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ABSTRACT

To distinguish the real pre-miRNAs from other
hairpin sequences with similar stem-loops (pseudo
pre-miRNAs), a hybrid feature which consists of
local contiguous structure-sequence composition,
minimum of free energy (MFE) of the secondary
structure and P-value of randomization test is used.
Besides, a novel machine-learning algorithm,
random forest (RF), is introduced. The results
suggest that our method predicts at 98.21% speci-
ficity and 95.09% sensitivity. When compared with
the previous study, Triplet-SVM-classifier, our RF
method was nearly 10% greater in total accuracy.
Further analysis indicated that the improvement was
due to both the combined features and the RF
algorithm. The MiPred web server is available
at http://www.bioinf.seu.edu.cn/miRNA/. Given
a sequence, MiPred decides whether it is a
pre-miRNA-like hairpin sequence or not. If the
sequence is a pre-miRNA-like hairpin, the RF
classifier will predict whether it is a real pre-
miRNA or a pseudo one.

INTRODUCTION

MicroRNAs (miRNAs) are non-coding RNAs that can
play important roles in gene regulation by targeting
mRNAs for cleavage or translational repression (1,2).
The miRNAs are transcribed as long primary miRNAs,
which are processed into 60–70 nt miRNA precursors
(pre-miRNAs) by nuclear RNase III Drosha (3). The
pre-miRNAs are then cleaved into �22 nt mature
miRNAs (4).

Because it is difficult to systematically detect miRNAs
from a genome by existing experiment techniques,
computational methods play important roles in the
identification of miRNAs. It has been reported that
miRNA genes are conserved in the primary sequences

and secondary structures (2,5). Thus the comparative
genomics-based methods were adopted to find novel
miRNAs in specific animals and plants. MiRscan relies
on the observation that the known miRNAs are derived
from phylogenetically conserved stem-loop precursor
RNAs with characteristic features (6,7). It successfully
predicted hundreds of miRNAs in nematodes and human
with a high sensitivity. The miRseeker (8) was developed
for predicting miRNAs in insects, whereas MIRcheck (9)
and MIRFINDER (10) were applied in plants. The
miRAlign (11) aligns the secondary structure of pre-
miRNAs to detect miRNAs.
Although those comparative genomics-based methods

provided important techniques to predict new miRNAs, it
is unable to identify novel miRNAs for which there are no
known close homologies either due to the limitation of the
data or due to the possible evolution of miRNAs.
Furthermore, for a species that does not have a closely
related species sequenced, its miRNAs cannot be studied
with the comparative genomics approaches (12). So it is in
high demand for ab initio prediction methods of miRNAs.
Several studies show that many miRNAs are transcribed
as polycistronic transcripts which are several kb long (13).
Therefore, the genomic regions around the loci of known
miRNAs appear particularly promising for discovering
additional miRNAs. Sewer et al. (14) proposed a support
vector machine (SVM) approach to identify the clustered
miRNAs which were around already known miRNAs.
Nam and co-workers constructed a highly specific
probabilistic model (HMM) to search for distant homo-
logs of miRNA families (15,16). They also showed that the
integration of sequential and structural characteristics
could improve the performance of a predictor in identify-
ing clustered, non-clustered, conserved and non-conserved
miRNAs (15,16). Yousef et al. (17) used a Naı̈ve Bayes
classifier along with the integration of data from multiple
species to predict miRNA genes. The results indicate that
by integrating data from multiple species, the model
can be more likely to be applicable to a variety of
genomes. As is suggested by Helvik et al. (18), the miRNA
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gene prediction methods can also be improved by reliable
predictions of Drosha-processing sites (18). Recently,
genome-wide surveys for non-coding RNAs have pro-
vided evidence for tens of thousands of previous
undescribed evolutionary conserved RNAs with distinc-
tive secondary structures (19). In contrast to other
miRNA detection methods which directly search a
genome or genomes, RNAmicro (20) is designed to
classify the raw results of large-scale comparative geno-
mics surveys for putative RNAs that are conserved in both
sequence and secondary structure.
Although almost all pre-miRNAs have the character-

