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THE USE OF GENETIC DATA to estimate the proportion of nonpaternity or extra-
marital illegitimacy has been discussed in recent writings (Li, 1961, p. 35;
NIacCluer and Schull, 1963). We will use the term "proportion of non-
paternity" to mean the proportion of children (A) for whom the putative or
supposed father is not the true (biological) father; this is essentially the
same concept that is used by Li (who speaks of "illegitimacy" rather than
"nonpaternity") and by MacCluer and Schull. As MacCluer and Schull
point out, the proportion A is of some interest to geneticists, since the results
of any segregation analysis or linkage detection study would be vitiated if
A were very much larger than zero in the population under investigation. It
would also appear that sociologists might be interested in a measurement
technique which estimates the sociological variable A solely from genetic
data; because of its objectivity, such a technique would provide a valuable
comparison with other possible techniques such as those involving question-
naires or interviews.

XVe suppose that a number (n) of combinations or trios-each consisting
of a putative father, a mother, and a child-have been examined with re-
spect to some genetic trait and that the phenotype of each member of each
trio has been ascertained. The basic problem then is to estimate A from such
data. Provided that computations are not prohibitively difficult, the method
of maximum likelihood would probably be favored as the best method of
estimation because of its many desirable properties (see, e.g., Fraser, 1958,
pp. 224-9_8; Cramer, 1946, pp. 498ff.). The purpose of this paper is to
examine how the maximum-likelihood method can be used in different situ-
ations to estimate the proportion A of nonpaternity.

In Li's brief example, he exhibits a simple and quick method (not maxi-
mum likelihood) for estimating A in the case of a trait for which there are
two autosomal alleles with dominance. His example is based on some data
which include several children from each of a number of families, rather
than just one child per family. By contrast, the present paper (like the work
of MacCluer and Schull) is concerned solely with the statistically simpler
situation in which there is no deliberate selection of two or more trios hav-
ing the same mother and putative father, i.e., no deliberate selection of more
than one child from a family (see assumption 5 below).
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MacCluer and Schull consider the estimation of X for three different cases:
two autosomal alleles without dominance, two autosomal alleles with domi-
nance, and two sex-linked alleles with dominance. For each case, they
*designate a special grouping of the data and then estimate X by maximizing
the likelihood function which applies after this grouping has already been
effected. Because of the predesignated grouping, the resulting estimates
(which could be considered to be maximum-likelihood estimates in a special
context) do not utilize the entire information available. With our approach
in the present paper, we obtain maximum-likelihood estimates based on the
ungrouped data and thereby make optimal use of the data.

OUTLINE OF THE MAXIMUM-LIKELIHOOD METHOD

Before considering specific cases, we begin with a general discussion of
the uses of the maximum-likelihood method in estimating X, the proportion
of nonpaternity. Suppose the genetic trait we are dealing with manifests t
different possible phenotypes; thus, e.g., t = 3 for the case of two alleles
without dominance and t = 2 for the case of two alleles with dominance.
We may arbitrarily identify the t phenotypes by the numbers from 1 to t.
Thus, for the case of the M-N blood system, we may assign the numbers 1,
2, and 3 to the phenotypes M, MN, and N respectively. Let xjk denote the
observed number of trios for which the putative father has phenotype i, the
mother has phenotype j, and the child has phenotype k. Thus x3ui would de-
note the number of trios falling into the category in which the putative
father is N, the mother M, and the child M. Note that the sum of all the xijk's
will be n, the total number of trios in the sample.
Next we define fijij to be the expected frequency of trios in which the puta-

tive father is of phenotype i, the mother is I, and the child k. The t3 different
ffk'S will add up to 1. Some fh.k'S will automatically be zero, as will the cor-
responding xijk's. In general, each fijk will be a function of X and of the gene
frequencies. The various fijk's for some of the more important cases are listed
in Tables 1 to 4.
We may assume that the Xijk'S follow a multinomial distribution, so that

their likelihood function is

L = - Ifijk (1)
I|xi i,;! ij k

i,j,k

The logarithm of L is equal to a constant (i.e., a term not dependent on X
or the gene frequencies) plus

L= Zxijklog fijk (2)
ij,k

The products in (1) and the summation in (2) are taken over all (ifk) com-
binations except those for which fijk is automatically zero.
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ESTIMATION OF NONPATERNITY

To apply the method of maximum likelihood, we maximize L (1), or,
equivalently and more conveniently, we may maximize LU(2). Specifically,
we proceed as follows. Suppose there are just two alleles, for which the
respective gene frequencies are p and q (= 1 - p), where p is unknown.
Considering L* (2) as a function of X and p. we take its Partial derivatives
with respect to X and p, and then solve the equations

eL )=0 (3a)
X

--*= 0 (3b)
op

A A
for X and p. The resulting solutions, which may be denoted by A and p, are
the maximum-likelihood estimates of X and p respectively. The generalized
Newton-Raphson method may be used to solve the system (3a,3b), which
is a system of two equations in two unknowns.

