9539 .9252 .9823 .9434 .9448

as above; the original American Indian frequencies were taken to be those of
Matson, Koch and Levine (1954) for fullblood Chippewa and the present
Indian frequencies those of Matson's complete Chippewa sample (his sample
only included those of a quarter or more Indian ancestry as given in Agency
records); for original frequencies for the white population Norwegian figures
of Hartman (1944 and unpublished) and Heisto (1953) were applied, though
in the absence of Scandinavian frequencies of S and Duffy the English figures
of Race and Sanger (1950) were incorporated; for the present population the
Minnesota White frequencies of Matson et al. (1954) were used. Unpublished

274



ROBERTS AND HIORNS

data of Ikin et al. were used for the Duffy frequencies in West Africa and Eng-
land, respectively. The amount of accumulated admixture shows the present
Negro to be 26.1 per cent white with no Indian component, the present Indian
is 25.6 per cent white with a Negro component of 4.1 per cent while the
present white frequencies may be explained by a slight (4.6 per cent) Negro
and Indian (3.5 per cent) admixture.

If such admixture had been continuing at a constant rate for 6 generations
then the rate of gene flow per generation would be as follows:

From
Negro White Indian

( Negro .950 .051 0
(

Into ( White .009 .984 .007
(
( Indian .008 .050 .942

Lest it be argued that it is unlikely that the Negro frequencies would have
remained until 6 generations ago the same as in the original West African
populations, figures halfway between those in columns 1 and 4 of table 4 were
arbitrarily taken as representing the Negro frequency at that time. On this basis
the rates of gene flow from Negro into Minnesota White and Indian would
have been very little different from those above. Some of the apparent Negro
admixture may be due to the choice of Scandinavian samples to represent the
original white frequencies instead of allowing for a component from further
south in Europe. Indeed a survey of a township in southern central Minnesota
in 1910 showed in that particular town a preponderance of non-Scandinavian
ancestry, with Germans (30.8 per cent) the majority group. Alternatively,
instead of the apparent Negro component deriving from ancient European gene
frequency variation, it may have been derived through Negro admixture in the
antecedents of that section of the population of Minnesota which settled there
from other parts of the United States. Such difficulties of interpretation serve
to emphasize the arbitrary manner of selecting parental population frequencies
upon which of course the actual numerical results depend. All estimates confirm
Glass's argument of the absence of an Indian component in the American Ne-
gro, though local populations of Negroes in parts of the South still require
examination.

SUMMARY

Procedures are described for calculating the change in gene frequency when
two or more populations are intermixing. The methods in the case of three
populations are illustrated by examples from Africa and North America.
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