istic of stem-loop hairpin structures (1,6,7,11), a large
amount of pre-miRNA-like hairpins can be folded in
many genomes. It is still a challenge to distinguish the real
pre-miRNAs from other hairpin sequences with similar
stem-loops (pseudo pre-miRNAs). Xue et al. (21) pro-
posed an SVM-based method for classification of real and
pseudo pre-miRNAs. The local contiguous structure-
sequence composition feature was used. A Perl package
(Linux system only), Triplet-SVM-classifier, was pro-
vided. However, as was indicated that pre-miRNAs,
unlike tRNAs and rRNAs, had lower folding free energies
than random sequences (22), the thermodynamics-related
features might improve the prediction performance.
In this article, in order to achieve higher performance of

distinguishing the real pre-miRNAs from the pseudo ones,
a hybrid feature by incorporating the local contiguous
structure-sequence composition, the minimum of free
energy (MFE) of the secondary structure and the
P-value of randomization test was used. Besides, a novel
machine-learning algorithm, random forest (RF), was
introduced. The results indicated that our method
significantly outperformed the Triplet-SVM-classifier.
Furthermore, an alternative classifier which used the
SVM with the hybrid feature was also compared with
the Triplet-SVM-classifier and our RF-based method. The
results showed that the alternative classifier outperformed
the Triplet-SVM-classifier, but it underperformed our
RF method. It indicated that both the RF algorithm
and the hybrid feature contributed to the prediction
improvement.
A web server (MiPred) is available at http://

www.bioinf.seu.edu.cn/miRNA/. Given a sequence,
MiPred decides whether it is a pre-miRNA-like hairpin
sequence or not. If the sequence is a pre-miRNA-like
hairpin, the RF classifier will predict whether it is a real
pre-miRNA or a pseudo one.

MATERIALS AND METHODS

Data sets

Human real pre-miRNAs. Human pre-miRNAs are
downloaded from the miRNA registry database (23) in
August 2006 (release 8.2), which contains 462 reported
pre-miRNA entries from Homo sapiens. Only the pre-
miRNAs whose secondary structures do not contain
multiple loops are considered, which gives us 426 pre-
miRNAs, covering 492% of all the reported human
pre-miRNAs.

Human pseudo pre-miRNAs. The human pseudo
pre-miRNAs were obtained from http://bioinfo.au.tsin-
ghua.edu.cn/mirnasvm/, which contained 8494 pre-
miRNA-like hairpins (21). As all reported miRNAs are
located in the un-translated regions or intergenic regions,
the data set was collected from the protein coding regions.
The criteria for selecting the pseudo pre-miRNAs from the
segments are: (i) The sequence length ranges from 51 nt to
137 nt; (ii) minimum of 18 base pairings on the stem of the
hairpin structure (included the GU wobble pairs); (iii)
maximum of �15 kal/mol free energy of the secondary
structure; (iv) no multiple loops. The criteria ensure that
the extracted pseudo pre-miRNAs are similar to real pre-
miRNAs according to the widely accepted characteristics.
(The thresholds 51, 137, 18 and �15 are the shortest
length, the longest length, the lowest number of base
pairings and the highest free energy among all the genuine
human pre-miRNAs, respectively.)

Training data set and testing data set. We trained our RF
prediction model on the same training data set of the
Triplet-SVM-classifier (21), which contained 163 real
pre-miRNAs and 168 pseudo pre-miRNAs. The testing
data set comprised of the remaining 263 real pre-miRNAs
not used in the training data set and the 265 pseudo
pre-miRNAs randomly picked up from the human pseudo
pre-miRNAs data set (samples already selected in the
training data set were avoided).

The minimum of free energy (MFE) feature

The minimum of free energy (MFE) of the secondary
structure was predicted by the Vienna RNA software
package (24).

