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ABSTRACT

The development of bioinformatic tools by
individual labs results in the abundance of parallel
programs for the same task. For example, identifi-
cation of binding site regions between interacting
proteins is done using: ProMate, WHISCY, PPI-Pred,
PINUP and others. All servers first identify unique
properties of binding sites and then incorporate
them into a predictor. Obviously, the resulting
prediction would improve if the most suitable
parameters from each of those predictors would
be incorporated into one server. However, because
of the variation in methods and databases, this is
currently not feasible. Here, the protein-binding
site prediction server is extended into a general
protein-binding sites research tool, ProMateus.
This web tool, based on ProMate’s infrastructure
enables the easy exploration and incorporation of
new features and databases by the user, providing
an evaluation of the benefit of individual features
and their combination within a set framework.
This transforms the individual research into
a community exercise, bringing out the best from
all users for optimized predictions. The analysis is
demonstrated on a database of protein protein and
protein-DNA interactions. This approach is basically
different from that used in generating meta-servers.
The implications of the open-research approach
are discussed. ProMateus is available at http://
bip.weizmann.ac.il/promate.

INTRODUCTION

Protein interfaces are drawing much attention of the
structural bioinformatics community as well as the rest of
the biological world. Many articles have been published
classifying complexes according to function, and

analyzing the properties that characterize them. Several
prediction engines have been developed in order to
analyze interfaces, and predict their location for the
various interaction types (1-5). The ongoing discussions
rising from the literature show large divergence concern-
ing basic aspects. This appears already at the level of how
interfaces are defined (change in accessible surface area or
various cutoff distances either between heavy atoms or
Ca atoms). Further it goes through the definition of
successful prediction, which is measured at the level
of proteins, amino acids or predefined surface patches
(6-11). Finally, it concerns basic issues such as the role of
evolutionary conservation in binding that is still con-
troversial (10,12,13). We contributed to this effort,
through the development of ProMate (14), a protein-
binding sites prediction server. ProMate uses various
structural features measured on unbound proteins to
identify potential binding sites. Thirteen different proper-
ties were examined in ProMate, and using a reduced
brute-force optimization, a subset of nine of them was
selected to be counted in the final prediction.

At this point, having examined many different
alternatives, the field of binding-site prediction has
matured to be able to converge to common guiding
definitions that are considered most suitable, and are
needed in order to focus on the goal itself. A community-
wide effort is required for this to be accomplished.
Moreover, as research evolves, new insights can improve
the prediction. In some cases, the original motivation
might not be directly related to the prediction of protein-
binding sites rather provide an independent measure
related to proteins. In others, the information regarding
binding sites location can amplify the significance of a new
result. In any case, the value of having a simple tool for
testing the relevance of new features to proteins’ binding
potential is evident. To this aim, we leveraged ProMate
into a generic protein-binding sites analysis web tool,
ProMateus. Here, we present this tool and its utilization
for three types of results that can be drawn from this type
of analysis: improving ProMate’s prediction accuracy,
extending ProMate for the prediction of protein DNA
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binding sites, using a relevant training dataset, and for the
comparison of a newly suggested definition of secondary
structure compositions of proteins based on interaction
networks to traditional secondary prediction methods for
their binding site occupancy. However, the real goal of
ProMateus is to promote a new idea of open research with
ProMateus providing an open web tool that facilitates the
examination of features that are relevant for binding
sites prediction.

RESULTS
ProMateus

Currently, ProMateus allows analyzing new features over
three databases: the set of unbound proteins involved in
transient-hetero interactions (originally used in ProMate),
a bound database of monomeric proteins having a binding
site for DNA and a database of models produced for this
bound database, to help discarding features that are
artifacts of the bound case. Additional, new or altered,
databases can be easily integrated. The user, suggesting
a new feature that can potentially designate the interface
location, should download the relevant database, and
upload back the files with the relevant new information
(on the whole, or only part of the database). ProMateus
will execute a three-phase feature selection procedure to
evaluate the contribution of this feature to the prediction
success.