Suppose there are three alleles, with corresponding (unknown) gene fre-
quencies p, q, and r (= 1- p - q). Then we solve a system of three equa-

A A A

tions in three unknowns and obtain the estimates X, p, and q; the system is
similar to (3a,3b) except that there is a third equation involving the partial
derivative of L* with respect to q.
The maximum-likelihood estimates will be approximately normally dis-

tributed if n is sufficiently large. It would appear that, for a given n, the
normal approximation to the distribution of X will not be as good when X is
close to zero as it is when X is somewhat larger, because of greater skewness

A A

when X is near zero. The approximate variance of X, which we will call s2(X),
may be calculated. If, e.g., there are two alleles and we are estimating p as
well as X, then we first compute the elements of the 2 x 2 matrix

log f~~~~~~~~ogfkk 2fi

ifjk fijk (4)-
..4fi (0 log fik (&lgf ik Z (log

2
Jim=1?-ijkV dA | E iifpAlog fiik

fij f((k-o--j(( ~ iJo )}° ij

A A

using the estimated values X and p for X and p respectively. To obtain
*S2(X), we calculate the element in the tipper left-hand corner of 1 1 and
divide it by n.

Assumptions

One matter which we have so far ignored is that of the assumptions upon
which the above method rests. For our assumptions, we follow much the same
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ones which were used (either explicitly or implicitly) by MacCluer and
Schull and by Li. They are as follows:

1. We assume that the phenotypes of all of the 3n individuals contained
in the sample have been correctly ascertained and that no errors in diagnosis
have been made.

2. For every trio we assume that the "mother" is indeed the true mother
of the child. In other words, we assume that all mothers are correctly iden-
tified and that the frequency of nonmaternity is zero. Although questions of
nonmaternity might be of interest in certain situations, the present paper
makes no attempt to consider such problems.

3. We assume that the Hardy-Weinberg equilibruim conditions hold. Fur-
thermore, with respect to the mother, putative father, and true father (if
different from the putative father) pertaining to any child, we assume that,
for the trait under examination, the genotypes of these three (or two) in-
dividuals are determined randomly and mutually independently. This set of
assumptions concerning Hardy-Weinberg equilibrium and random choice of
partners would probably not be satisfied in any population comprised of
different sociological groups whose respective gene frequencies are not all
equal.

4. We assume that the expected proportion of nonpaternity is equal to
the same value A for all combinations of genotypes of mother and putative
father.

5. We assume that the n trios in the sample are selected independently of
each other (and randomly). This means that the investigator should avoid
a sampling scheme which deliberately selects more than one child from a
family. Perhaps the most severe adverse effect of systematically using more
than one child from a family would be with respect to s2(R) rather than A
itself. It would appear that, if the n trios in the sample represent far fewer
than n different families, then the estimator s2( A) could seriously under-

ofAestimate the true variance of A, due to statistical complications caused by
family-to-family variation in the parameter represented by A. MacCluer and
Schull evidently assume independent selection of the n trios. Although Li
makes no such assumption (and, in fact, exhibits an example where the
sampling is by families), neither does he make any attempt to estimate the
variance of A.
Further Uses of the Maximum-Likelihood Technique
Provided again that the five assumptions which we just discussed are

satisfied, our estimation of A can be effected via the maximum-likelihood
technique under circumstances other than those for which the basic de-
scription of the method was given above. We now indicate several such
situations:

1. Instead of being unknown, the gene frequencies for the population may
sometimes be rather precisely known as a result of previous studies. In such
circumstances, what we do is to substitute these known values of the gene
frequencies into equation (3a) and then solve this single equation for A.
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A

The solution, which we again call X, is our estimate of X. Its approximate vari-
ance s2(X) is (1/n) times the reciprocal of the element in the upper left-
hand corner of I (4), where this element is evaluated by using the known
values for the gene frequencies and using the estimate X for X. It is apparent
that the application of the maximum-likelihood method becomes somewhat
simpler if the gene frequencies are known, because now we need to solve
only a single equation (3a) rather than a system of two or more equations
such as the system (3a,3b).

