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ABSTRACT

This article presents a web server iPDA, which aims
at identifying the disordered regions of a query
protein. Automatic prediction of disordered regions
from protein sequences is an important problem
in the study of structural biology. The proposed
classifier DisPSSMP2 is different from several
existing disorder predictors by its employment
of position-specific scoring matrices with respect
to physicochemical properties (PSSMP), where
the physicochemical properties adopted here
especially take the disorder propensity of amino
acids into account. The web server iPDA integrates
DisPSSMP2 with several other sequence predictors
in order to investigate the functional role of the
detected disordered region. The predicted informa-
tion includes sequence conservation, secondary
structure, sequence complexity and hydrophobic
clusters. According to the proportion of the
secondary structure elements predicted, iPDA
dynamically adjusts the cutting threshold of
determining protein disorder. Furthermore, a
pattern mining package for detecting sequence
conservation is embedded in iPDA for discovering
potential binding regions of the query protein, which
is really helpful to uncovering the relationship
between protein function and its primary sequence.
The web service is available at http://biominer.
bime.ntu.edu.tw/ipda and mirrored at http://
biominer.cse.yzu.edu.tw/ipda.

INTRODUCTION

Intrinsically disordered proteins or protein regions exhibit
unstable and changeable three-dimensional structures
under physiological conditions (1). Although lacking
fixed structures, protein disorder has been identified to
carry out important functions in many biological
processes (1,2). In addition, it is observed that the absence
of a rigid structure allows disordered binding regions

to interact with several different targets (3,4). These
regions, sometimes called ‘molecular recognition
elements’, usually undergo a disorder-to-order transition
when binding to their targets (5,6). In this regard,
predicting protein disorder and investigating its potential
of induced folding is a necessary preliminary to under-
standing protein structure and function (7).

The proposed web server iPDA aims at providing an
integrated environment for detecting disordered regions
and exploring their functional roles. In our recent work
DisPSSMP (8), it is demonstrated that the accuracy of
protein disorder prediction can be greatly improved if the
disorder propensity of amino acids is considered when
generating the condensed position-specific scoring matrix
(PSSM) features. For iPDA, we implement a two-stage
classifier of Radial Basis Function Networks (RBFN) to
further enhance the predicting power of DisPSSMP.
As unbalanced datasets, a large amount of ordered
residues over disordered residues, are employed when
training the new classifier DisPSSMP2, an alternative
decision function is recently adopted and the cutting
threshold is dynamically determined by the proportion
of predicted secondary structure in the query protein.

iPDA takes an amino acid sequence as the input
and reports the prediction of disordered residues with
graphical plots, along with various sequence character-
istics which are believed to be important when investi-
gating the so-called induced folding behavior (6). The
provided information includes sequence conservation
from multiple sequence alignment (ClustalW) (9), con-
current sequence conservation from pattern mining
(WildSpan) (10,11), secondary structure prediction (Jnet
and PSIPRED) (12,13), low-complexity regions (CARD)
(14) and hydrophobic clusters. Romero et al. stated that
low-complexity regions are usually located in the long
disordered regions (15), where the sequence complexity is
measured by Shannon’s entropy. In addition, Ferron et al.
mentioned in their recent study that hydrophobic clusters
and secondary structures can provide distinct clues for
investigating induced folding (6). Meanwhile, we observe
that sequence conservation is essential for disordered
regions to maintain their functionality. Therefore, iPDA
further provides a pattern mining utility to detect motifs
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Figure 1. iPDA employs seven sequence analyzers and provides utilities for discovering sequence motifs and extracting missing residues in

PDB structures.

in the specified disordered and/or ordered regions in
order to predict potential intra- and inter-molecular
interactions.

METHODS

The architecture of iPDA is shown in Figure 1. Given an
amino acid sequence, iPDA performs various sequence
analyses by invoking several well-established predictors.
In addition, iPDA provides two utilities for examining
missing residues in PDB structures. The details of how
each predicting package is incorporated into iPDA are
discussed in the following subsections.