Feature selection schemes operate in one of three
modes: as filters, as wrappers or as an embedded
optimization. Filters are statistical tests that are applied
to the data independently of the prediction algorithm.
Wrappers are general optimization algorithms that
theoretically can be executed with any prediction tech-
nique. Embedded algorithms are methods in which the
feature selection and the prediction stages are inseparable.

In the first phase, ProMateus uses a simple filtering
scheme. A histogram is produced, presenting the distribu-
tion of the feature values at interfaces versus the rest of the
surface. For categorical features, a bootstrap procedure
is used to evaluate the 70% confidence intervals of each
category. The histogram of continuous scores is assigned
a P-value using the Kolmogorov—Smirnov test. As an
alternative, the log file also presents the P-value evaluated
from the Pearson’s correlation coefficient. If the suggested
feature passes this filter namely, the curves are signifi-
cantly different; ProMateus uses a logistic regression (LR)
optimization in 5-fold cross-validation of the new feature
together with ProMate’s original properties. To simplify
the model, the weights assigned by the optimization are
limited to the range [0,1], thus no complicated dependen-
cies between features are allowed. Due to the equivalence
of ProMate’s scoring scheme to LR (explained in the
Methods section) this would generally be classified as an
embedded scheme. However, note that the LR procedure
differs from ProMate by the fact that it acts on the space
of the surface dots (see Supplementary Data for detailed
description of methods), and not yet at the level of the
proteins.

If the suggested feature was assigned a significant
weight, in order to reduce noise, a second LR optimization
is executed in which features with a weight smaller than
one SD from Zero (over the 5-fold split) are eliminated.
Finally, these weights are used for the final prediction
using ProMate, and the success is measured at the level of
the proteins.

The role of the third phase of the optimization is to rule
out new features that are overlapping to existing ones.
The LR procedure is not biased to prefer as few features as
possible; rather, in case of two equivalent features the
weight will be divided between them. This by itself can
enhance the robustness of the server, since the noise of two
different features containing the same information would
be reduced. Therefore, the LR optimization is executed as
is on all ProMate’s existing scores. Since the addition of
new features to ProMate would involve additional work,
this phase is used in ProMateus to rule out new features
that do not contain new information.

In summary, ProMateus returns one of three possible
answers: the suggested feature might be irrelevant for
interfaces, it might contain information about interfaces,
but in a manner that overlaps the features that are already
in use, and thus the final prediction is not improved, or it
can add orthogonal information that improves the final
prediction. In the latter case, the intention is to integrate
such scores into ProMate.

Reanalyzing hetero-transient interactions

The original feature optimization used in ProMate was
a heavy, brute-force-like optimization procedure, that was
limited to choosing features, but did not allow weighting
them. In addition to being computationally heavy, such
a procedure, risks overfitting to the available database.
Using the LR optimization that is limited to a simple
model, which is further simplified by limiting the weights
to the range of [0,1] downgrades this problem.

The results of re-estimating the features used in
ProMate shows some disagreement with its original
feature selection. One score is the probability distribution
of the different atom types at interfaces. Second is the
preference of interfaces to be populated by longer ‘loops’,
i.e. unstructured flexible regions of the protein. Also, the
sequence distance that is the distance between residues
along the peptide chain that tends for the longer distances
at interfaces was found significant. Finally, the number of
bound water molecules proved to be higher at interfaces
already at the unbound structure. All these features are
described in detail elsewhere (14). Using these four scores
with a weight of 1, the prediction improves from 36 correct
predictions out of 51 predictions produced, to 38 out of
55. Thus, an increased coverage was achieved.