2. Even when the gene frequencies are really unknown, one might still
like to use a scheme similar to the one just described in order to reduce the
computational burden. One might be inclined, e.g., to estimate the gene
frequencies on the basis of the phenotypes of the mothers and putative
fathers, and then substitute these estimates into (3a) and solve the resulting
equation for X in order to get an estimate X. Although it would be favored
with definite computational advantages, suich a X obviously would not be the
exact maximum-likelihood estimate but would appear to provide an amply
close approximation if n is moderately large.'

3. The 3n individuals in the sample might sometimes be examined with
respect to more than just one genetic trait. Wie would expect that the extra
information provided by an additional trait would lead to an estimate of X
with reduced variance. If we can assume independence among the two or
more traits with respect to the distribution of their genotypes in the popula-
tion, then the f Ok formulas are easily obtained. The maximum-likelihood
method can thus still be applied but becomes more complicated than before.
However, these complications will be minimized if all the gene frequencies
are known (refer to paragraph 1 just above) or if the scheme just described
in paragraph 2 is used, since then only a single lengthy equation in X will
have to be solved. An example below will show how to obtain t and the figp
formulas when there is more than one trait.

4. Instead of the individual X ij'S, we may sometimes only have available
a tally of the trios with respect to a coarser and more condensed classifica-
tion, and it may not be possible to recover the xiek's if the original data are
no longer accessible. Thus, the trios having an NI putative father, N mother,
and MN child might have been combined with the trios having an N puta-
tive father, M mother, and MN child, so that the sum (X1:3 + x312) is avail-
able but the individual values x132 and x1-., are not. In such situations the
maximum-likelihood method can still be applied if wve work with the ex-

A*If a X is obtained in the fashion described in this paragraph, the question will arise
A A

as to what to use for S2( A), the estimated variance of A. One possibility would be to
A

obtain s2 ( A) as in the preceding paragraph (except, of course, with the estimated in-
A

stead of the known gene frequiencies); this s2 (A) whould have computational advantages
but apparently would tend to underestimate the true variance of A. A second possibility,
which would probably tend to give more accutrate results, wotld be to calculate S2( A)

along lines similar to those indicated in the discussion accompanying equation (4).
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pected frequencies which pertain to the coarser classification. Thus, the
expected frequency for the category just described would be (f132 + f312),
which we would find (via Table 1) to be equal to p2q2(2 - X). By maximizing
the likelihood function which pertains to the coarser classification, we ob-
tain an estimate of X which is the maximum-likelihood estimate based
on the limited available data but which obviously is not the same as
the maximum-likelihood estimate which would have resulted from the com-
plete data consisting of the Xijk'S.

5. Even when all the Xiik's are available, one could still deliberately group
the data in some fashion and then obtain an estimate of X by maximizing
the likelihood function which pertains to the resulting coarser classification.
Such a procedure would not utilize all the available data and would thus
generally produce an estimator with greater variance; a second difficulty
would be that one would have to make a decision as to how to do the group-
ing. However, there might be offsetting advantages (such as reduced com-
putational requirements, in particular). The deliberate grouping of the
categories of trios could be effected in many different ways, one of which
is utilized by MacCluer and Schull.

APPLICATIONS TO DIFFERENT CASES

Now that we have completed our general discussion of the estimation of X
via the method of maximum likelihood, we may turn to the more specific
matter of applications. The first thing that will be needed in any application
will be the formulas for the fijk'S. Tables 1 through 4 present these formulas
for the following four cases respectively: two autosomal alleles without
dominance (as exemplified by the MN blood system), two autosomal alleles
(denoted by C and c) with dominance, two sex-linked alleles (denoted by
G and g) with dominance, and the ABO blood system when four phenotypes
(A, B, AB, and 0) are distinguished. For the first three tables there are two
gene frequencies, p and q (= 1 - p), which are the respective frequencies
cf M and N in Table 1, of C and c in Table 2, and of G and g in Table 3.
In Table 4, the respective gene frequencies for A, B, and 0 are p, q, and r
( = 1 - p - q). At the top of each table are given the identifications for
the t possible phenotypes (note that t = 3 for Table 1, t = 2 for Tables 2
and 3, and t = 4 for Table 4). For each of the t3 possible categories of trios
(some of which are null), the body of each table lists the formulas for fijk.
Except in Table 4, each fijk formula is first presented as the product of three
elements, which are respectively the expected frequency of the putative fa-
ther's phenotype, the expected frequency of the mother's phenotype, and
the expected frequency of the child's phenotype given the phenotypes of the
putative father and the mother. Thus, Table 2 tells us that the expected fre-
quency for the category of trios having a c putative father, C mother, and
C child is

f2 1=(q2)(p2+2pq) ) (1-X)+
(q+ q+
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ESTIMATION OF NONPATERNITY

TABLE 1. FORMULAS FOR THE fij,'S FOR THE CASE OF Two AUTOSOMAL ALLELES
WITHOUT DOMINANCE (As EXEMPLIFIED BY THE MN BLOOD SYSTEM)

AND DATA (Xijk'S) FOR A NUMERICAL EXAMPLE
Gene frequencies: p = frequency of M, q = frequency of N.