Protein disorder prediction

In our recent work DisPSSMP (8), a condensed PSSM
with respect to physicochemical properties (PSSMP) was
considered when generating feature profiles to build the
classifier, where the PSSMP merges several amino acid
columns of a PSSM that belong to a certain property into
a single column. Besides, DisPSSMP decomposed each
conventional physicochemical property of amino acids
into two disjoint groups which have a propensity for order
and disorder, respectively. The experimental results
revealed that the PSSMP features with disorder propensity
considered perform better than both the PSSMP features
from traditional physicochemical properties and the
original PSSM features on this problem.

The web server iPDA implements a two-stage classifier
of RBFN, named DisPSSMP2, to further enhance
the predicting power of DisPSSMP. Figure 2 shows the

First stage Second stage

Sequence

Feature extraction Sliding window

A 4

Feature set

FS-PSSMP-4

QuickRBF QuickRBF
A 4 \ 4

Disorder(R)) Disorder(R;)
Order(R)) Order(R))

Threshold —p»
\ 4 \ 4

( DisPSSMP ) ( DisPSSMP2 )

Figure 2. The system flow of the proposed two-stage classifier
DisPSSMP2. In both stages, an efficient package for constructing
RBFN, named QuickRBF (16), is employed to build the classifier.

system flow, in which the procedure of generating
the feature set FS-PSSMP-4 from a protein sequence
was described in (8). In the first stage, the RBFN outputs
the probabilities of being disordered and ordered for
a given residue R;, named Disorder(R;) and Order(R;),
respectively. While our previous predictor DisPSSMP
takes the larger probability as the prediction, in this article
the values of Disorder(R;) and Order(R;) are collected with
a sliding window to generate the feature set used in the
second stage. In DisPSSMP2, the size of the sliding
window and the cutting threshold of predicting disorder
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Table 1. Summary of the datasets employed in this study
Training data Testing data
PDB652 D184 G200 R80 u79 P8O

Number of chains 652 184 200 80 79 80
Number of ordered regions 1281 257 200 151 0 80
Number of disordered regions 1613 274 0 183 79 0
Number of ordered residues 190936 55164 37959 29909 0 16568
Number of disordered residues 49365 27116 0 3649 14462 0
Total residues 240301 82280 37959 33558 14462 16568

used in the second stage have to be determined through
cross-validation.

For training and validation processes, six datasets have
been extracted from different databases, as summarized
in Table 1. The datasets PDB693 and D184 were first
collected when developing DisPSSMP (8). However, only
about 30% ordered residues in the training set were
included by DisPSSMP when constructing the classifier.
In order to completely exploit the knowledge present in
the training datasets, DisPSSMP2 recruits all ordered
residues in the datasets PDB652 [PDB652 excludes the
sequences of PDB693 used in (8) that have similarity
identity of more than 70% against any protein sequence in
the other training sets by running CD-HIT (21), resulting
652 proteins.] and D184, and further combines another
globular protein set named G200 (17) to enhance the
accuracy of predicting ordered residues.

As unbalanced datasets, 284 059 ordered and 76 481
disordered residues, are employed when training the
RBFN classifier, an alternative decision function is
newly adopted to avoid the problem of under-prediction
(17). A residue is predicted as disorder if
[Disorder(R;) — Order(R;) + 1]/2 is greater than a cutting
threshold. The 936 protein chains for training are
partitioned into five groups. According to the 5-fold
cross-validation, the performance of DisPSSMP2 is about
the same when the cutting threshold is set in between
0.3 and 0.4. It has been observed that unstructured
proteins in average contain fewer secondary structure
elements elements than globular proteins (17). In this
regard, we propose setting the cutting threshold of
DisPSSMP2 dynamically by the estimated proportion of
secondary structure in the query protein. Since we expect
DisPSSMP2 to predict more disorder for the practical use
of iPDA, the cutting threshold is set by ‘0.4 — the
proportion of coils x 0.2°, resulting in a cutting threshold
lower than 0.3 if the proportion of coils is greater than
50%. The window size used in the second stage is also
determined through cross-validation. Window sizes in
between 35 and 59 perform similarly. Thus, a window size
of 47 is adopted. To evaluate the performance of
DisPSSMP2, the benchmark proposed by Yang et al.
(18) is employed as the blind testing data, as listed in
Table 1.