In recent years, several other features were claimed to be
significant for interface recognition; among those are
improved evaluation of evolutionary conservation
(such as WHISCY (3) and conSurf (4)), the distance of
each atom from the center of mass in enzymes (15), and
high-frequency vibrating residues (16). All these features
were tested by ProMateus. Specifically, WHISCY was run
through its web server, limited to the calculation of the
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evolutionary score alone, to avoid overlap with the AA
propensities which already exist in ProMate. ConSurf was
run through its web server, with all the default values
except homologs that are collected from UniProt.
The distance of each atom from the center of mass was
calculated both at the level of atoms, and at the level of
amino acids. High-frequency vibrating residues were
extracted from the iGNM database (http://ignm.ccbb.
pitt.edu/FileDownload.htm) taking the residue mean-
square fluctuations driven by the joint contribution of
the highest 10 modes. All these features failed before the
last phase, namely, though they contain relevant informa-
tion to interfaces, they do not improve the interface
prediction within the suggested model. This conclusion
might be inaccurate for the feature of the distance of
the atom from the center of mass since the authors
claim it should only apply to enzymes, which are
a small fraction of the database used. The result of
ProMate together with each of these features is presented
in Table 1. A predicted interface patch is extracted from
the full range of predicted interface probabilities.
The bounds for this are optional parameters in
ProMateus, allowing the user to experience with a full
range of bounds, determining the sensitivity and specificity
of the prediction. Throughout our analysis, a prediction
is defined successful if it is reliable, namely, if at least 50%
of the predicted interface patch is truly so. The number of
successful predictions achieved over the proteins is
presented in Figure 1. We found a hard core of 20 proteins
that were predicted by all the different combinations, 13
proteins that were not predicted by any of the

Table 1. Success rate of proMate with new features

Features combination Number of Coverage Number of Success
predictions successful  rate

predictions

ProMate 51 0.89 36 0.71
Re-optimized ProMate 55 0.96 38 0.69
ProMate + ConSurf (4) 49 0.86 35 0.71
ProMate + WHISCY (3) 44 0.77 33 0.75
ProMate + CMDist (15) 42 0.74 26 0.62

o001 @2m@3 m4

Figure 1. An overview of the protein—protein interactions database
induced by comparing the different methods. The pie chart shows
the fraction of proteins where the binding site was predicted by all
4 methods (20 proteins), 3 methods (8), 2 methods (12), 1 method (4) or
where all the predictors failed (13 proteins).
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combinations and 24 proteins that were predicted
correctly by only some combination. Excluding the
distance from the proteins’ center of mass, one can see
that the scores are overlapping, and the differences are
within the noise. Moreover, one clearly sees a difference
in the success rate versus coverage. The re-optimized
ProMate has the highest coverage (0.96) but a success rate
of only 0.69 (resulting in 38 correct predictions), while
ProMate + WHISCY has a coverage of only 0.77 but with
a success rate of 0.75 resulting in 33 correct predictions.
Which of the two choices is better depends whether one
needs high coverage or a higher success rate.

Protein—DNA recognition

Protein-DNA-binding sites present an additional class of
important biochemical interactions. Their interfaces are
similar to protein—protein interfaces in the sense that both
span over a large patch on the protein surface, and thus
the same nature of analysis would be appropriate.
Therefore, we enhanced ProMateus to also apply to them.

The strongest property that characterizes DNA-binding
proteins is their positive electrostatic potential used to
attract the negatively charged DNA. Studies also
incorporated sequential properties such as evolutionary
conservation and the frequency of favored residues like
lysine and arginine, as well as structural properties of
surface curvature and accessible surface area, together
with the helix-turn-helix motif that is abundant in
DNA-binding proteins (but is not limited to them)
(17-20). To demonstrate the great advantage in the
simplicity of ProMateus, we utilized the available features
used in ProMate and applied them to a database of
protein-DNA interfaces. Due to its importance, a simple
electrostatic score was added. This potential was
constructed by simulating a negative charge at the center
of every circle on the protein surface using the program
PARE (21) (see Methods section). Since the available
unbound database was limited to six proteins, we replaced
it by a database of simple models constructed by the fast
calculation option of ModWeb, the web server running
MODELLER (22). ModWeb assigned each protein from
the bound database a template from the PDB, based on
sequence similarity. Then, a structure was constructed
based on this template and a force-field optimization.
As the number of water molecules and temperature factor
distribution are biased in case of the bound structures,
and unavailable for the models, both were excluded.

