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ABSTRACT

Due to the importance of protein phosphorylation in
cellular control, many researches are undertaken to
predict the kinase-specific phosphorylation sites.
Referred to our previous work, KinasePhos 1.0,
incorporated profile hidden Markov model (HMM)
with flanking residues of the kinase-specific phos-
phorylation sites. Herein, a new web server, Kinase-
Phos 2.0, incorporates support vector machines
(SVM) with the protein sequence profile and protein
coupling pattern, which is a novel feature used for
identifying phosphorylation sites. The coupling pat-
tern [XdZ] denotes the amino acid coupling-pattern
of amino acid types X and Z that are separated by d
amino acids. The differences or quotients of coupling
strength CXdZ between the positive set of phosphor-
ylation sites and the background set of whole protein
sequences from Swiss-Prot are computed to deter-
mine the number of coupling patterns for training
SVM models. After the evaluation based on k-fold
cross-validation and Jackknife cross-validation, the
average predictive accuracy of phosphorylated
serine, threonine, tyrosine and histidine are 90, 93,
88 and 93%, respectively. KinasePhos 2.0 performs
better than other tools previously developed. The
proposed web server is freely available at http://
KinasePhos2.mbc.nctu.edu.tw/.

INTRODUCTION

Protein phosphorylation, which is an important reversible
mechanism in post-translational modifications, is involved

in many essential cellular processes including cellular
regulation, cellular signal pathways, metabolism, growth,
differentiation and membrane transport (1). Phosphoryla-
tion of substrate sites at serine, threonine and tyrosine
residues of eukaryotic proteins is performed by members
of the protein kinase family. Additionally, phosphoryla-
tion on histidine plays an important role in signal
transduction in prokaryotes known as two-component
histidine kinase (2). It is estimated that one-third of
proteins are phosphorylated and around half of kinome
are disease- or cancer-related by chromosomal mapping
(3). Experimental identifications of kinase-specific
phosphorylation sites on substrates in vivo and in vitro
are the foundation of understanding the mechanisms of
phosphorylation dynamics and important for the biome-
dical drug design (4). However, these experiments are
often time-consuming, labor-intensive and expensive.
Therefore, in silico prediction of phosphorylation sites
with high predictive performance could be a promising
strategy to conduct preliminary analyses and could heavily
reduce the number of potential targets that need further in
vivo or in vitro confirmation.

With the recent exponential increase in protein phos-
phorylation sites identified by mass spectrometry (MS),
many researches are undertaken to identify the kinase-
specific phosphorylation sites. Our previous work,
KinasePhos 1.0, incorporated profile hidden Markov
model (HMM) for identifying kinase-specific phosphor-
ylation sites, whose overall predictive accuracy is �87%
(5,6). NetPhos (7) developed neural networks to predict
phosphorylation sites on serine, threonine and tyrosine
residues; however, it cannot provide information on
the kinases involved and NetPhosK (8) applied an
artificial neural network algorithm to predict 17 PK
groups-specific phosphorylation sites. DISPHOS (9) took
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advantage of the position-specific amino acid frequencies
and disorder information to improve the discrimination
between phosphorylation sites and non-phosphorylation
sites. Scansite 2.0 (10) identified short protein sequence
motifs that are recognized by modular signaling domains,
phosphorylated by protein serine/threonine, tyrosine
kinases or mediate specific interactions with protein or
phospholipid ligands. PredPhospho (11) predicts phos-
phorylation sites limited to four protein major kinase
families, such as CDK, CK2, PKA and PKC, and four
protein kinase groups (AGC, CAMK, CMGC and TK)
with predictive accuracy 83–95 and 76–91%, respectively.
GPS (12,13), is a group-based phosphorylation site
predicting and scoring platform which clustered the 216
unique protein kinases in 71 groups. PPSP (4) developed
an approach based on Bayesian decision theory for
predicting the potential phosphorylation sites accurately
for around 70 protein kinase groups.