The local contiguous triplet structure composition

In the predicted secondary structure, there are only two
statuses for each nucleotide, paired or unpaired, indicated
by brackets ‘(‘or’)’ and dots ‘.’, respectively. The left
bracket ‘(‘means the paired nucleotide is located near the
50-end and can be paired with another nucleotide at the
30-end, which is indicated as a right bracket ‘)’. Here, we
do not distinguish these two situations and use ‘(’ for both
situations. For any three adjacent nucleotides, there are
eight (23) possible structure compositions: ‘(((’, ‘((.’, ‘(..’,
‘. . .’, ‘.((’, ‘..(’, ‘.(.’ and ‘(.(’. Considering the middle
nucleotide among the three, there are 32 (4� 8) possible
structure-sequence combinations, which are denoted as
‘U(((’, ‘A((.’, etc. The local contiguous triplet structure
composition is defined as the fraction of each triplet
structure-sequence element in the appearance of the all
possible triplet elements (21).

Dinucleotide shuffling

Dinucleotide shuffling is to shuffle a sequence while
keeping the dinucleotide distribution (or frequencies)
constant. It has been demonstrated that random RNA
must be generated with the same dinucleotide frequency,
for any valid conclusions to be drawn (25). An imple-
mentation of the algorithm as described by Workman and
Krogh (25) was used.
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The P-value of randomization test feature

In order to determine if the MFE value is significantly
different from that of random sequences, a Monte Carlo
randomization test was used (22). The test can be
summarized as follows:

(i) Compute MFE of the secondary structure inferred
from the original sequence.

(ii) Randomize the order of the nucleotides in the
original sequence while keeping the dinucleotide
distribution (or frequencies) constant. Then com-
pute the MFE for the inferred structure based on
the shuffled sequence.

(iii) Repeat step 2 a great number of times (1000) in
order to build the distribution of MFE values.

(iv) If N is the number of iterations and R the number
of randomized sequences that have a MFE value
less or equal to the original value, then P-value is
defined as:

P ¼
R

Nþ 1

Random forest

Random forest (RF) is a classifier consisting of an
ensemble of tree-structured classifiers (26). RF takes
advantage of two powerful machine-learning techniques:
bagging (27) and random feature selection. In bagging,
each tree is trained on a bootstrap sample of the training
data, and predictions are made by majority vote of trees.
RF is a further development of bagging. Instead of using
all features, RF randomly selects a subset of features to
split at each node when growing a tree. To assess the
prediction performance of the random forest algorithm,
RF performs a type of cross-validation in parallel with the
training step by using the so-called out-of-bag (OOB)
samples. Specifically, in the process of training, each tree is
grown using a particular bootstrap sample. Since boot-
strapping is sampling with replacement from the training
data, some of the sequences will be ‘left out’ of the sample,
while others will be repeated in the sample. The ‘left out’
sequences constitute the OOB sample. On average, each
tree is grown using about 1� e�1

ffi 2/3 of the training
sequences, leaving e�1

ffi 1/3 as OOB. Because OOB
sequences have not been used in the tree construction,
one can use them to estimate the prediction performance
(28). The RF algorithm was implemented by the
randomForest R package (29).

Support vector machine

SVM is a supervized machine-learning technology based
on statistical theory for data classification (30). SVM seeks
an optimal hyperplane to separate two classes of samples.
It uses kernel functions to map original data to a feature
space of higher dimensions and locate an optimal
separating hyperplane there. The SVM algorithm
was implemented by the e1071 (version 1.5–12) R
package (31).