The selected features in decreasing importance accord-
ing to the optimization on the bound database are the
distribution of the atoms, the electrostatic potential,
the secondary structure, the evolutionary conservation,
distribution of AA pairs, single amino acid distribution
and finally the chemical character of atoms. A good
agreement was observed between the bound and models
databases with the main difference being that in the
models the importance of the chemical character increased
significantly while the weight of the electrostatic potential
was low. This is self explanatory by the fact that in order
to accurately calculate the electrostatic potential, a high-
resolution structure is required. This, of course, would not
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be the situation in unbound structures, and thus, the
models provide a somewhat strict test case, though still
of a value by itself.

In the prediction test, only one protein (1qumA) failed
to yield any prediction (Table I in the Supplementary
Data). For 30 of the remaining 47 proteins the sites were
predicted successfully, giving a success rate of 64%.
For the models database, 27 out of 46 predictions were
correct, i.e. 59% of the database. Going down into the
details, 3 proteins (le7kA, lewnA and IfeuA) were
predicted successfully for the models, and failed on the
bound database. All three models used the original
structure as a template for modeling, and the prediction
on the bound structure was at the right place, but with
a true positive rate lower than 0.5 (0.41, 0.42, and 0.25,
respectively). Five proteins succeeded on the bound
database, and failed for the models. Three of them were
modeled by other proteins with 100% sequence similarity
and two of them with lower similarity. For all the five, the
binding site was found for the model with a true positive
rate of at least 25%. Thus, the agreement between the
predictions on the models and bound databases is high.

This article is the first study known to us that deals
directly with models. The robustness of ProMateus is
exemplified through the fact that the success rate achieved
is close to the ones reported, though no specific optimiza-
tion to DNA-binding proteins was done. The consistency
of the feature selection over the two databases validates
the method being used.

Secondary structure distributions at interfaces

The role of secondary structures at interfaces has been
discussed previously, raising many contradicting conclu-
sions. Jones et al. (23) found a-helices to be favored at
interfaces. Gutteridge et al. (24) used it in a neural
network aiming to predict interfaces and found it had
a low weight in the prediction. In a recent article, Hoskins
et al. (25) showed that B-strands that participate
in protein—protein interactions exhibit characteristics
similar to internal strands rather than regular edge
strands, and used this property for interface prediction.
In the analysis of ProMate we found interfaces to be
richer in B-sheets and poorer in o-helices, in cases where
both these structures appear at the same protein.
Thus, there is still an uncertainty about the significance
that should be associated with the secondary structure
in this context.

The classification to secondary structure is an example
for a characteristic that could be misleading. Ascribing an
amino acid to one of the classes is strongly dependent on
its sequence neighbors, and indeed the most popular
secondary structure prediction algorithms are based on
sequential relations, e.g. Hidden Markov Models.
Therefore, we re-analyzed this property more carefully,
at the protein level, using hierarchical bootstrapping.
The resulting picture is somewhat different (Figure 2).
In addition, the sampling at the level of the protein instead
of the amino acid widens the confidence intervals, to an
uncertainty level. As a counterexample, one can consider

the amino acid distribution that does not differ between
the two ways of analysis (data not shown).

In comparison to the traditional definition of secondary
structures discussed above, we examine a new definition of
secondary structures suggested recently (26). While the
common definition used in PROMOTIF (27) is based on
predefined angels between consecutive amino acids, the
definition suggested by Raveh et al. is based on spatial
features extracted by clustering the proteins contact map
defined by the backbone and hydrogen bonds. Comparing
the distributions based on the two definitions shows that
the latter is superior from aspects of the protein function.
Class number 4, which is associated with a subset of the
loops, shows a significant preference for non-binding
surfaces, while no class shows a significant difference with
the traditional definition. Thus, the new definition is more
relevant from aspects of the protein function.

DISCUSSION

The internet revolution dictates a communal way of
research. The simplified communication in the ‘global
village’ increases the creation of new knowledge and its
utilization around the world. This is in fact one of the
driving forces of bioinformatic research. Many servers
that provide various scientific services have been estab-
lished, and are used as daily scientific tools. The vision
lying at the base of ProMateus suggests taking this
community-research approach one step further.

