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ABSTRACT

Long terminal repeat retrotransposons (LTR
elements) are ubiquitous eukaryotic transposable
elements. They play important roles in the evolution
of genes and genomes. Ever-growing amount of
genomic sequences of many organisms present a
great challenge to fast identifying them. That is the
first and indispensable step to study their structure,
distribution, functions and other biological impacts.
However, until today, tools for efficient LTR retro-
transposon discovery are very limited. Thus, we
developed LTR_FINDER web server. Given DNA
sequences, it predicts locations and structure of
full-length LTR retrotransposons accurately by
considering common structural features.
LTR_FINDER is a system capable of scanning
large-scale sequences rapidly and the first web
server for ab initio LTR retrotransposon finding.
We illustrate its usage and performance on the
genome of Saccharomyces cerevisiae. The web
server is freely accessible at http://tlife.fudan.
edu.cn/Itr_finder/.

INTRODUCTION

LTR retrotransposons exist in all eukaryotic genomes
(1-4) and are especially widespread in plants. They have
been found to be the main components of large
plant genomes (5-8). Dynamics of these elements are
now regarded as an important force in genome and gene
evolution. For example, their amplification and removal
shape the organization and change the size of genomes
(9,10); their transposition effects gene expression (11);
and cases of gene movement via LTR retrotransposons
were also reported recently (12). High throughput
technologies for DNA sequencing are providing
unprecedented chance to explore their functions and
evolutionary impact on the basis of large-scale genetic
information (13-16). It is urgent to develop efficient

tools for locating these elements in rapidly deposited
genomic sequences.

To date, most widely adopted methods of LTR retro-
transposon identification in DNA sequences are based on
alignment of known elements database to target genome.
This class of methods can well detect elements in the
database, but can hardly discover elements that is far
related to or not in the database. On the other hand,
analysis of many sequences of LTR elements in nearly 20
years revealed some structural features (signals) common
in these elements, including Long Terminal Repeats
(LTRs), Target Site Repeats (TSRs), Primer Binding
Sites (PBSs), Polypurine Tract (PPT) and TG...CA box,
as well as sites of Reverse Transcriptase (RT), Integrase
(IN) and RNaseH (RH). These results have made ab initio
computer discovery of LTR elements possible. However,
tools for ab initio detection of LTR retrotransposons are
still very limited: to the best of our knowledge, only two
programs, LTR_STRUC (17) and LTR_par (18),
have been reported, none of them being a web server.

We present here LTR_FINDER, a web server for
efficient discovery of full-length LTR elements in large-
scale DNA sequences. Considering the relationship
between neighboring exactly matched sequence pairs,
LTR_FINDER applies rapid algorithms to construct
reliable LTRs and to predict accurate element boundaries
through a multi-refinement process. Furthermore, it
detects important enzyme domains to improve the
confidence of predictions for autonomous eclements.
LTR_FINDER is freely available at http://tlife.fudan.
edu.cn/lItr_finder/.

INPUT AND OUTPUT
User input

LTR_FINDER accepts DNA sequences file of FASTA or
multi-FASTA format. Only the first ungapped string in
the description line is recorded to identify the input
sequence, and the rest of descriptions are ignored. In
the sequence lines, Only A, C, G, T and N are allowed,
and aligning an ‘N’ with any character is treated as a
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mismatch. Users are allowed to paste sequences in the
‘Sequence’ box, or upload a local file in the ‘File upload’
box. The size of web uploading file should not exceed
50Mb. For users who need to scan very large size
sequences, binary codes are available on request.
When submitting a job, users can choose different
parameters for different purposes. We explain some
commonly used parameters here. The ‘tRNAs database’
of target species is for prediction of PBS. Because they are
relatively conserved across organisms, tRNAs of a close
related species can be used if those of the target species
are not available. Since PBS is critical in deciding
3’boundaries of 5LTRs, omitting this parameter will
probably cause missing prediction. RT, IN and RH
domains are important for an element to transpose.
Occurrence of these sites adds weight of a candidate
model to be a true autonomous element. If users choose
domains in ‘Domain restriction’ options, only models
containing selected ones are reported. ‘Extension cutoff’
controls if two neighboring exactly matched pairs should
be joined into a longer one, that is, the regions covering
them is regarded as a longer highly similar pair. ‘Reliable
extension’ effects on identification of obscure overlapping
elements. The higher the value is, the more models will be
reported.