Phenotype identifications: 1 refers to M, 2 refers to MIN. 3 refers to N.
Formula for D/A: D/I = pq( 1 - pq).

Phenotype of

Putative
father Mother Chilc

M M M
M M MN
M MN M
M MN MN
M MN N
M N MN
M N N
MN M A\
MN M MN
MN MN M
MN MN MN
MN MN N
MN N MN
MN N N
N M M
N M MN
N MN M
N MN MN
N MN N
N N MN
N N N
Any M N
Any N NI

Totals

d Expected frequency for category

= (p2)(p2) (l( -A) + pX)
I fl 12 = ( Pa) (p) {9X}

= (p2)(2pq) (/2 (1 -A) + 1/2PX}
1122 = (p2)(2pq) (1/2)
f123 = (p2)(2np) (½qX)
f132 = (p2)(q2) {(1- X) + pA}
f-13= (p2)(q2) (qA)
f2ll = (2pq)(p2) (1/2(1 -A) + A),&
ff.. = (2pq)(p2) {1/2(1 k-A) + qA}
T22I = (2pq)(2pq) (1/4(1 A) + '/2PA)
f-9., = (2pq)(2pq) (½)
f223 = (2)?q )(2pq) {'1/4 -A) 4 1/2qA}
f2-32 = (2pJ)(q2) (1/2(1 X) + IA)
f233 = (2pq)(q2) (Y2(1-A) + qA}
fj = (q2)(p2) ({1A)
f312 = (q2)(p2) ((1 -A) + qA)
f321 = (q2)(2pq) {(/2pA}
f322 = (q2) (2pq) { % }
f323 = (q2) (2pq ) ( /2 ( -A) + ½qA)
f3:3:2= (q2)(q2) (p)A)
f333 = (q2)(q2) ((1-A) +

1l113 = f213 = f:31: = 0
f1ll = f231 = fell = 0

Y.YY. fink. = 1

Data of
Gershowitz

xll = 14
xl 12 = 5
xl 21 = 13
x122 = 16
X123 = 0
A132 = 20
X133 = 1
x.,, = 13
X2., 2 9

A.X. = 20
.4.,.,= 41
X22)3 =21
x.,2= 15
.)33= 19
X3ll = 2
x:, , = 14
X:s',12 14
X321 -1
X32= 14
x323= 16
xA:32 = 1

X333 = 10

n = 265
i .i .i

where q2 is the expected frequency of a c putative father, (p2 + 2pq) is the
expected frequency of a C mother, 1/(q + 1) is the probability of a C child
if the putative father (who is c) is the true father, and (pq + 1)/(q + 1)
is the expected frequency of a C child if the putative father is not the true
father. The formula for f211 simplifies to pq2(1 + pqX).
The fi7k formulas in Table 3 pertain to the situation where the only ex-

amined trios are those in which the child is a girl. In the case of a trait deter-
mined by sex-linked alleles, data on trios with male children will provide
no information about A, since a son receives a Y chromosome from his
father no matter who his father is. Thus better estimation of A will be
achieved if the available resources are expended only on the examination of
trios with female children, in which event Table 3 will be fully applicable.
In case trios with male children have also been examined, however, then
the situation may be a little less simple; in some circumstances we might
simply discard these trios and still utilize Table 3, but in other circumstances

486



POTTHOFF AND WHITTINGHILL 487

TABLE 2. FORMULAS FOR THE fijk'S FOR THE CASE OF Two
AUTOSOMAL ALLELES WITH DOMINANCE

Gene frequencies: p = frequency of C, q = frequency of c.
Phenotype identifications: 1 refers to C, 2 refers to c.