The industrial community has already acknowledged
the advantages of the open source model of system
development, in which portions of source-codes are
freely distributed by individuals and companies from
around the world. In addition to a fast development rate,
such projects are considered superior in contribution to
world standards, in improved project modularity and even
from financial aspects. Inspired by this, ProMateus is
an initiative demonstrating the open research approach.
The potential of such tools to advance specific areas of
research is tremendous, and suggests a way of worldwide
research communication that up until now was only
available though important contest projects, such as
CASP and CAPRI.

The open-research approach differs from the open
source by one intrinsic complication that should be
acknowledged. When testing many features over the
same limited data, the probability of overfitting, i.e. that
a random feature would be found significant by chance
increases. However, this should not prevent the develop-
ment of such projects. Employing careful filtering
(and cross validation) and updating the available data-
bases should restrain these effects. Taken to the extreme,
consider all the structural bioinformatics labs working on
one database—the PDB. Applying a careful analysis
would enable to gain from a worldwide research effort.
Yet, one has to keep in mind the theoretical limitations
of such a system, and consider the results carefully.

In the context of binding-site prediction, new features
gaining from the expertize of different labs can be easily
checked and incorporated into the exiting framework.
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Figure 2. Comparison of secondary structure distribution at protein versus amino- acid level. The amino acid secondary structure categories at the
upper rows were extracted using PROMOTIF, with H representing helices, G-3-10 helices; E-strands; S-bends; T-turns; B-beta bridges;
Small letters stand for edges of the relevant structure. The lower row was extracted using the method by Raveh ef al. (26) that is based on contact
map clustering. The classification as described by the authors: 1: sheet-like loops; 2: parallel sheets; 3: anti-parallel sheets; 4-6: loops; 7: short and

flexible helices; 8: long helices.

Another aspect is the creation of standards. One of the
hardest problems in the field is the disagreement over the
basic definitions, such as those of the binding site itself,
and of a successful prediction. Having future similar tools,
the inherent natural selection of the web will enable the
objective comparison of the various tools and definitions
and the convergence to the most promising ones.

The goal of enhancing the understanding of protein
recognition is by itself interesting, and important for
applications that are not directly related to binding-site
prediction. The comparison of the alternative definitions
of secondary structures demonstrates this.

This article is the first known to us that analyzes
DNA-binding site of protein models. Due to lack of
unbound structures, studies in the field usually focus on
analyzing the bound structures. Some of them use a small
unbound dataset as supporting evidence. Homology
models are a neglected class, though these occupy most
of the currently available structure space. The goal of
predicting the location of the binding site on modeled
structures might be more complicated than unbound
structures but is certainly worth pursuing. The results in
this article showed that the -electrostatic potential,
considered most important for DNA-binding site identi-
fication, significantly loses its strength to a more general

chemical character representation when only a model is
available. A comparison to a model built on an unbound
template is expected to yield further insights.

An important issue that is raised in this article is
the alternative ways of analyzing the same property.
The analysis at the protein versus AA level exemplifies
a problem that most probably rises in many similar studies.
Two different sampling models are suggested, and can
sometime lead to different conclusions. There is no strict
answer regarding which level of analysis is superior.
The analysis at the protein level reduces the effect of
intra-protein dependencies, but at the same time loses
confidence due to smaller sample size. On the other hand,
taking the mean over all the proteins removes the bias in
favor of larger proteins, but will ascribe higher weight
to outlier proteins. When analyzing a new property, one
should carefully examine both options, and choose the one
which seems more appropriate for the specific case.

To conclude, the main objective of this article is to
export the idea of ‘open-research’ into a simple, user-
friendly web-based server. Using this idea, the bioinfor-
matics research can leverage above small independent
projects and evolve towards fewer centralized worldwide
cooperations that integrate different modules contributed
by labs around the world. We believe that due to its
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nature, biological research that often requires high
expertize in a small-scale area of research would gain
significantly from this approach.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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