Program output

LTR_FINDER offers two types of output: full-output
and summary-output. Full-output shows details of pre-
dictions, including LTRs sizes, element locations in the
input sequence, similarity of two LTRs, sharpness (an
index for boundary prediction reliability of LTR regions)
and so on. Summary-output is extracted from full-output
by omitting some detailed information. For each
sequence, a diagram can be drawn simultaneously with
either type of output. It visualizes location information of
full-output. Users can obtain it by clicking on the ‘Output
with figure’ button. The diagrams are convenient for
human inspection and are very useful when analyzing
potential overlapping elements: one can view the relative
positions of signals inside LTR elements in details. In a
diagram, two background colors, silver and white, are
used to show sizes of objects. The program draws / pixels
to represent / bases on the silver background while draws
nlog(l) pixels to represent / bases on the white back-
ground, where 7 is a constant controlling overall size of
the diagram. If users fill in the ‘Get result by e-mail’ box
with a valid email address, the server will send the result
instead of displaying it. The output file will be stored on
the server for 3 days.

APPLICATION EXAMPLES

We describe an example of running LTR_FINDER on
yeast chromosome 10 to show the usage of the server.
Upload the sequence file, which can be obtained
from  Saccharomyces Genome Database (http://
www.yeastgenome.org/). Here we use the version released
on July 27, 1997 in order to compare the results with that
described in (19), in which a standard benchmark of

50 full-length LTR retrotransposons on 16 yeast chromo-
somes were given. Using the default parameters, choosing
‘Saccharomyces cerevisiae tRNA database’ and ‘Output
with figure’, we get the result as shown in Figures 1 and 2.
Figure 1 gives a complete description of element 1
(pictures of the same element 1 appear in Figures 2
and 3). Explanation of the output items is given in the
caption of Figure 1 and more information on output
format can be found in documents on the webpage.
The diagram of this run is shown in Figure 2. Yeast
chromosome X contains a region where two tandem
elements resulted from recombination. The program
reports two sets of RTs and INs indicating the tandem
structure (Figure 2, elements 2). A more sensitive search
for overlapping elements by resetting ‘Reliable extension’
and ‘Sharpness lower threshold parameters reports the
inserted LTR (Figure 3, element 3). Compared with the
benchmark, locations of all elements are accurately
predicted.

Using the whole genome of yeast (~12 Mb) as input, the
web server implemented on a 600MHz PC took only 30s,
with RAM consumption <I8 M. A total of 52 models
were detected and all the 50 target elements were found.
Among the test set, 48 were identified exactly,
the remaining two predicted ones containing the targets
with only 7 bp and 18 bp more in the 5SLTRs, respectively.
The testing results gave no false negative and only two
false positive reports, showing high speed, high sensitivity
(100%) and specificity (96%).

LTR ELEMENT DISCOVERY STRATEGIES

LTR_FINDER identifies full-length LTR element models
in genomic sequence in four main steps. The first step
selects possible LTR pairs. In the beginning,
LTR_FINDER searches for all exactly matched string
pairs in the input sequence by a linear time suffix-array
algorithm (20). Each pair, say a, is composed of two
identical members: string located upstream (ay) and
downstream (ay). Here upstream and downstream com-
plies with that of the input sequence. Then it selects pairs
of which distances between ay and ay as well as the
overall sizes satisfy given restrictions. For each pair
a and its downstream neighbor b, if the order of their
locations in input sequence is 5 ay ...by ...ay...by 3,
the regions [ay,bs] and [ay,by] will be checked whether
they should be regarded as a longer highly similar pair.
Here ‘highly similar’ means that similarity between two
members of the merged pair is greater than ‘Extension
cutoff’). Calculation of the similarity involves in a global
alignment of two regions: that inside two neighboring
upstream strings and that inside two downstream strings.
The pair keeps on extending until similarity between its
members becomes less than ‘Extension cutoff’. Then it is
recorded as an LTR candidate for further analysis.
After that, Smith—-Waterman algorithm is used to adjust
the near-end regions of LTR candidates to get alignment
boundaries. These boundaries are subject to re-adjustment
again by TG...CA box and TSR supporting. At the
end of this step, a set of regions in the input sequence
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Program : LTR_FINDER
Version : 1.0

Load tRNA db [tRNAdb/Athal-tRNAs.fal
Predict protein Domains 1.137 second
>Sequence: CHR10O Len:745440

[1] CHR10 Len:745440

0.008 second

Location : 197244 - 203469 Len: 6226 Strand:+

Score : 6 [LTR region similarity:1]