Formula for D/A: D /A = pq4.
Phenotype of

Puta-
tive
fa- Moth-

ther er Child Expected frequency for category

2q+ 1 Pq+ 1
C C C flml = (p2+ 2pq) (p2 + 2pq) (1-X) + X =p2 (2q +1-q3X)

(q+l' q+ I
C C c f12= (p2+ 2pq)(p2+ 2pq) (I[q*/(q + 1)](1 -)+ [q2(q + 1)]P)

= p'q2(1 + q)
C c C f2l =(p2+ 2Pq)(q2) {[/(q+1)1(1-> ) + }pq2(1-q X)
C C C f =(p- + 2pq) (q) {[q/(q + 1) ](1 - X) + q)=vpq3(1 + q A)
C C C f4u = (q2) (pV + 2pq) (I1/(q + 1)I(1-X) + [(Pq + 1)/(q + 1)JA)

= pq2(1 + pq\)
c C C f,=-2 (q2)(p2+2pq) {Iq/(q+ 1)I(1-)) -t [eq/(q+ 1)1\)

= cq3(1-pA)
C C C f :=(q!) (q-) p' I q A
c c c f.42 (q!) (q'?){ (1 X) + qA} = q4(I 1- X

TABLE 3. FORMULAS FOR THE fjjk'S FOR THE CASE OF Two SEX-LINKED ALLELES
WITH DOMINANCE WHEN THE CHILD IN EACH TRIO IS A GIRL

Gene frequencies: p = frequency of G, q = frequency of g.
Phenotype identifications: 1 refers to G, 2 refers to g.

Formula for DA: DIA = q2(1-q2).
Phenotype of

Putative
father Mother Daughter Expected frequency for category
G G G fi11 = (P) (pi + 2pq) {(I1-A) + t(pq + l)/(q + 1) j}=p2(q + 1 -q2X)
G G g f = (P)(p + 2pq) {1q2/(q +1)A}) pq2X
G 9 G f2= (p)( '') ('+PX)= Pq!(1 - 0)
G g g fr22= (p)(q2) (qN = pq X
g G G f211= (q) (p2 + 2pg) I[/(q + 1)](1-A) + [(Vq +1)/(q + 1)]X)

= pq(1 + VeX)
g G g f., = (q)(pi + 2pq) {[q/'q + 1)I(1 -X) + 1q2/(q + 1)J\)

= pq2(1-X)
g g G f221 = (q) (q2) (pX) = veX
g g g f 2 = (q) (q!) f (1 -) +cX) = q3(l- X)

more complicated techniques might be called for (in order to take ad-
vantage, e.g., of the information about gene frequencies which these trios
provide).

Following MacCluer and Schull, we use D to denote the expected fre-
quency of trios which constitute detectable instances of nonpaternity (i.e.,
instances in which it is genetically impossible for the putative father to be
the true father). Then the quantity DIA is the fraction of nonpaternity which
is detectable. At the top of each of the four tables we indicate the applica-
ble formula for DIA, because this formula can be utilized to advantage to
obtain a preliminary value for the estimate of X. The DIA formulas of the
first three tables were already presented by MacCluer and Schull.
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TABLE 4. FORMULAS FOR THE fijk'S FOR THE CASE OF THE ABO BLOOD
SYSTEM WHEN FoUR PHENOTYPES ARE DISTINGUISHED

Gene frequencies: 1) = frequency of A, q = frequency of B, r = frequency of 0.
Phenotype identifications: 1 refers to A, 2 refers to B, 3 refers to AB, 4 refers to 0.
Formula for D/A: D/A = pq(p +2r)(p + r)2 + pq ((I + 2r)(q + r)2 + 4pqr2 +