This work proposes a kinase-specific phosphorylation
site prediction server which incorporates support vector
machines (SVM) with two features, i.e. protein sequence
profiles surrounding the modified sites and coupling
patterns surrounding the modified sites. The coupling
pattern of proteins, which is first used for analyzing the
protein thermostability (14). In this work, we incorporate
the protein coupling pattern as a feature for training
computer models for identifying phosphorylation sites.
After evaluating the computational models by k-fold

cross-validation and Jackknife cross-validation, the over-
all predictive accuracy of KinasePhos 2.0 is �91%, which
is better than the previous version and the other tools
previously developed. The details of the proposed method
and predictive performance are described below.

MATERIALS AND METHODS

Data preprocessing

Figure 1 depicts the system flow of the proposed method.
The experimentally validated phosphorylation sites are
extracted from Phospho.ELM (release 6.0) (15) and Swiss-
Prot (release 50) (16), containing 13 612 phosphorylation
sites within 3674 proteins and 6832 sites within 3148
proteins, respectively. After removing the redundant sites
between Phospho.ELM and Swiss-Prot, the number of
serine (S), threonine (T), tyrosine (Y) and histidine (H)
substrate are 11 888, 2433, 2179 and 43, respectively, as
given in Table 1. Since the flanking sequences (position
�4�þ4) of the phosphorylation sites (position 0) are
graphically visualized as sequence logos (17), the
conservation of amino acids in the phosphorylation sites
can be observed. The 9-mer sequences (�4�þ4) of
kinase-specific phosphorylation sites are extracted and
constructed as training sets. Table S1 (See Supplementary
Data) summarizes the statistics of 60 kinase-specific
phosphorylation sites in the data set constructed.

Figure 1. The system flow of KinasePhos 2.0.

Nucleic Acids Research, 2007, Vol. 35,Web Server issue W589



Feature extraction

To avoid the overestimation of the predictive perfor-
mance, the redundant training sequences should be
discarded. After the construction of non-redundant
training set of kinase-specific phosphorylation sites, two
features, i.e. sequence of surrounding catalytic sites and
coupling pattern of surrounding catalytic sites, are
extracted. As to sequence surrounding catalytic sites,
9-mer sequences (�4�þ4) of kinase-specific phosphor-
ylation sites are encoded in three ways: BLOSUM62
profile encoding (the corresponding row number of amino
acids in BLOSUM62 matrix), reduced alphabet (sparse
encoding with fewer letters) (18) and 20-dimensional
vector (each amino acid is mapped to a 20-dimensional
vector), as given in Table S2. It was found that amino
acids have a great variety of properties such as mass,
polarity, hydrophobicity, so many groupings are possible
(19). With the hydrophobicity (20), for instance, the
20 amino acids are reduced into three classes, such as
polar (R,K,E,D,Q,N), neutral (G,A,S,T,P,H,Y) and
hydrophobic (C,V,L,I,M,F,W).
The coupling pattern of surrounding catalytic sites is

extracted from the flanking sequences of kinase-specific
phosphorylation sites. Let [XdZ] denote the coupling
pattern of amino acids X and Z that are separated by d
amino acids. Since the protein sequence is directional, the
sign of d is determined by the relative positions of X and
Z. For example, as shown in Figure 1, a coupling pattern
[R3Q] occurs in the training set, another coupling pattern
[Q-3R] also occurs. Herein, we would not consider the
coupling pattern with minus symbol. Let N(XdZ) be the
number of occurrences of the coupling pattern [XdZ] in
training sequences and the conditional probability RXdZ is

RXdZ ¼
NðXdZÞ

NðXd�Þ
, 1

where NðXd�Þ ¼
P

Y

NðXdYÞ and Y2 {20 types of amino

acid}. The coupling strength CXdZ between X and Z of the
pattern [XdZ] is given by

CXdZ ¼
RXdZ

PðZÞ
, 2

where P(Z) is the probability of the occurrence of amino
acid Y. If CXdZ� 1, then X and Z are positively correlated
with respect to the distance d, and they are negatively
correlated if CXdZ51.