Sequence conservation

It has been observed that residues within structural
domains usually have higher conservation scores than in

domain linkers (19). For deriving conservation informa-
tion, the homologues of a query protein are collected by
invoking PSI-BLAST (20) against Swiss-Prot database
with e-value cutting threshold of 0.01. After that,
redundant sequences are removed by executing CD-HIT
(21) with threshold set to 70%. Using these homologues,
iPDA provides two levels of sequence conservation to
investigate the functional regions of the query protein.
The sequence conservation with respect to a single
position is calculated based on the multiple sequence
alignment generated by ClustalW (9). The conservation of
a given position is defined by the proportion of the
particular amino acid type observed in the query protein.
Only the top 10% conserved residues are highlighted by
iIPDA. Next, a second level of sequence conservation,
called concurrent conservation, is derived by employing
sequential pattern mining. The employed algorithm is
named WildSpan for its ability of generating patterns
across large wildcard regions (11). WildSpan has been
recruited in the web server MAGIIC-PRO (10) in
detecting functional signatures directly from unaligned
sequences. A pattern generated by WildSpan contains the
residues that are simultaneously conserved but largely
separated in the protein sequence. Hsu et al. (22) observed
that 90% of the concurrent conserved blocks discovered
by WildSpan interact with at least one of the other blocks
in space. Since disordered fragments of a protein might
undergo a disorder-to-order transition to interact with
each other when binding ligands or other proteins, it is
expected that their conservation propensity would be
revealed by ClustalW and the concurrent conservation can
be discovered by WildSpan.

Iterative pattern mining

As more and more the disordered regions of proteins are
found to be functionally significant, mining conserved
patterns in the disordered regions is essential for under-
standing protein function (23). However, Brown et al. (24)
observed that disordered regions usually have higher
evolutionary rates than ordered regions, which makes it
difficult to detect the conserved patterns of the disordered
regions when using the entire protein as a query.
Therefore, iPDA provides users an iterative mining
strategy. The users can select regions of interest or mask
unwanted segments of the query protein, and then invoke
WildSpan iteratively to find conserved fragments other
than the most highly conserved positions. Two parameters
are requested upon calling WildSpan: (1) b stands for the



W468 Nucleic Acids Research, 2007, Vol. 35, Web Server issue

Table 2. Definition of measures employed in this study

Measure Abbr. Equation

Sensitivity Sens. TP/(TP+FN)

Specificity Spec. TN/(TN + FP)

Accuracy Accu. (TP+TN)/(TP+FP+ TN+ FN)

Matthews’ correlation coefficient MccC (TP x TN — FP x FN)/sqrt[(TP + FP) x (TN + FN) x (TP + FN) x (TN + FP)]
Probability excess Prob. Excess (TP x TN — FP x FN)/[(TP + FN) x (TN + FP)]

Note: The definition of the abbreviations used: TP and TN is the number of correctly classified disordered and ordered residues, respectively; FP is
the number of ordered residues incorrectly classified as disordered; FN is the number of disordered residues incorrectly classified as ordered.

minimum number of conserved regions (also called
blocks) in a pattern and (2) k is the minimum number of
such patterns wanted. The default setting for the first call
of WildSpan is »=3 and k=1 in iPDA.

Secondary structure

Since induced folding regions are shown to have
secondary structure propensity, iPDA provides predicting
results from two secondary structure predictors, Jnet
(v0.1) and PSIPred (v2.5) (12,13). These predictors are
selected to complement each other, because it was
observed in our recent study that each available package
of secondary structure prediction behaves divergently,
especially in short secondary structure elements (17).
More confidence arises when two predictors concur, while
users should be aware of risks when the results are
inconsistent. The predicted information by Jnet is also
recruited by DisPSSMP2 in determining the cutting
threshold of the classifier.