2pqr3 + r4(p) + q).
Phenotype of

Putative
father Mother Child Expected frequency of category

A A A f1=p2(p+ r)(p + 3r)(1-A) + p2(p±+ 2r)(p2+ 3pr + r2)A
A A B f11= p2qr(p+2r)X
A A AB f1. =p2q(p+ 2r)(p+ r)A
A A 0 fll -p2r2(1-X) +p2r2(p+2r)X
A B A f121 = pqr(p + r)(- X) + p2qr(p±+ 2r)A
A B B f12,=2 1)r(q + r)(1 -X) + p(q(p + 2r)(q2 + 3qr + r2)A
A B AB f -23 = pq(p + r)(q + r)(I - X) + 1)2(1(1) + 2r)(q + r)X
A B 0 f124 = pqr2(1- A) + pqr(p) + 2r)\
A AB A f13s1= p2q(p+ 2r)(1-X) + 1)2q(p+ 2r)(p + r)A
A AB B f1.2 = 1)2qr(1 -A) + 1)2(1(1) +2r)(q + r)A
A AB AB fl ;)2q(p + r)(1 -A) + P'(l(1' + 2r)(p) 9q)A
A 0 A f141=pr2(p+r)(1-A)+ p2r2()+2)A
A 0 B f1 = pqr2(p+ 2r)A
A 0 f144 prI(l-A) +1pr3(j) +2r)A
B A A f.,11 = pqr(p + r)( -A) + pq(q -i 2r)(1)24 31)r + r-)A
B A B f212 =pcqr(q + r)(1 -A) + pq2r(q+ 2r)A
B A AB f21:3 = pq(p + r)(q + r)(1 -A) + 1p(12((I + 2r)(p) + r)A
B A 0 f,14 = pjr2(1 -A) + pqr2(q +2r)A
B B A f221 = pq2r(q + 2r)A
B B B f222 = q2(q + r)(q + 3r)( 1-X) + (/2(q + 2r)(q2 + 3qr+ r2)X
B B AB f , ,3 = p(12 (q +2r)(q + r )A
B B 0 f,,4 - q2r9(l -A) + (,2r2((/ + 2r)A
B AB A f = pr(1 -A) +pq2(q + 2r)(1) + r)A
B AB B f232, = 2(q + 2r)(1-A) + 1)(/2(q + 2r)(q + r)A
B AB AB f'H = p-((q + r)(1 -A) + p(/'((/ + 2r)(1 + q)A
B 0 A f241 pqr2 (q +2r)A
B 0 B f,4, qr2(q + r)(1-A) + q2-2(q + 2r)A
B 0 0 f., = qr3( 1-A) + qr3(q + 2r)A
AB A A fAll = p2q(p + 2r)(1 - A) + 2p2q(1p2 + 3pr + r2)A
AB A B ,2= p2qr(1 - A)+2p2q2rA
AB A AB f31.3=p2q(p + r)(1-A) + 2p2q2(p+ r)A
AB A 0 fi4 = 2p2qr2A
AB B A f321 = pq2r(I - A) + 2p2q2rA
AB B B f:122 = pq2(q + 2r) ( 1 - A) + 2pq2(q2 + 3qr + r2)A
AB B AB fA2 =pq2(q+r)(1-A)+2p2q2(q+r)A
AB B 0 f32,4 2p(12r2kA
AB AB A f = p2q2(1 -A) + 21p2c12(p + r)A
AB AB B fA3,2 p2'q2(l -A) + 2p2q2(q+ r)A
AB AB AB fA3 = 2p2q2(1- A) + 2p2q2(p + q)A
AB 0 A f341=pqr2(1-A)+2p2qr2A
AB 0 B f:142 = pqr2( 1 - A) + 2pq2r2A
AB 0 0 f:44 = 2pqr3A
O A A fj11 = pr2(p + r)( -A) + pr2(p2 + 3pr +r2)A
O A B f41., = pqr3X_
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TABLE 4. (CONTINUED)
Phenotype of

Putative
father Mother Child

O A AB
o A 0
o B A
o B B
O B AB
O B 0
o AB A
o AB B
o AB AB
o o A
o o B
o o 0
Any AB 0
Any 0 AB

Expected frequency of category

f4-3= pqr2(p + r)A\
f414 = pr3(1-X) + pr4X
f421 = pqr3Ak
f422 = qr2(q + r)( -) + qr2(q2 + 3qr+ r2)X
f423= pqr2(q + r)X
f424 = qr3(l -AX) + qr4X
f431 = pqr2(1- X) + pqr2(p + r)X
f432 = pqr2(1 - X) + pqr2(q + r)X
f433 = pqr2(p+ q)X
!441 = pr4X
f442 = qr4X
f444= r4(1-X)+r5X
f134 = f234 = 1334 = f434 = 0
f=14 = f343 = 1443 = 0

Tables 1 through 4 can be utilized in the situation where the individuals
in the sample have been examined with respect to more than one trait. An
example should serve to make this clear. Suppose we are dealing with two
traits, one involving two autosomal alleles (M and N) without dominance
and the other involving two autosomal alleles (C and c) with dominance.
In this situation, there are 3 x 2 = 6 possible phenotype combinations, and
so we consider t to be equal to 6. We need a formula for the expected fre-
quency of each of the t3 = 216 categories of trios. As an example, we con-
sider just one of these categories, the one for which the putative father of
the trio has phenotypes N and C, the mother is M and c, and the child is
MN and C. Then the expected frequency for this category is

{q2(P2 + 2PQ)) (p2Q2) ( 1 (1- X) + qPX(+ I

where p and q are the respective gene frequencies for M and N, and P and
Q (in place of p and q) denote the respective gene frequencies for C and c.
The above formula can be obtained very simply if we just look at f312 in
Table 1 and f121 (first formula) in Table 2: q2(P2 + 2PQ) is the product of
the first element of f312 by the first element of f121, p2Q2 is the product of the
two second elements, 1/(Q + 1) is the product of the two coefficients of
(1- X), and qP is the product of the two coefficients of X.
The last column of Table 1 displays some unpublished data of Gershowitz

concerning n = 265 trios, comprised wholly of Detroit Negroes, which were
examined with respect to the MN blood system. The distribution of these
265 observed trios into the various categories is exhibited in the table. At
the end of the paper, we will use these data to work out a numerical exam-
ple. The 265 trios were obtained independently and represent 265 separate

489



490 ESTIMATION OF NONPATERNITY

families or 795 (3 x 265) distinct individuals; hence, our assumption 5 is
certainly tenable.