Prediction system assessment

For a prediction problem, a classifier can classify an
individual instance into the following four categories: false
positive (FP), true positive (TP), false negative (FN) and
true negative (TN). The total prediction accuracy (ACC),
Specificity (Sp), Sensitivity (Se) and Mathew’s correlation
coefficient (MCC) (32) for assessment of the prediction
system are given by

ACC ¼
TPþ TN

TPþ TNþ FPþ FN
� 100% 1

Sp ¼
TN

TNþ FP
� 100% 2

Se ¼
TP

TPþ FN
� 100% 3

MCC ¼

TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTNþ FNÞ � ðTPþ FNÞ � ðTNþ FPÞ

p 4

RESULTS AND DISCUSSION

The RF prediction performance using combined features

The prediction results using the RF prediction modules
with various features are shown in Table 1. The
performance was assessed by OOB estimation on the
training data set. The local contiguous triplet structure
composition-based RF classifier was able to predict with
88.21% total accuracy and 0.77 MCC value. If we
combined the MFE of the secondary structure or
P-value feature with the local contiguous triplet structure
composition feature, the prediction performance signifi-
cantly increased (MFEþ local contiguous triplet structure
composition: 93.35% ACC and 0.87 MCC; P-valueþ
local contiguous triplet structure composition: 96.07%
ACC and 0.92 MCC). It indicated that the MFE and the
P-value used in our article were two key attributes which
discriminated the real microRNA precursors from the
pseudo ones. The combination of all features achieved the
best performance with 96.68% ACC and 0.94 MCC value.
These results indicate that a combined feature vector is
capable of extracting more information about a primary
sequence and obtaining a better prediction performance.

Table 1. The performance of RF prediction modules based on various

features. The prediction system was assessed by OOB estimation on

data set 1.

Features Sp (%) Se (%) ACC (%) MCC

A 90.48 85.89 88.21 0.77
AþB 95.24 91.41 93.35 0.87
AþC 97.62 94.47 96.07 0.92
AþBþC 98.21 95.09 96.68 0.94

A: local contiguous triplet structure composition;
B: Minimum of free energy (MFE) of the secondary structure;
C: P-value.
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Estimating and ranking the feature importance

Decision tree is known for its ability to select ‘important’
ones from many features and ignore (often irrelevant)
others. In addition, decision tree gives an explicit model
describing the relationship between features and predic-
tions, thus easing model interpretation. Random forest, as
an ensemble of trees, inherits the ability to select
‘important’ features. A measure of how each feature
contributes to the prediction performance of random
forest can be calculated in the course of training. When a
feature that contributes to prediction performance is
‘noised up’ (e.g. replaced with random noise), the
performance of the prediction is noticeably degraded.
On the other hand, if a feature is irrelevant, ‘noising’ it up
should have little effect on the performance. Thus, we
can estimate the relative importance of features
according to the following procedure (28). For each tree,
the prediction accuracy on the OOB portion of the data is
recorded. Then the same is done after permuting each
predictor variable. The difference between the two
accuracies are then averaged over all trees, and normalized
by the standard error. Then the MDA implies the relative
importance of each feature. As shown in Table 2, P-value,
MFE and ‘C . . ., U(((, A(((’ composition are the top five
features which determined the pre-miRNA-like hairpins
to be the real or pseudo ones. ‘A((., U.((, C(.(’ triplet

elements seemed to have no discriminative power in the
RF classifier.

Comparison with other methods

The performance of our RF method was compared with
the existing method, Triplet-SVM-classifier (21), which
was also trained on the same training data set. The results
were obtained by an independent data set test. The testing
data set contained 263 real pre-miRNAs and 265 pseudo
pre-miRNAs. As was shown in Table 3, the results
demonstrated that the total prediction accuracy of our
RF method was nearly 10% greater than the Triplet-
SVM-classifier. An alternative classifier which used the
SVM method with the combined features was also
compared with the Triplet-SVM-classifier and our RF-
based method. The results showed that the alternative
classifier significantly outperformed the Triplet-SVM-
classifier, but it slightly underperformed the RF-based
method. To further compare the RF algorithm with the
SVM algorithm, we combined the training data set and
the testing data set, and then randomly divided it into two
portions of approximately equal size. We used one portion
for training and the other for evaluating the prediction
performance. The process was repeated 20 times. The
results showed that the mean accuracy of the RF method
is 93.49% which is higher than that of the SVM method
(92.94%). A pairwise t-test was also implemented. The
P-value was 0.003, which indicated that the performance
between the RF and the SVM was significantly different.
Thus, we conclude that both the RF algorithm and the
hybrid feature contribute to the prediction improvement.