Low-complexity regions

Low-complexity regions of a protein are usually
disordered, but disordered regions are not always with
low-complexity property (15). iPDA adopts CARD (14)
to perform prediction of low-complexity regions. This
information helps to strengthen the confidence of the
disordered regions predicted by DisPSSMP2.

Hydrophobic clusters

It has been shown in many studies that disordered regions
of proteins are comprised of a category of amino acids
distinct from that of ordered ones (25). For example,
amino acids of aromatic hydrophobic groups are known
to be favored in the ordered regions, and thus are less
found in the disordered regions (26). Callebaut ez al.
categorized 20 amino acids into three groups for hydro-
phobic cluster analysis and identified “VILFMYW’ as
hydrophobic residues (27). It has been shown that
structured segments have more hydrophobic clusters
than the linker ones. Thus, the information of hydro-
phobic clusters is provided to validate the prediction of
ordered regions. Here, iPDA assigns a position as
a hydrophobic cluster if more than 5 of itself and its
10 neighbors (five from its left and five from its right)
belong to the hydrophobic group ‘VILFMYW".

Retrieving PDB missing residues

In the study of protein disorder, it is of interest to examine
missing coordinates of backbone atoms in PDB structures.
Residues present in the SEQRES records but not in the
ATOM records are called missing residues (18). iPDA
provides an utility to find missing residues from PDB
database. All PDB chains are preprocessed to construct
protein-structure mapping according to their SwissProt
entry names or AC numbers. By marking the missing
residues on the protein chains aligned by ClustalW, iPDA
provides a clear view about which segments might be
unstable. Disordered proteins usually activate their
biological functions when undergoing disorder-to-order
transitions. Therefore, the protein segments which are
disordered in some PDBs but ordered in some others
attract more attention for further analyses. Additionally,
iPDA provides a similar utility of finding missing residues
among all PDB chains belonging to a SCOP super-family/
family.

RESULTS AND DISCUSSIONS

In this section, we first evaluate how DisPSSMP2
performs in comparison with DisPSSMP and other
existing packages for disorder prediction. After that,
several interesting examples are provided to illustrate
how iPDA helps users to explore the functional roles of
the detected disorder regions.

Many measures have been introduced to evaluate the
performance of protein disorder predictors (8,18,28,29).
Since sensitivity, specificity and accuracy listed in Table 2
are seriously affected by the relative frequency of the
target classes (29), two more appropriate measures are
included in Table 2 to reveal the properties of different
packages. The first one, Matthews’ correlation coefficient,
is widely used in many bioinformatics problems (30,31).
The other evaluation measure, named probability excess,
was recommended by CASP (28,29) and Yang et al. (18)
for this problem.

To evaluate the performance of DisPSSMP2, we use
a benchmark proposed by Yang et al. (18), comprising
239 proteins. When preparing the training data of
DisPSSMP2, the redundancy between the training and
testing data has been avoided using the same criterion
adopted in Yang’s paper (18). This benchmark also helps
to judge whether a predictor tends to over-predict or
under-predict disorder (8,17,18,32). As listed in Table 3,
DisPSSMP2 has a better performance than DisPSSMP
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Table 3. Comparison with other existing packages
Method Sens. Spec. Accu. mMcc Prob. Excess
DisPSSMP2 0.848 0.867 0.862 0.681 0.715
VSL2 (33) 0.821 0.815 0.817 0.594 0.636
DisPSSMP (8) 0.814 0.818 0.817 0.592 0.632
[UPred[long] (34,35) 0.629 0.954 0.863 0.644 0.583
RONN (18) 0.661 0.882 0.820 0.549 0.542
FoldIndex (36,37) 0.675 0.812 0.774 0.467 0.487
TUPred[short] (34,35) 0.549 0.934 0.826 0.541 0.483
SPRITZ[long] (38) 0.543 0.917 0.812 0.506 0.460
DISOPRED?2 (39) 0.455 0.976 0.834 0.550 0.430
PONDR (15) 0.617 0.804 0.751 0.407 0.420
DISpro (40) 0.390 0.989 0.821 0.530 0.379
FoldUnfold (41) 0.631 0.737 0.707 0.343 0.368
DisEMBLI[465] (7) 0.345 0.980 0.802 0.465 0.326
DisEMBL[hot] (7) 0.500 0.807 0.721 0.308 0.308
PreLink (42) 0.302 0.963 0.777 0.378 0.265
SPRITZ [short] (38) 0.290 0.893 0.724 0.226 0.183
DisEMBL][coils] (7) 0.723 0.432 0.514 0.143 0.155
GlobPlot (43) 0.321 0.814 0.676 0.146 0.136
no matter which evaluation measure is used. The We highlight these 10 residues as red sticks in