The differences of coupling strength CXdZ between the
training set of phosphorylation sites and the background
set, which is extracted from all 9-mer sequences centering
at residue serine, threonine, tyrosine and histidine in
Swiss-Prot protein sequences, are computed and used to
determine the number of coupling patterns trained by
SVM. The higher differences of CXdZ mean that the
coupling pattern [XdZ] is the most important feature for
separating the training set from the background set;
therefore, the values of differences of the coupling strength
CXdZ between training set and background set should be
tuned for determining the number of coupling patterns
used to train a SVM model. Each coupling pattern is
a dimension of features used in SVM. For instance,
when set up the cutoff value of the differences of CXdZ

between training set and background set to 1.5, there are
about 400 coupling patterns which is higher than the
cutoff; thus, the number of dimensions trained by SVM is
about 400, which is equal to the number of selected
coupling patterns.

Model creation and evaluation

This work incorporates support vector machine (SVM)
with the protein sequences and profiles of coupling pattern
for training the predictive models for kinase-specific
phosphorylation site prediction. A public SVM library,
namely LIBSVM (21), is applied for training the predictive
models. The SVM kernel function of radial basis function
(RBF) is selected. In general, the experimental kinase-
specific phosphorylation sites are defined as the positive set,
while all other residues (S, T, Y orH) in the phosphorylated
proteins are regarded as the negative set. K-fold cross-
validation is used to evaluate the predictive performance of
the models trained from the large data sets including PKA,
PKC andMAPK, and Jackknife cross-validation is applied
for models trained from the data size smaller than 30. We
balance the positive set and negative set and the sizes of
positive set and negative set are equal during the cross-
validation processes. The cross-validation is performed for
30 times. The following measures of predictive perfor-
mance of the trained models are defined: Precision
(Prec)¼TP/(TPþFP), Sensitivity (Sn)¼TP/(TPþFN),
Specificity (Sp)¼TN/(TNþFP) and Accuracy
(Acc)¼ (TPþTN)/(TPþFPþTNþFN), where TP, TN,
FP and FN are true positive, true negative, false positive
and false negative predictions, respectively.

Table 1. The statistics of phosphorylation sites obtained from Phospho.ELM and Swiss-Prot

Data source Number of phosphorylated proteins Number of phosphorylation sites

Serine (S) Threonine (T) Tyrosine (Y) Histidine (H) Total

Phospho.ELM 3674 9917 1890 1804 1 13 612
Swiss-Prot* 3148 4846 1035 901 42 6832
Combined (non-redundant) 5842 11 888 2433 2179 43 16 551

It notices that the sum of serine, threonine, tyrosine and histidine in Swiss-Prot is not equal to 6832, because there are several phosphorylation sites
located on other kinds of residue. *The entries which contain residues annotated as ‘phosphorylation’ in the ‘MOD_RES’ are extracted and the
entries annotated as ‘by similarity’, ‘potential’ and ‘probable’ are excluded.
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Moreover, several parameters of the models including
the values of differences of coupling strengths, the SVM
cost values and SVM gamma values are optimized for
maximizing the predictive accuracy. Finally, the param-
eters of the trained model with the highest predictive
accuracy in each data set, were selected and used to
provide the prediction service on the web.

PREDICTION PERFORMANCE

For finding the best predictive performance of SVM
models in each kinase-specific group, the SVM models
trained with various features such as coupling pattern
(CP), sequence and the combination of coupling pattern
and sequence are evaluated based on cross-validation.
As shown in Figure 2, the average precision (Prec),
sensitivity (Sn), specificity (Sp) and accuracy (Acc) of the
SVM models trained with various features are calculated
for phosphoserine, phosphothreonine, phosphotyrosine
and phosphohistidine. Two methods are used to extract

the coupling patterns, i.e. ‘CP difference’ and ‘CP ratio’.
‘CP difference’ indicates the coupling strength of training
set subtracted the coupling strength of background
set, and ‘CP ratio’ indicates the coupling strength of
training set divided the coupling strength of background
set. As to the feature of sequence profile, there are various
coding methods used for encoding amino acids surround-
ing the phosphorylation sites, such as reduced alphabet
(3-classes, 7-classes and 8-classes), BLOSUM62 profile
encoding and 20-dimensional vector. Because the average
predictive performance of the kinase-specific phosphor-
ylation sites with small training set may be overestimated,
the SVM models of kinase-specific group whose data
size is smaller than 20 training sequences are not
considered. Figure 2 gives the average predictive accura-
cies of models trained with coupling patterns
(CP difference or CP ratio) of phosphoserine, phospho-
threonine, phosphotyrosine and phosphohistidine are 86,
93, 88 and 93%, respectively. The overall predictive
performance of SVM models trained with the features
of coupling patterns, whose accuracy is close to 90%, is