The miR-abela (14) used an ab initio prediction
method to identify pre-miRNA candidates. The prediction
process follows the same strategy as our method: (i) initial
screen of miRNA genes; (ii) using machine-learning
methods to distinguish the real miRNAs from the
pseudo ones. However, the performance of a machine-
learning method depends on the sensitivity and specificity
of the initial screen. The miR-abela and our method use
different initial screen rules and different pseudo sample
definitions (negative samples of machine-learning
algorithm in training datasets). Thus, it is a challenge to
directly compare them in a given data set. The miRBase
(http://microrna.sanger.ac.uk/) deposits several newly
found pre-miRNAs from August 2006 (release 8.2) to
February 2007 (release 9.1). We use those sequences

Table 2. Estimating and ranking the relative importance of the features

Rank Features Mean decrease accuracy (%)

1 P-value 15.80
2 MFE 5.48
3 C . . . 2.04
4 U((( 2.00
5 A((( 1.49
6 A . . . 0.83
7 G . . . 0.76
8 U..( 0.43
9 G.(( 0.34
10 A(.. 0.31
11 C((. 0.31
12 G..( 0.29
13 G(.. 0.29
14 U((. 0.27
15 U . . . 0.26
16 U(.( 0.24
17 G((( 0.23
18 C((( 0.20
19 A..( 0.20
20 U(.. 0.19
21 C(.. 0.14
22 U.(. 0.14
23 G((. 0.09
24 C.(. 0.09
25 A(.( 0.08
26 C..( 0.08
27 C.(( 0.07
28 A.(. 0.07
29 G(.( 0.06
30 A.(( 0.03
31 G.(. 0.02
32 A((. 0.00
33 U.(( 0.00
34 C(.( 0.00

Table 3. Comparison with the existing method and the competing

method. All the algorithms are trained on the same training data set

and tested on the same testing data set

Methods Sp (%) Se (%) ACC (%) MCC

RF 93.21 89.35 91.29 0.826
SVM 90.94 87.83 89.39 0.788
Triplet-SVM-classifier 88.30 79.47 83.90 0.681

RF: An RF-based method with ‘P-valueþMFEþ local contiguous
triplet structure composition’ features;
SVM: An SVM-based method with ‘P-valueþMFEþ local contiguous
triplet structure composition’ features;
Triplet-SVM-classifier: An SVM-based method with Local contiguous
triplet structure composition features.
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(www.bioinf.seu.edu.cn/miRNA/dataset1.htm) to com-
pare our method with miR-abela. As shown in Table 4,
our method (MiPred) successfully predicts the newly
found pre-miRNAs with 100% accuracy while the total
accuracy of miR-abela is only 46.34%. Furthermore,
another independent data set: Human cytomegalovirus
miRNAs (miRBase: release 9.1), which consists of 11 pre-
miRNAs (www.bioinf.seu.edu.cn/miRNA/dataset2.htm),
is used to compare our MiPred with miR-abela in
identifying long un-related pre-miRNAs. The results
show that MiPred still obtains 100% accuracy while the
total accuracy of miR-abela is only 27.27% (3/11, 3: the
number of sequences which is correct predicted; 11:
the total number of sequences).

