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ABSTRACT

We present a comprehensive and efficient gene set
analysis tool, called ‘GeneTrail’ that offers a rich
functionality and is easy to use. Our web-based
application facilitates the statistical evaluation of
high-throughput genomic or proteomic data sets
with respect to enrichment of functional categories.
GeneTrail covers a wide variety of biological cate-
gories and pathways, among others KEGG,
TRANSPATH, TRANSFAC, and GO. Our web server
provides two common statistical approaches,
‘Over-Representation Analysis’ (ORA) comparing a
reference set of genes to a test set, and ‘Gene Set
Enrichment Analysis’ (GSEA) scoring sorted lists of
genes. Besides other newly developed features,
GeneTrail’s statistics module includes a novel
dynamic-programming algorithm that improves the
P-value computation of GSEA methods consider-
ably. GeneTrail is freely accessible at http://gene
trail.bioinf.uni-sb.de

INTRODUCTION

Modern high-throughput methods generate large sets of
genes and proteins that cannot be analyzed manually.
Therefore, computer-aided gene set analysis tools that try
to identify significantly enriched functional categories in
these sets have gained increasing importance.
For the statistical evaluation of gene sets two basic

approaches have been developed. The first method, the so
called ‘Over-Representation Analysis’ (ORA), compares
the set of interest to a reference set. When considering a
certain functional category, i.e. a GO term, this method
tries to detect if this category is over-represented or under-
represented in the respective set and estimates how likely
this is due to chance. The second method is called

‘Gene Set Enrichment Analysis’ (GSEA). Here, the input
set is sorted by some specific criteria (e.g. gene expression
values). When considering an arbitrary functional
category, GSEA tests if the genes in the set that belong
to the category are uniformly distributed or accumulated
on top or on bottom of the sorted input list.

Some of the developed tools focus on the analysis
of only one type of functional categories for example
various Gene Ontology (GO) (1) based tools, among them
FatiGO (2), BiNGO (3), and GOstat (4). Other tools
focus on certain types of high-throughput data as micro-
array gene expression data [ErmineJ (5), CRSD (6),
GSEA-P (7)] or offer only one type of statistical analysis,
as the GSEA-P tool (7), that is designed for GSEA only.
Furthermore, some tools, like Catmap (8), do not include
biochemical categories and it is left to the user to define
these categories. A few tool packages, however, allow for
the analysis of different types of functional categories,
e.g. WebGestalt (9) and Babelomics (10).

Here, we present GeneTrail, a web-based application,
allowing for the identification of enriched functional
categories in protein or gene sets. GeneTrail supports
the ORA as well as the GSEA approach. In addition, our
implementation of the GSEA analysis includes a novel
algorithm that computes the correct p-value instead of
estimating it by permutation tests. Since our tool is based
on the comprehensive integrative system BNþþ (11),
GeneTrail allows the evaluation of a broad range of
functional categories. The advantage of using the BNþþ

database BNDB is that we are able to find cross-links
(e.g. using the data of different protein–protein interaction
databases), which remain undetected using single data-
bases. The current version of BNþþ integrates for
example the following biological data sources: RefSeq
(12), KEGG (13), TRANSPATH (14), TRANSFAC (15),
DIP (16), MINT (17), HPRD (18), IntAct (19). Besides
the categories mentioned above, GeneTrail also offers
amino acid sequence analyses as motif search, coiled-coil
prediction or granzyme B cleavage site prediction,
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a chromosomal location analysis and a protein–protein
interaction analysis.

With GeneTrail, we developed a user friendly web-based
application, which can be easily extended concerning new
functional categories or statistical methods for the
evaluation of arbitrary high-throughput data. GeneTrail
is freely accessible (http://genetrail.bioinf.uni-sb.de).

MATERIALS AND METHODS

Information resources and databases

GeneTrail imports KEGG (13) and TRANSPATH path-
ways (14), TRANSFAC transcription factors (15) and
protein–protein interactions from DIP (16), MINT (17),
HPRD (18) and IntAct (19) from the biochemical network
database (BNDB). BNDB is a powerful relational
database platform, allowing a complete semantic integra-
tion of an extensive collection of external databases. It is
built upon a comprehensive and extensible object model
called BioCore, which is powerful enough to model most
known biochemical processes and at the same time it is
easily extensible to be adapted to new biological concepts.
This database is part of BNþþ (11), the biochemical
network library, which is freely available at http://
www.bnplusplus.org. Additionally, GeneTrail uses a
local copy of the GO database (1) that includes electron-
ically inferred annotations (IEAs) and manually curated
annotations. GeneTrail provides the user the option to
analyze the complete data set or to exclude the IEAs. To
complement the above mentioned data sources, our
application imports different flat files from the NCBI
containing current versions of gene identifiers and amino
acid sequences. By using BNþþ together with the
described annotation files, GeneTrail allows for using
many identifier types. A survey on supported gene
identifiers is provided in Table 1. The listed identifiers
are initially mapped to NCBI Gene IDs. These can
directly be associated with most of the integrated

categories, for example Gene Ontology terms. Thereby,
a minimal loss of information is guaranteed.
We have developed update routines ensuring that Gene-

Trail imports the most recent versions of flat files. The
underlying database and all flat files are updated monthly.