Figure 2. The comparison for the average precision (Prec), sensitivity (Sn), specificity (Sp) and accuracy (Acc) among the models trained with various
features in phosphoserine, phosphothreonine, phosphotyrosine and phosphohistidine.
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performing better than the SVM models trained only with
sequence profiles (Seq).
Since the features of coupling patterns (CP ratio) and

sequences (7-classes) with best predictive performance are
combined, the average predictive accuracy of SVMmodels
trained with the combined features of phosphoserine is
89%, which is slightly better than the SVM models trained
only with coupling patterns. However, the average
predictive performance of the SVM models trained with
the combined features of phosphothreonine, phosphotyr-
osine and phosphohistidine is close to the SVM models
trained only with coupling patterns. The overall predictive
accuracy of SVM models trained with the combined
features of coupling patterns and sequences is close to
91%. In addition, the method of KinasePhos 1.0 is
evaluated based on the data set constructed in this work.
The average predictive accuracies of phosphoserine,
phosphothreonine, phosphotyrosine and phosphohistidine
are 84, 88, 84 and 83%, respectively.
Since the SVM models trained with various features, the

most accurate model of each kinase-specific phosphoryla-
tion sites are selected and used to implement a prediction
server. As shown in Table S3, the trained features, SVM
Cost value, SVM Gamma value, precisions, sensitivity,
specificity and accuracy of the selected models are
presented for 37 kinase-specific groups with at least 20
experimentally verified phosphorylation sites. In the
column of trained features, the value in the parentheses
behind the coupling pattern (CP) is the value of difference
or quotient of coupling strength between the training set
against the background set. The average predictive
accuracies of phosphoserine, phosphothreonine, phospho-
tyrosine and phosphohistidine are 90, 93, 88 and 93%,
respectively.

WEB INTERFACE

After evaluating the trained models for identifying kinase-
specific phosphorylation sites, the model with the highest
predictive accuracy for each data set was selected. Users
can submit their uncharacterized protein sequences and
select the kinase-specific models for predicting phosphory-
lated serine, threonine, tyrosine or histidine. Although
only 37 kinase groups containing at least 20 experimental
phosphorylation sites were used to evaluate the predictive
performance, the web server provides 60 predictive models
of the kinase-specific groups with at least 10 experimental
phosphorylation sites. As depicted in Figure 3, the web
server locates the predictive phosphorylation sites and the
involved catalytic protein kinases. In order to reveal the
characteristics of the phosphorylation sites including
the phosphorylated residues and surrounding sequences,
the training phosphorylation sites and constructed
sequence logos corresponding to each protein kinase
are also provided graphically on the web interface.
Moreover, users can download the predicted results
with tab-delimited format for further analyses. The web
server can accurately and efficiently predict the kinase-
specific phosphorylation sites in the input protein
sequences.

DISCUSSIONS AND CONCLUSION

The models trained with various features, including
sequence profiles and coupling patterns, were evaluated
by 5-fold and Jackknife cross-validation, the predictive
performance of the models trained with coupling patterns
are better than the models trained with sequence profiles.
In general, the previous works of phosphorylation site
prediction focused on residues serine, threonine and
tyrosine; like our previous work (KinasePhos 1.0).
Herein, KinasePhos 2.0 first considers phosphohistidine
from Phospho.ELM and Swiss-Prot, which contain one
and 42 phosphorylated histidine, respectively.