ProMiR II (15) is a web server that search for potential
miRNAs in a given sequence or in its vicinity. It provides
three programs: ProMiR-v (search for potential miRNAs
in the Vicinity of known miRNAs), ProMiR-c (search for
potential miRNAs in the vicinity of a Candidate) and
ProMiR-g (predict miRNAs in a long sequence, a
Generalized version of ProMiR). There are 13 known
miRNAs in Chromosome II of Homo sapiens: has-mir-
558, has-mir-559, has-mir-217, has-mir-216, has-mir-560,
has-mir-128a, has-mir-10b, has-mir-561, has-mir-26b, has-
mir-375, has-mir-153-1, has-mir-562 and has-mir-149. We
use ProMiR-v to search for potential miRNAs in the
vicinity of these sequences. The default parameters are
used. The results show that there are seven known pre-
miRNAs and 21 pre-miRNA candidates (computationally
predicted as pre-miRNAs). Then we take those 21
candidates (www.bioinf.seu.edu.cn/miRNA/dataset3.htm)
to run in our MiPred. The results show that the miRNA-
candidates which are predicted as real pre-miRNAs in
ProMiR-v are also predicted as real ones in MiPred. In
addition, we randomly extract ten sequences (each with
length 10k nt) from Chromosome III–VIII of Homo
sapiens and use ProMiR-g to search for potential pre-
miRNAs from those sequences. It detects three sub-
sequences as potential pre-miRNAs. We test those three
sequences using MiPred and find that our prediction
results are consensus with those of ProMiR-g: the
miRNA-candidates which are predicted as real pre-
miRNAs in ProMiR-g are also predicted as real ones in
MiPred. Thus, we conclude that although the working
principle is different between MiPred and ProMiR II, the
two web servers have a very consensus result.

To detect miRNA-candidates from computational
approach, it is vital important to use different web servers.

Thus, conflicting results can be noted and evaluated by
users. MiPred will provide a useful tool to detect and
evaluate miRNA-candidates.

Server description

MiPred is available at http://www.bioinf.seu.edu.cn/
miRNA/. All the CGI scripts of the method were written
in Perl 5.8.8 and the interface was designed using HTML.
The RF algorithm was implemented by the randomForest
R package (29) and the MFE was predicted by the Vienna
RNA software package (24). In the current system, the
training data set is the same as that of the Triplet-SVM-
classifier, which contains 163 real pre-miRNAs and 168
pseudo pre-miRNAs.
Users can enter a RNA sequence (uppercase or lower-

case) in one of four formats (FASTA, GCG, GeneBank
and EMBL). All non-standard characters except the four
nucleotide bases adenine, guanine, cytosine and uracil will
be ignored from the sequence.
Given a sequence, MiPred decides whether it is a pre-

miRNA-like hairpin sequence or not. If the sequence is a
pre-miRNA-like hairpin, the RF classifier will predict
whether it is a real pre-miRNA or a pseudo one. Besides,
the prediction confidence of the RF classifier is also
provided. Here the prediction confidence is defined as the
fraction of positive votes for the predicted real pre-miRNA
or the fraction of negative votes for the predicted pseudo
pre-miRNA. An output example is shown in Figure 1.

CONCLUSIONS

We have devised an RF-based method for classification of
the real pre-miRNAs and the pseudo pre-miRNAs using a
hybrid feature. We compared our method with the existing
method, Triplet-SVM-classifier (21), which was also
trained on the same training data set. The results
demonstrated that the total prediction accuracy of our
RF method was nearly 10% greater than the Triplet-
SVM-classifier. Further analysis indicated that the
improvement was due to both the hybrid feature and the
RF algorithm. We also compared our method with miR-
abela and ProMiR II using independent data sets test. The
results indicated that our method significantly outper-
formed miR-abela but had a very consensus result with
ProMiR II. A web server MiPred was developed. Given a
sequence, MiPred decides whether it is a pre-miRNA-like
hairpin sequence or not. If the sequence is a pre-miRNA-
like hairpin, the RF-based classifier will predict whether it
is a real pre-miRNA or a pseudo one.
Scanning the genome, there could be numerous

amounts of sequence segments that can be folded into
pre-miRNA like hairpins. The successful ab initio classi-
fication of real and pseudo pre-miRNAs opens a new
approach for discovering new miRNAs.
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