Supported functional categories

Besides the functional categories from the KEGG,
TRANSPATH and GO databases, GeneTrail also offers
the possibility to study amino acid sequence properties,
e.g. the presence of specific amino acid motifs, coiled–
coiled structures [as described by Lupas et al. (20)] and
granzyme B cleavage sites (21). Additionally, GeneTrail
studies the enrichment of genes regulated by certain
transcription factors from the TRANSFAC database or
significant protein–protein interactions in the test set.
Moreover, GeneTrail allows for studying the distribution
of the genes in the test set on the chromosomes and
chromosome arms.
GeneTrail can also be used to perform statistical

analyses for self-defined functional categories. To use
this option, a category file can be uploaded by the user.
This file has to contain the category name with a leading
‘#’ symbol and the identifiers belonging to this category
each separated by a line break.
To provide insight into tested categories, GeneTrail

offers a comprehensive log file that can be accessed and
downloaded from the web page. For each category, the
log file contains the source of that category, and the
number of genes in the considered category.

Statistical methods

GeneTrail provides two different types of statistical
approaches. First, genes of a test set can be compared to
a reference set (ORA). Second, a sorted test set can be
analyzed without a reference set (GSEA). For each
biological category, a significance value (P-value) is
computed. Since many categories are usually tested, the
raw P-values need to be adjusted for multiple testing.

Over-representation analysis (ORA). Suppose that we are
given a test set of n genes of which k belong to a
certain category C and a reference set of m genes of which
l belong to C. Since l elements of the reference set belong
to C, we expect to find k0 ¼ l�n/m elements in the test set.
If k is larger than k0, C is said to be enriched, if k is
smaller than k0, C is said to be depleted. To estimate
the statistical significance, P-values are computed.
If the test set is a subset of the reference set, the
hypergeometric test is applied to compute a one tailed
P-value for C:

PC ¼

Pn
i¼k

l
i

� �
m� l
n� i

� �

m
n

� � if k0 < k

Pk
i¼0

l
i

� �
m� l
n� i

� �

m
n

� � if k05k

8>>>>>>>>>><
>>>>>>>>>>:

Table 1. Overview of the identifier types currently supported by

GeneTrail

Identifier Examples

NCBI GeneID 5894, 11186, 11848
NCBI NP/XP number
(Protein RefSeq)

NP_006261, XP_941900, NP_872606

NCBI Protein GI 28201876, 113431221, 121114292
NCBI NM/XM number
(RNA RefSeq)

NM_018993, NM_008284, NM_021168

NCBI RNA GI 54792783, 51093847, 91105420
SwissProt/UniProt Q9NZD4, P55008, O15155
UniGene Hs.652097, Hs.652094, Hs.652089
Ensembl Gene ID ENSG00000003147, ENSG00000005801
SGD yeast ORF ID YCR024C-B, YCR108C, YLR157W-E
Amersham Human Whole
Genome

GE200018, GE897528, GE519380

Affymetrix HG-U133A 1487_at, 1320_at, 1316_at
Affymetrix HG-U95A 1014_at, 1015_s_at, 1017_at
Affymetrix HG-U133
Plus 2.0

1552258_at, 1487_at, 1438_at

Affymetrix HG-U133B 200017_at, 200018_at, 200013_at
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If test and reference set are disjoint, Fisher’s exact test is
used instead:

PC ¼
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Gene Set Enrichment Analysis (GSEA). If the genes in the
test set are sorted, e.g. by expression values, a running sum
statistic is computed for each category C. This statistic
shows whether the genes of C are accumulated on top
(Figure 1A, B) or bottom (Figure 1C) of the sorted test

set, or if they are randomly distributed (Figure 1D).
Given a set of m genes of which l belong to C, the sorted
list is processed from top to bottom. Whenever a gene of C
is found, the running sum is increased by a certain
amount, otherwise it is decreased. We consider the
unweighted case where the running sum is increased by
m� l or decreased by l, corresponding to a Kolmogorov–
Smirnov non-parametric rank statistic [as described in (22)
and (23)]. The minimum and maximum of the running
sum statistic are used to estimate the significance of the
enrichment. The P-value is computed as the probability
that a random running sum reaches a value as high as the
maximum of the running sum (accumulation on top) or as
low as the minimum of the running sum (accumulation on
bottom). Usually, these probabilities are computed by
so-called permutation tests that are time consuming and
provide only an estimation of the correct P-value. We
developed a dynamic programming algorithm that