Moreover, the proposed web server is compared with
several previously developed phosphorylation prediction
tools, such as DISPHOS (9), PredPhospho (11), GPS
(12,13), PPSP (4) and KinasePhos 1.0 (5,6). As given in
Table 2, the number of kinases, sensitivity and specificity
of prediction and the overall predictive performance of
these tools are compared. GPS, PPSP, PredPhospho,
KinasePhos 1.0 and the proposed methods all support the
identification of kinase-specific phosphorylation sites.
Although only the kinase groups containing at least 20
experimental phosphorylation sites were selected to
evaluate the average predictive performance, the web
server of KinasePhos 2.0 provided the predictive models
of 60 kinase-specific groups with at least 10 experimental
phosphorylation sites. Because the average predictive
performance of serine, threonine and tyrosine of GPS
and PPSP cannot be obtained, the predictive performance
of three representative kinases such as PKA, PKC and
CK2 are compared. As given in Table 2, the predictive
performances of three representative kinases in
KinasePhos 2.0 are comparable with PredPhospho, GPS,
PPSP and KinasePhos 1.0. In particular, KinasePhos 2.0
provides the predictive model for phosphohistidine, whose
predictive accuracy is 93%. The overall predictive
accuracy of the kinase-specific groups with at least 20
phosphorylation sites of the proposed method is 91%.
However, as given in Table S4, the overall predictive
accuracy of the kinase groups which are smaller than 20
experimental phosphorylation sites is 94%.

The protein structural properties, such as accessible
surface area (ASA) and secondary structure, can be
considered in the future to improve the predictive perfor-
mance of the models. For instance, ASA may be used for
reducing the number of false-positive predictions of phos-
phorylation sites which locate in buried regions. However,
the number of experimental phosphorylation sites located in
the protein regions with known structure from PDB (22)
is few for each kinase-specific group. Although ASA and
secondary structure can be predicted by several published
tools such as RVP-net (23) and PSIPRED (24), respectively,
the predictive performance of phosphorylation sites may
be affected by the predictive structural properties.

AVAILABILITY

The web server of KinasePhos 2.0 will be continuously
maintained and updated. The web server is now freely
available at http://KinasePhos2.mbc.nctu.edu.tw/
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Figure 3. The web interface of KinasePhos 2.0.

Table 2. The comparison among KinasePhos 2.0, DISPHOS, PredPhospho, GPS, PPSP and KinasePhos 1.0

Tools DISPHOS PredPhospho GPS PPSP KinasePhos 1.0 KinasePhos 2.0

Method Logistic regression SVM MCLþGPS BDT MDDþHMM CPþSVM
Number of kinases – 4 groups 71 groups 68 groups 18 58
Kinase PKA – Sn¼ 0.88 Sn¼ 0.89 Sn¼ 0.90 Sn¼ 0.91 Sn¼ 0.92

Sp¼ 0.91 Sp¼ 0.91 Sp¼ 0.92 Sp¼ 0.86 Sp¼ 0.89
Kinase PKC – Sn¼ 0.79 Sn¼ 0.82 Sn¼ 0.82 Sn¼ 0.80 Sn¼ 0.84

Sp¼ 0.86 Sp¼ 0.83 Sp¼ 0.86 Sp¼ 0.87 Sp¼ 0.86
Kinase CK2 – Sn¼ 0.84 Sn¼ 0.83 Sn¼ 0.83 Sn¼ 0.87 Sn¼ 0.87

Sp¼ 0.96 Sp¼ 0.88 Sp¼ 0.90 Sp¼ 0.85 Sp¼ 0.86
Serine Acc¼ 0.76 Acc¼ 0.81 – – Acc¼ 0.86 Acc¼ 0.90
Threonine Acc¼ 0.81 Acc¼ 0.77 – – Acc¼ 0.91 Acc¼ 0.93
Tyrosine Acc¼ 0.83 – – – Acc¼ 0.84 Acc¼ 0.88
Histidine – – – – – Acc¼ 0.93
Overall performance – Acc¼ 0.76� 0.91 – – Acc¼ 0.87 Acc¼ 0.91

SVM, support vector machine; MCL, Markov cluster algorithm; GPS, group-based phosphorylation scoring method; BDT, Bayesian decision
theory; MDD, maximal dependence decomposition; HMM, hidden Markov model; CP, coupling pattern; Sn, sensitivity; Sp, specificity;
Acc, accuracy.
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