Gershowitz's 265 trios in Table 1 include the _243 trios which were pre-
viously reported by MacCluer and Schull (p. 200) in connection with their
numerical example.

The Maximunm-Likelihood Equations

The system of maximum-likelihood equations is the system (3a,3b), or
sometimes there may be just one equation or three or more equations rather
than two. Although nothing more than elementary differential calculus is in-
volved in obtaining the equations (3a,3b), it may nevertheless serve to
clarify the maximum-likelihood estimation procedure if we present the ex-
plicit equations for two of the most common cases. The two cases we will
look at will be the ones covered by Tables 1 and 2.

For a trait involving two autosomal alleles without dominance, we use
Table 1 and find that the system of maximum-likelihood equations (3a,3b) is

Xi(p-1/2) X2(q -/2) x3q
+

pX+ 1/2( - X) qX+ 1/2( -X ) pX + (1 -A )

+_=~0 (5a)
qX+ (1-X) A

x1X x2X x3X

pX+½(1-X) qX+½(1-X) pX+(I-X)
X4X XM xy-x4A + _ - =0 (5b)

qX+ (1-X) p q

where we define

x1 = x211 + X021 + x232 (6a)

X2 = X212 + X923 + X233 (6b)
X3 = X111 + X121 + X132 (6c)

X = X312 + X:23 + X333i (6d)
XI = X112 + X123 + X133 + X311 + X321 + X332 (6e)

x,, = 4x 1 + 4x1,1 + 3x121 + 3xl,2 + 3x,2 + 2xl32 + 2x133
+ 3x-)11 + 3x21- + 2x-,1 + 2x, ,-, + 2x-,3 ± X-232 + X'233
+ 3x311 + 2x312 + 2x321 + X32,, + X323 + X332 (6f)

and xx x112 + x121 + x122 + 2x123 + 2x132+ 3x1:j:
+ x211 + x.12 + 2x.,.), + 2x222 + 2x2.2 + 3x.,32 + 3x233
+ 2x31 I + 2x312 ± 3x2 + 3x322 + 3x: , + 4x3:2 + 4X33: (6g)
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Equations (5a,5b) are solved simultaneously for X and p. It may be of in-
terest to note that xM(6f) is the number of M genes among all putative
fathers and all mothers plus the small number of children's M genes which
could not possibly have been received either from the mother or the putative
father; XN(6g) has a similar interpretation with respect to N genes. Note
also that xD(6e) is the number of trios which represent detectable instances
of nonpaternity.

In the event that the gene frequencies p and q are known, we substitute
these known values into equation (5a). Then we discard equation (5b)
altogether and just solve the single equation (5a) for X.
For the case of a trait involving two autosomal alleles with dominance,

we use Table 2 and find that the maximum-likelihood equations (3a,3b) are

xiliq3 (x112 + x122)q x121q2 X21ipq
_ ~~+._+ __

2q + 1-q3X 1 + qX 1-q2X 1 + pqX

(X212 + X222)p X221 (7a)

1-pA A
and

x111(3q2A-2 ) (X112 + X122)XA 2x121qA X211(1-12p)A
2q + 1-q3A I + qX 1-q2A 1 + pqX

(x212 + x222)A xc(7b)
1-pA p q

where we define

XC = 2x111 + 2x1I2 + x121 + x122 + x2II + X212 + X221
and
XC= 2X112 + 2x121 + 3X129 + 2x211 + 3X212 + 4X221 + 4X222

We solve equations (7a) and (7b) simultaneously for A and p; or, if p is
known, we solve (7a) for X.

Numerical Example
By using the data of Gershowitz which are exhibited in the last column of

Table 1, we now present a numerical example to illustrate the estimation of X
by the maximum-likelihood method. To start our calculations, we obtain the
seven numbers (6a-6g). The first one (6a) is xi = 13 + 20 + 15 = 48. We
also find x2 = 49, X3 = 47, X4 = 40, XD = 10, XM = 536, and Xy.- = 534.
Our next step is to substitute these seven numbers into (5a,5b), and then

solve this equation system (5a,5b) for A and p. To obtain the solution, we
may employ the generalized Newton-Raphson method, which is an iterative
procedure.