Status 11111100000

5'-LTR 1 197244 - 197614 Len: 371

3'-LTR 1 203099 - 203469 Len: 371

5'-TG : TG , TG

3'-CA : CA, CA

gﬁR : 392§290-5197243 , 203470 - 203474 [TATCA]
rpn 1 0. ,0. i 2

St?‘agdeis : y Vaild base/Region length

PBS : [14/17] 197618 - 197634 (ArgTCG)

Details of exact match pairs:
203097-203470[374]
197242-197615([374]

Details of the LTR alignment(5'-end):
| 203099

i e sitihrnnntimivitinnintihi
*
AéTATCé-TCTAT&AACTAATAGTTATATT ------ ATéATéTTééAAééAéAéTAATTAATAéTéAéATéAéTTééTAT
------ *¥xk | 197244

Alignment Boundary

Details of the LTR alignment(3'-end): Target Site Repeat
203469 | *xxxx
ittty et m
*
TTCTTCATTAATACTAATTTTTAACCTC AATTATCAAC?TGGCGACCC--CAGT A- é---GGéTéAAACAAGAAATGTT
197614

Details of the PBS alignment(+):
tRNA type: ArgTCG
CGACCACAGTG-GGAGT

léAéCCCAéTéAééGéT

|197618

Figure 1. LTR_FINDER sample output. ‘Status’ is an 11 bits binary string with each position indicating the occurrence of a certain signal. If a
signal appears, the corresponding position is recorded ‘1’ and ‘0’ otherwise. From left to right, positions are as follows: [1] TG in S’end of 5LTR;
[2] CA in 3’end of 5LTR; [3] TG in S'end of 3’'LTR; [4] CA in 3’end of 3’LTR; [5] TSR; [6] PBS; [7] PPT; [8] RT; [9] IN(core); [10] IN(c-term) and
[11] RH. “Score’ is an integer varying from 0 to 11. A detected signal adds 1 to its value.

Fig: CHR10
Fig: CHR10 . [4]LTR(+) score:8(0.885)
Target Site Repeat 47738E1 692 10—48?‘41_—[ 696 ]483660
[1ILTR(+) IN(core)
score:6(1) [2]LTR(+) score:11(1)

o Js4sc{ B 10836 [» I3ILTR(+) score:11(1) el l
197244 203469 RT RT ~|'483660 s T w RT )
371 371 38 IN(core) IN(core) 338 IN(core) IN(core) 338

472151

Primer Binding Site Polypurine Tract

Figure 2. Diagram of two predicted elements with default parameters.
Information of element 1 is shown in Figure 1. Element 2 is composed
of two tandem LTR retrotransposons, which resulted from recombined
insertion of a circular element. Two sets of enzyme domains are
detected.

[1ILTR(+)
score:6(1)
86

o 1468
197241 203
37 67 IN(core)
472151

[2]LTR(+) sct)55e2:8(0.862)
|'a77904
166

Figure 3. Diagram of two tandem elements. Setting ‘Reliable extension’
to 0.95 and ‘Sharpness lower threshold to 0.2, the inserted element
(element 3), its SLTR locating at 477837—478072, is reported.
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is marked as possible loci for further verification.
Secondly, LTR_FINDER tries to find signals in near-
LTR regions inside these loci. The program detects
PBS by aligning these regions to the 3'tail of tRNAs and
PPT by counting purines in a 15 bp sliding window along
these regions. This step produces reliable candidates.
Additional validation comes from recognizing important
enzyme domains. The program locates the most widely
shared domain, RT, by first searching for its seven
conserved subdomains, then chaining them together
under distance restrictions using dynamic programming.
This strategy is implemented to all six ORFs and is
capable to detect RT domain even when there is a frame
shift. For other protein domains such as IN and RH,
it calls PS_SCAN (21) to find their locations and possible
ORFs. At last, the program gathers information and
reports possible LTR retrotransposon models at different
confidence levels according to how many signals and
domains they hit.

DISCUSSION

LTR_FINDER is the first web server devoted specially
to full-length LTR retrotransposon discovery. It pro-
cesses large-scale genomic sequences efficiently, which
makes it applicable to rapid analysis of large genomes
such as that of maize and wheat. A few improvements of
the server are under way: (i) To make the interface more
user-friendly, we plan to add buttons for automatic
retrieval of sequences from GeneBank, EMBL and
DDBJ by accession number to facilitate user input.
(i) LTR elements close to functional units (e.g. tRNAs,
genes or centermeres) will be reported specially. The
graphic output of the vicinity of LTR elements will be
enhanced to reflect the local organization of functional
units and LTR elements. (iii) It is also known that LTR
elements may insert into internal regions of other
elements to form nested structure. We expect
LTR_FINDER to incorporate modules of finding
nested elements.
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