Figure 1. Visualization of different running sum statistics when applying a ‘Gene Set Enrichment Analysis’. The running sum (y-axis) is shown as
function of the index in the sorted list (x-axis). Part A and B of the figure illustrate a ‘mountain-like shape’ for top ranked genes. In part C,
a ‘valley-like shape’ for bottom ranked genes is shown. Part D illustrates a ‘zigzag’ shape which is not statistically significant; the genes are randomly
distributed.
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computes the correct P-value time efficient (manuscript in
preparation).

Multiple testing adjustment. Since many categories are
tested simultaneously, we are facing the well-known
multiple testing problem. Therefore, GeneTrail offers two
adjustment methods, the conservative Bonferroni adjust-
ment and the control of the false discovery rate (FDR)
according to Benjamini and Hochberg (24). Please note
that the adjustment is performed separately for different
category types like KEGG or TRANSPATH pathways.

Handling of replicates. For example in microarray experi-
ments, genes are frequently represented by several
transcripts of the microarray. Therefore, the uploaded
sorted lists may include several data points for one gene.
GeneTrail offers three possibilities to select a transcript, or
in general a unique position for each gene in the sorted
list: the first occurrence, the last occurrence or the median
position of each gene can be selected. For the third option,
in the case of an even number of positions for a given
gene, we calculate the average of the two ‘middle’

positions in the sorted list. The new calculated ‘position’
must not be a natural number. If several genes have the
same position, the one with the first occurrence in the
original list is placed first etc.

GENETRAIL WEB SERVER

Workflow

The intuitive user interface of GeneTrail guides the
user through several steps as illustrated for the ORA in
Figure 2. First, the user has to select the organism and the
identifier types (see also Table 1) for the genes or proteins.
After uploading a test set the user can also upload a
reference set or select a set from a pre-defined list. Before
starting the analysis, the user has to specify the functional
categories to be evaluated and the required parameters.
The results of the computation are presented in two
different ways. An HTML result page containing
significant categories sorted by the calculated P-values
and an interactive graph visualization. Figure 3 shows an
excerpt of the HTML result page of the example set

Figure 2. This figure exemplifies the workflow of the GeneTrail server. The five steps needed to perform an ‘Over-Representation Analysis’ are shown
in consecutive order. First, the organism and the identifier type have to be selected. Afterwards, a test set should be uploaded and a reference set can
be uploaded or selected from a pre-defined list. Finally, the user can specify the desired analysis methods and the required parameters. For each step,
we show small screenshots in the background taken from the GeneTrail user interface.
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provided on the GeneTrail homepage. Figure 4 presents
the graph visualization of the same example. The
following two sections discuss the output of the web
server in detail.

Representation of the results

HTML-output. The results page summarizes the statisti-
cal significant functional categories that are enriched with
respect to the test set. For each type of category we
provide an overview, which can be extended to see details.
The details comprise the functional category name (e.g.
the name of a pathway or GO term), the computed
P-value, a red or green arrow illustrating over- or under-
representation with respect to ORA, the number of
observed and expected genes, and, in the case of GSEA,
an image of the running sum statistic. If possible, the
functional categories are also linked to their original
sources, e.g. KEGG or NCBI. For a better overview, we
additionally visualize the results of the GO term analysis
using the GO graph representation. Likewise, the protein–
protein interactions are provided as a static graph. Images
for GO and protein–protein interactions are, however,
only available for sparse graphs.
GeneTrail also illustrates the distribution of genes along

chromosomes. Usually, the genes are only represented by
points or crosses at their genomic localization. To prevent
problems with the visualization of genes that are located
very closely to each other, we additionally describe the
location of each gene using Gaussian normal distributions
with user selectable variance and compute their joint
distribution. Since the normal distributions of neighboring
genes overlap, we get a more interpretable view of the
chromosomal distribution of genes.
All generated files are compressed in a zip file that can

be downloaded. This archive contains the HTML result
page as well as a comprehensive PDF file.