In order to utilize this iterative method, we first need preliminary values
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for X and p which can he used in the initial iteration and which (preferably)
A A

will tend to be fairly close to the solution values X and p. XWe might use
XM/(XM + X,) = 536/(536 + 534) = .5009 ais our value of p for the initial
iteration. To obtain a preliminary value for X, we could proceed as follows.
Looking at the top of Table 1, we find that D/A = pq (1 - pq). If p is .5009,
the numerical value of D/A is then .1875. As the value of X for the initial
iteration, we can use (xD/n)/.1875 - (10/265)/.1875 = .2013.
The generalized Newton-Raphson method is a standard technique which

is: adequately discussed in textbooks on numerical analysis, and MacCluer
and Schull (pp. 200-201) also have exhibited a particular example of its
use. For these reasons, it is perhaps best to save space and omit all of the
detailed computations associated with the Newton-Raphson procedure (ex-
cept for the material in the preceding paragraph, which demonstrates one
way of calculating the initial values). \VNe present simply the final result of
the computations, which is that

A A
X = .2062, p = .5012

constitute the solution of (5a,5b) and hence constitute the maximum-
likelihood estimates of X and p.
To obtain S2(X), the estimated variance of the estimate X, we first need

the matrix 1(4). The calculation of I involves numerical evaluation of the
f iiks of Table 1 and of the first derivatives of their logarithms, using .2062
for X and .5012 for p. Again we omit the cumbersome details and present
just the result, which is

[1.01384 -.00152 ]
~~L-~.00152 16.92369 J

Now we find

A 1 16.2362
s2(X) = -2A265 (1.01384) (16.2362) -(.00152)2

1 16.2362=-- x -=.(003722
265 16.4609

In case we are also interested in the estimated variance of p, we write

A 1 1.01384
S2(p)= x = .0002:324

265 16.4609

When n is large enough that the normal approximation to the distribution
A

of X is reasonably accurate, the formula
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A - 1.96i82(A) A A + 1.96 (8)

provides a 95% confidence interval for X. For the present example, (8)
becomes

.0866 ! A e .3258

However, the normal approximation probably is still not as accurate as we
might like it to be, even in this situation with an n of 265.
Although all the above results were obtained with a desk calculator, the

use of a computer might have reduced the labor. For obtaining the maximum-
likelihood estimate of A in more complicated situations, a computer would
almost be a necessity. It is always possible to estimate A by a means which
requires virtually no calculation, such as by the procedure which we utilized
earlier which consisted simply of dividing (xD/n) by an approximate value
of (D/X). The variance of a simple estimator such as this may not be too
much larger than the variance of the maximum-likelihood estimator in some
situations (among which our example appears to be included) but may be
markedly larger in other situations.
As we indicated earlier, 243 of the 265 trios of Table 1 above are included

in the tabulation which MacCluer and Schull made of Gershowitz's data and
which they utilized for their numerical example (pp. 200-201). Professor
Gershowitz has informed us that the estimation procedure of MacCluer and
Schull has been rerun using the data as it is in Table 1 (rather than the
former tabulation), and he has kindly sent us a copy of these recalculations.
The results of the estimation procedure of MacCluer and Schull, correct to
four significant figures, are as follows: A = .2105, p = .5192, s2(K) = .003907,
s2(p) = .0004611. The confidence interval for A of the form (8) thus turns
out to be .0880 XA c .3330.
Thus both s2(X) and s2(p) are larger with the MacCluer-Schull procedure

than with our maximum-likelihood procedure. This is not surprising in view
of the asymptotic efficiency properties of maximum-likelihood estimates.
However, the improvement in tX(K) which the maximum-likelihood pro-
cedure produces over the MacCluer-Schull procedure is not especially large
in this particular example. If p had not been so close to 1/2, it would appear
that the contrast would have been somewhat greater, because more informa-
tion about A would have been extractable from the categories with an MN
putative father and thus a larger contribution to the element in the upper
left-hand corner of J(4) would have resulted.

SUMMARY

This paper attempts to clarify the use of the maximum-likelihood method
for estimating the proportion (A) of nonpaternity or extramarital illegiti-
mnacy. The phenotypes of the putative father, the mother, and the child in
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each of a number of trios constitute the basis for classifying each trio into
just one of many categories. Each category is uniform as to the combination
of the three phenotypes; i.e., dissimilar categories are not merged. The ex-
pected frequency for each category will generally depend on X, and X is
estimated by utilizing the expected frequency and the observed number of
trios for each category. The paper concludes with a numerical example.
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