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ABSTRACT

Multiple sequence alignments are essential in
homology inference, structure modeling, functional
prediction and phylogenetic analysis. We developed
a web server that constructs multiple protein
sequence alignments using PROMALS, a progres-
sive method that improves alignment quality by
using additional homologs from PSI-BLAST
searches and secondary structure predictions
from PSIPRED. PROMALS shows higher alignment
accuracy than other advanced methods, such as
MUMMALS, ProbCons, MAFFT and SPEM. The
PROMALS web server takes FASTA format protein
sequences as input. The output includes a colored
alignment augmented with information about
sequence grouping, predicted secondary structures
and positional conservation. The PROMALS web
server is available at: http://prodata.swmed.edu/
promals/.

INTRODUCTION

The quality of multiple sequence alignments directly
affects their applications in similarity searches, structure
modeling, functional prediction and phylogenetic analy-
sis. Preparing accurate multiple alignments for distantly
related proteins (e.g. sequence identity below 20%)
remains a difficult task. Fast accumulation of database
protein sequences also poses a demand to improve
alignment speed. Aligning all sequences together by
dynamic programming is not feasible for large numbers
of sequences (1). Progressive alignment methods reduce
the problem of aligning multiple sequences to making a
limited number of pairwise alignments. Although pro-
gressive methods can be fast, errors made at early stages
are not corrected. Classic progressive methods such as
ClustalW (2) can give reasonable results for similar
sequences, but fail to produce accurate alignments for
divergent sequences (3).

In recent years, extensive research has been conducted
to improve alignment quality for progressive methods.
Refinement after progressive steps is an effective way of
correcting alignment errors (4,5). Consistency-based
alignment strategy (6) derives a better scoring function
before the progressive alignment steps. ProbCons (7)
introduced and MUMMALS (8) implemented a prob-
abilistic treatment of consistency derived from pairwise
alignment hidden Markov models. Additional informa-
tion from protein structures and database homologs
can lead to further improvement of alignment quality
(5,9-11).

We developed PROMALS (12), a progressive method
that combines recent advanced techniques to improve
multiple alignment quality, especially for distantly related
proteins. PROMALS integrates additional information
from database searches and secondary structure predic-
tions into a new hidden Markov model that aligns
profiles. The alignment scoring function of PROMALS
is based on probabilistic consistency among profile—profile
comparisons. PROMALS has shown improved results as
compared to other leading methods, such as SPEM (13),
MUMMALS, ProbCons and MAFFT (12).

Here, we describe the PROMALS web server for
multiple protein sequence alignments. In addition to
alignment construction, this server outputs useful infor-
mation about predicted secondary structures, sequence
grouping and positional conservation for target
sequences.

PROMALS MULTIPLE ALIGNMENT PROCEDURE

Being a progressive method, PROMALS sets the order of
pairwise alignments according to a tree built by a k-mer
counting method (4). To improve alignment speed,
PROMALS has two alignment stages for easy and
difficult cases, as first implemented in our program
PCMA (14). In the first stage, highly similar sequences
are progressively aligned in a fast way with a weighted
sum-of-pairs measure of BLOSUMG62 (15) scores. This
procedure results in a set of pre-aligned groups that are
relatively divergent from each other. In the second
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Table 1. Evaluation of alignment methods on SABmark and PREFAB
benchmarks

Method SABmark- SABmark- PREFAB
twi(209/7.7) sup(425/8.3) (1682/45.2)
PROMALS 0.391 0.665 0.790
SPEM 0.326 0.628 0.774
MUMMALS 0.196 0.522 0.731
ProbCons 0.166 0.485 0.716
MAFFT-linsi 0.184 0.510 0.722
MUSCLE 0.136 0.433 0.680
ClustalW 0.127 0.390 0.617

Average Q-scores of two SABmark data sets (‘twi’ for ‘twilight zone’
set, ‘sup’ for ‘superfamily’ set) and the PREFAB 4.0 data set are
shown. Q-score is the number of correctly aligned residue pairs in the
test alignment divided by the total number of aligned residue pairs in
the reference alignment. For each data set, the two numbers in the
parentheses separated by a slash are the number of alignments tested
and the average number of sequences per alignment, respectively.
For each data set, PROMALS yields statistically higher accuracy (bold
numbers) than any other method (P-value<0.000001) according to
Wilcoxon signed rank test. PROMALS and SPEM use secondary
structure prediction and database homologs in alignment process, while
the other five methods only utilize the input sequences.

alignment stage, a representative sequence is selected from
each pre-aligned group. For each representative sequence,
PSI-BLAST (16) is used to identify homologs from the
sequence database UNIREF90 (17), and the PSI-BLAST
profile (checkpoint file) is used to predict secondary
structures by PSIPRED (18). For each pair of representa-
tives, profiles are derived from the PSI-BLAST alignments
and PSIPRED secondary structure prediction, and a
matrix of posterior probabilities of matches between
positions are obtained by a profile—profile hidden
Markov model (12). These matrices are used to calculate
the probabilistic consistency scoring function, which is
used to progressively align the representative sequences.
Then the pre-aligned groups obtained in the first stage are
merged to the alignment of the representatives. Finally,
gap placements in highly gapped regions are refined to
make the gap patterns more realistic. The alignment
accuracy results of PROMALS and several other methods
on SABmark (19) and PREFAB 4.0 (4) benchmarks are
shown in Table 1.