improvement of DisPSSMP2 is mainly from its including
more ordered residues as training samples and the two-
stage architecture employed. In addition, the performance
of the existing packages for predicting protein disorder
is ranked by its Prob. Excess in Table 3. It should be
aware that these packages were trained with different
databases and some of them have different definitions for
protein disorder from ours. Although many methods
achieve specificity in excess of 90%, they usually result in
low sensitivity. Since iPDA expects to discover potential
disorder-to-order transitions, it is expected that employed
predictor should deliver a high sensitivity rate of
disordered regions without an explicit drop on specificity.

Next we provide some examples discussed in (1) to
illustrate how iPDA facilitates the study of protein
disorder and induced folding. The first example used is a
DNA-binding protein GCN4. According to the prediction
shown in Figure 3A, this protein might be largely
unstructured. Meanwhile, it is observed that the region
225-281 is provided with large helical components.
WildSpan also indicates high concurrent conservation in
this area. Figure 3B shows that one pattern found by
WildSpan identifies the important residues with respect to
the DNA-binding region. Similar discoveries are observed
on the proteins NFATC1 and RXR discussed in (1). In
many cases, we observed that the regions undergoing
disorder-to-order transitions when binding DNA usually
possess both high disorder and secondary structure
propensity, and additionally at least one pattern is found
within this region to indicate potential intra- and/or inter-
molecular interactions. This observation can be again
justified by another protein, SecA, which undergoes
locally disorder-to-order transition upon ADP binding
in high temperature (44). The partial result of analyzing
SecA is shown in Figure 4A. It shows that the range
of 500-600 exhibits both disorder and concurrent
conservation property. In this region, WildSpan detects
26 residues, and 10 of them are predicted as disorder.

Figure 4B to examine their positions with respect to the
molecule ADP.

Another example of disordered regions containing
functional motifs is the protein p53. The iPDA result is
shown in Figure 5. In the disordered N-terminal domain
(NTD) of p53, a short motif ‘FxxLW’, called the MDM2
functional motif, is discussed by Dawson’s et al. (45).
The key residues are detected by ClustalW, as well as the
second run of WildSpan (b=3 and k=1). Those residues
were not found in the first run of WildSpan, because the
DNA-binding domain of p53 is more conserved than
the MDM2 binding domain. If only the first disordered
region (1-117) predicted by DisPSSMP2 are selected,
the motif will be detected, as shown in Figure SA and B.
In Figure 5C, an available PDB structure shows the
interaction of this polypeptide with the protein MDM2.

CONCLUSION

iPDA provides comprehensive information for annotating
the disordered regions of a query sequence. The integrated
resource recognizes intrinsically unstructured proteins
and helps to tell whether a disordered protein or protein
fragment is with tendency toward being folded upon
binding other molecules. According to the experiments
conducted in this study, the disorder predictor
DisPSSMP2 achieves a higher sensitivity rate than other
existing packages performing the similar task without
sacrificing the specificity rate. Besides, iPDA employs
sequential pattern mining to identify concurrent conserva-
tion iteratively, from highly conserved regions to lightly
conserved regions one at a time. It is observed in many
cases that the disordered regions undergoing disorder-
to-order transitions upon binding usually exhibit high
concurrent conservation and clear secondary structure
propensity. This association deserves further studies in
the near future.
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for DNA binding (PDB structure used: 1YSA).
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