Graph representation of the results. For a concise over-
view of the computed results, GeneTrail provides an

interactive graph visualization implemented as a Java
applet (see Figure 4).

There are two types of nodes in the graph. Oval nodes
represent genes and logos categories. For the categories,
the nodes’ shape corresponds to the data source, the
nodes’ label to the category. In addition, we indicate an
over- or under-representation by a red up-arrow or green
down-arrow, respectively. Each gene node is labeled with
its gene symbol. The edges are divided in four different
classes. Blue edges connect genes and the categories they
are found in, black edges denote interactions of gene
products, green edges represent activation and red edges
indicate inhibition.

We used a circular layout for the graph where genes that
belong to the same category are located next to each other.
This representation allows the user to easily identify the
significant categories for each gene and the associated
genes for each category. The user can stepwise include the
categories or can include them all at once. This greatly
facilitates the analysis of the categories and the corre-
sponding genes by the user. Another useful feature permits
to highlight significant categories for a given gene or the
genes that belong to a significant category.

DISCUSSION

With GeneTrail we present a web-based application
facilitating the statistical evaluation of high-throughput
genomic or proteomic data sets. The statistical analysis
takes into account the identification of a variety of
functional categories that are ‘enriched’. The analysis is
based on two different statistical approaches, namely
ORA and GSEA.

The selection of the analysis method depends on the
performed experiment. GSEA is only applicable for sorted
gene sets, whereas ORA can be applied to the detection of
over- or under-representations of categories in any data
set compared to a reference set. In contrast to comparable
methods, GSEA represents a threshold free approach.
Frequently in ORA of microrarray data, the user
determines which genes are considered as upregulated by
choosing an expression threshold X. In contrast, GSEA
does not rely on a chosen parameter but considers the
entire sorted list of transcripts.

The relation of the data and the reference set is crucial.
If the data set is a subset of the reference set, the
hypergeometric distribution is used to compute P-values.
For disjoint data and reference sets, Fisher’s exact test is
applied instead. In all other cases, GeneTrail offers the
possibility to download an appropriate reference set
disjoint to the data set.

One important feature of GeneTrail is a novel algorithm
for computing the exact P-value in GSEA. So far,
the statistical significance of GSEA is approximated by
so-called permutation tests that usually consider only
a small amount of all possible permutations. For example,
regarding a microarray containing 20 000 genes and
a category containing about 2000 genes, the number of
possible arrangements is given as 20000

2000

� �
, approximately

4�102821. Even if thousands of permutations are computed,

Figure 3. HTML view excerpt of the output of the ORA performed
on the example set provided on the GeneTrail web server homepage.
The illustration shows the two significant KEGG pathway categories
with the highest P-value. The red arrows denote the over-representation
of these two categories. If available, the categories and the genes are
connected via weblink to their external data sources.
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this will probably not yield a good estimation of the
P-value. However, with our approach, we are able to
compute the correct P-value efficiently.

The offered statistical approaches treat the genes to
work individually. This of course does not reflect the
reality, where genes act together. The significance of
findings, especially their sensitivity, may be improved by
integrating additional information concerning the genes
and their interactions, especially the topology of biological
pathways. However, we have to carefully select the a priori
biological information to be included. Since this informa-
tion could be related to biological coherences we want to
detect, we would introduce a bias into the data set.

A common problem of biological data management is
the usage of appropriate identifier for genes or proteins.
External identifiers need to be mapped to the identifiers
used internally. In our case, the NCBI Gene IDs are the
internal identifiers. If a provided data set does not contain
NCBI Gene IDs, GeneTrail needs to convert these IDs.
Therefore, we recommend the usage of NCBI Gene IDs to
avoid possible mismatches.

The interactive graph visualization offers the possibility
to grasp the interactions between genes of a data set and
computed significant categories. However, large gene
sets lead to complex graphs that are hard to visualize
and to interpret. Currently, we are developing
improved methods for online visualization of large
graphs that we plan to integrate into future versions
of GeneTrail.
GeneTrail offers the possibility to extract information

from complex proteome data, microarray data or data
generated by other high-throughput methods with mini-
mal effort. Two examples of GeneTrail analyses can
be found in the Supplementary Data. In conclusion,
GeneTrail complements the conventional evaluation of
experimental data and offers new starting points for
further experimental investigation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

Figure 4. Graph visualization of the output of the ORA performed on the example set provided on the GeneTrail web server homepage. The left
hand side shows an excerpt of the complete overview graph presented on the upper right. There are two types of nodes: oval nodes representing the
genes in the example set and logos representing the categories. Blue edges connect the genes and the categories they are found in, black edges denote
interactions of gene products.
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