PROMALS WEB SERVER

The PROMALS web server is available at: http://prodata.
swmed.edu/promals/(Figure 1).

Input

The user can paste protein sequences or upload a sequence
file. The sequences can be in FASTA format and identical
sequence names are not allowed. PROMALS also
recognizes CLUSTAL format alignments as input.
If such an alignment is provided, it is split into individual
sequences and these sequences will be re-aligned by
PROMALS. The user can enter a name to identify the
submitted job. It is also recommended that the user
provide an email address to receive alignment results,
as PROMALS can take a considerable amount of time to
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The PROMALS multiple sequence alignment server

PROMALS constructs multiple protein sequence alignments using information from
database searches and secondary structure prediction.  [Documentation]

Enter your sequences in FASTA format:

Or upload a local file containing your sequences: [
Enter your email address to receive the result (recommended):
Multiple sequence alignment options:

- Weight for amino acid scores: ‘0 8 ‘
- Weight for predicted secondary structure scores: ‘0 2 ‘

- Identity threshold above which fast alignment is applied: ‘0 6 ‘

Options for running PSI-BLAST and processing of PSI-BLAST alignment:
- PSI-BLAST iteration number: |3
- PSI-BLAST e-value inclusion threshold: |0.001
- Identity cutoff below which distant homologs are removed: 0.2 |
- Maximum number of homologs kept for PSI-BLAST alignment: |3UU l

Options for alignment output:

- Alignment block size: ‘70 ‘
- Show conservation indices equal to or above: |5 V‘

Submit

Enter a name for your job (recommended): ‘ ‘

PROMALS Documentation
Downloads

Reference: PROMALS: towards accurate multiple sequence alignments of distantly related proteins.
Jimin Pei and Nick V. Grishin. Bioinformatics 2007; doi: 10.1093/bioinformatics/btm017

Comments, suggestions and bug reports to: jpei@chop.swmed.edu

Figure 1. Front page of the PROMALS server. The main section
allows the user to paste or upload sequences and enter an email address
for the results. Options to modify alignment parameters, PSI-BLAST
searches and output format are provided. A brief description of each
option is available by clicking on the option’s name. A document with
detailed description of the server is provided. The stand-alone versions
of PROMALS can be downloaded from this page.

finish for a large number of divergent sequences, due to
the time-consuming steps of running PSI-BLAST searches
and profile consistency measure. On a data set of 1785
SCOP (20,21) domain pairs with up to 48 homologs added
(the average number of sequences is 41.6 per alignment),
the average CPU time of PROMALS is about half an
hour under default settings (12). The actual time to finish
an alignment job depends on factors such as the number
of sequences and their lengths, the diversity among the
sequences, the numbers of homologs found in database
searches and the server load. It can take several hours for
the server to finish aligning a sequence set with a large
number of distantly related sequences (>50).

Alignment options

A number of alignment options are provided in the web
page. One important parameter is the identity threshold
that determines the partition of fast alignment stage and
slow alignment stage, and thus balances alignment quality
and speed. Lowering this threshold can cause more



Conservation:
Q394B3_BURS3 207 388
Q7U096 MYCBO 208 376
Q1TAV7_9MYCO 205 370
QSUFR5_MYCAV 46 217
Q1TADO_9MYCO_ 95 261
Q60217 CAEBR 310 503
ADCY9 CHICK 374 562
Q1URK5 9MYCO 143 320
Consensus_ss:

Conservation:

Q394B3 BURS3 207 388
Q7U096 MYCBO 208 376
Q1TAV7_ 9MYCO 205 370
QSUFR5_MYCAV_46_217
Q1TADO 9MYCO 95 261
Q60Z17_CAEBR_310_503
ADCY9 CHICK 374 562
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CDDHACRTVEMGLDMIVAIRQFDIDR-GQEVNMRVGIHTGKVMCGMVGTKRFKFDVFSNDVTLANEMESS
RADHAYCCIEMGLGMIKAIEQFCQEK-KEMVNMRVGVHTGTVLCGILGMRRFKFDVWSNDVNLANLMEQL
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Q1URK5_9MYCO_ 143 320  =----- GTAVRAVLNAMAAVRSVEID--GYSPRMRVGVHTGRPQRI------- GSDWLGVDVNTAARVMER
Consensus_ss: hhhhhhhhhhhhhhhhhhh ceeeececeeeeceecee eee hhhhhhhhhh
Conservation: 6 9 75 56 7 5
Q394B3_BURS3_207_388 GVAGRVQVTDATRVMLGEA---------- FVFEERGLIAAKGMG------ EFRTWEFVVG
Q7U096_MYCBO_208_376 ARPGAVLVADSVREALGDAPE----- ADGFQWSFAGPRRLRGIRG----- DVRLFRVRR
Q1TAV7_9MYCO_205_370 ARPGTVLVSESVREAVGDD-------- ERFSWSYAGARHLKGIRG----- EVKLFRARR
QS5UFR5_MYCAV_46_217 AAGGEILVSQPVRDALSRSD-------- GIRFDDGREVELKGFSG----- TYRLFAVLA
Q1TADO_9MYCO_95 261 ADGGEILVSEAVRDAVAGAD-------- GVSIGDGREVSLKGFSG----- KHHLYVVSA
Q60Z17_CAEBR 310_503 GVAGRVHVSEATAKLLKGLYEI - - - -EEGPDYDGPLRMQVQGTERRVKPESMKTFFIKG

ADCY9 CHICK 374 562 GVAGKVHISEATAKYLDDRYE--------- MEDGKVTERVGQSAVADQLKGLKTYLISG
Q1URK5_9MYCO 143 320 ATRGGLIVSQATLDRIPAEELAALNVTVKRQRRQVFSLKPDGVPP----- ELGMYRVRR

Consensus_ss: eeee hhhhhh

eeeee eeee eeeeeee

Figure 2. An example of colored alignment produced by the PROMALS server. These sequences are adenylate/guanylate cyclase catalytic domains
selected from the PFAM database (Accession number: PF00211) (23). The first line in each alignment block begins with ‘Conservation:” and shows
conservation index numbers for conserved positions. The last line in each block begins with ‘Consensus_ss:” and shows the consensus secondary
structure predictions (‘h’: a-helix; ‘e” B-strand). Each representative sequence has a magenta name and is colored according to PSIPRED secondary
structure predictions (red: o-helix, blue: B-strand). A representative sequence and the immediate sequences below it with black names, if there are
any, form a closely related group (determined by the option ‘Identity threshold’). Sequences within each group are aligned in a fast way. The groups
are aligned using profile consistency with enhanced information from database searches and secondary structure predictions.

sequences to be aligned in a fast and less accurate way,
resulting in fewer representative groups subject to the time
and memory-consuming steps of PSI-BLAST searches and
profile consistency measure. This tradeoff generally leads
to less computational time but lower alignment quality.
If the number of pre-aligned groups is large (e.g. >100),
PROMALS could run out of memory during the
consistency measure step and generate an error
message with the report of the number of pre-aligned
groups in the second alignment stage. In this case, the
user can lower the identity threshold (default 0.6) so
that the number of sequence groups subject to
consistency measure can be reduced. We also provide
options for changing weights of amino acid scoring
and predicted secondary structure scoring. The default
values were determined by a large scale testing on
divergent SCOP superfamily domains (20,21). Several
parameters for running PSI-BLAST and processing
PSI-BLAST alignments (used for generating amino acid
profiles) are also provided, such as e-value cutoff, the
number of PSI-BLAST iterations, identity cutoff to
remove divergent hits, and the number of homologs kept
for profile calculation.

Output of PROMALS results

The web server reports the resulting alignment in a
standard CLUSTAL format. In addition, the server

provides a colored alignment with information about
sequence grouping, secondary structure predictions and
positional conservation (Figure 2). Sequence grouping is
reflected by the color of sequence names. Sequences with
magenta names are representatives from pre-aligned
groups. Sequences with black names immediately under
a representative sequence belong to the same pre-aligned
group as the representative sequence. For example, in
Figure 2, ‘Q7U096_MYCBO_208 376" and ‘QITAV7_
IMYCO_205_370" belong to the same pre-aligned group,
and they are aligned in the fast alignment stage. Predicted
secondary structures are shown for representative
sequences (residues with red and blue fonts are predicted
to be a-helices and B-strands, respectively). Above each
alignment block, conserved positions are marked by their
conservation indices (integer values from 0 to 9) calculated
using our program AL2CO (22). The line beneath each
alignment block shows consensus secondary structure
predictions derived from predictions of individual repre-
sentative sequences (‘h’: o-helix; ‘e’: B-strand). Such a
coloring and labeling scheme provides additional informa-
tion about the PROMALS alignment, and is helpful for
further sequence and structural analysis of the target
sequences. In addition to the alignments, the server also
provides links to the original input sequences and
intermediate results of PSI-BLAST alignments and
PSI-PRED secondary structure predictions.
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