Skip to main content
. 2007 May 21;35(Web Server issue):W588–W594. doi: 10.1093/nar/gkm322

Table 2.

The comparison among KinasePhos 2.0, DISPHOS, PredPhospho, GPS, PPSP and KinasePhos 1.0

Tools DISPHOS PredPhospho GPS PPSP KinasePhos 1.0 KinasePhos 2.0
Method Logistic regression SVM MCL+GPS BDT MDD+HMM CP+SVM
Number of kinases 4 groups 71 groups 68 groups 18 58
Kinase PKA Sn = 0.88 Sn = 0.89 Sn = 0.90 Sn = 0.91 Sn = 0.92
Sp = 0.91 Sp = 0.91 Sp = 0.92 Sp = 0.86 Sp = 0.89
Kinase PKC Sn = 0.79 Sn = 0.82 Sn = 0.82 Sn = 0.80 Sn = 0.84
Sp = 0.86 Sp = 0.83 Sp = 0.86 Sp = 0.87 Sp = 0.86
Kinase CK2 Sn = 0.84 Sn = 0.83 Sn = 0.83 Sn = 0.87 Sn = 0.87
Sp = 0.96 Sp = 0.88 Sp = 0.90 Sp = 0.85 Sp = 0.86
Serine Acc = 0.76 Acc = 0.81 Acc = 0.86 Acc = 0.90
Threonine Acc = 0.81 Acc = 0.77 Acc = 0.91 Acc = 0.93
Tyrosine Acc = 0.83 Acc = 0.84 Acc = 0.88
Histidine Acc = 0.93
Overall performance Acc = 0.76 ∼ 0.91 Acc = 0.87 Acc = 0.91

SVM, support vector machine; MCL, Markov cluster algorithm; GPS, group-based phosphorylation scoring method; BDT, Bayesian decision theory; MDD, maximal dependence decomposition; HMM, hidden Markov model; CP, coupling pattern; Sn, sensitivity; Sp, specificity; Acc, accuracy.