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Abstract
Brain phosphatidylcholine (PC) levels are regulated by a balance between synthesis and hydrolysis.
Pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1α/β)
activate phospholipase A2 (PLA2) and PC-phospholipase C (PC-PLC) to hydrolyze PC. PC
hydrolysis by PLA2 releases free fatty acids including arachidonic acid, and lyso-PC, an inhibitor of
CTP-phosphocholine cytidylyltransferase (CCT). Arachidonic acid metabolism by
cyclooxygenases/lipoxygenases is a significant source of reactive oxygen species. CDP-choline
might increase the PC levels by attenuating PLA2 stimulation and loss of CCT activity. TNF-α also
stimulates proteolysis of CCT. TNF-α and IL-1β are induced in brain ischemia and may disrupt PC
homeostasis by increasing its hydrolysis (increase PLA2 and PC-PLC activities) and inhibiting its
synthesis (decrease CCT activity). The beneficial effects of CDP-choline may result by counteracting
TNF-α and/or IL-1 mediated events, integrating cytokine biology and lipid metabolism. Re-
evaluation of CDP-choline phase III stroke clinical trial data is encouraging and future trails are
warranted. CDP-choline is non-xenobiotic, safe, well tolerated, and can be considered as one of the
agents in multi-drug treatment of stroke.
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INTRODUCTION
Stroke or “brain attack” is the first leading cause of long-lasting disability, third leading cause
of death and continues to be a problem of vast clinical significance. Approximately 3.9 million
Americans are stroke survivors, and the after-effects of stroke require more than $51 billion
in healthcare costs annually. Presently, tissue plasminogen activator (tPA) is the only FDA
approved drug for the treatment of acute ischemic stroke but needs to be administered within
3 h (1). However, there are some concerns that tPA has neurotoxic side effects in addition to
its beneficial (thrombolytic) actions (2). Many neuroprotective agents have undergone phase
III clinical trials for stroke; most of the trials were abandoned due to ineffectiveness or toxicity
of the drug.
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Cytidine-5′-diphosphocholine (CDP-choline or Citicoline) is composed of cytidine and choline
linked by a diphosphate bridge and is an essential intermediate in the synthesis of
phosphatidylcholine (PC), a major brain phospholipid, via Kennedy pathway. Exogenous
CDP-choline is hydrolyzed and absorbed as cytidine and choline (3), and CDP-choline is re-
synthesized from cytidine triphosphate (CTP) and phosphocholine by CTP-phosphocholine
cytidylyltransferase (CCT), the rate-limiting enzyme in PC synthesis (see [4] and references
therein). CDP-choline also serves as a choline donor in the biosynthesis of the neurotransmitter
acetylcholine (5). As the intermediate in PC biosynthesis, it was believed that CDP-choline
would rectify membrane damage and provide benefit in CNS disorders and injury (including
stroke).

CDP-choline has been studied in >11,000 volunteers and patients and showed beneficial effects
in cerebral ischemia, traumatic brain injury, hypoxia, Alzheimer’s and Parkinson’s diseases,
learning and memory disorders, alcoholism, drug addiction, amblyopia and glaucoma (Table
I.) Citicoline, an international non-proprietary name of CDP-choline, is marketed as a
prescription drug (in Japan, Spain, France and Italy) or as an over-the-counter dietary
supplement in USA. CDP-choline was originally developed for stroke treatment by Ferrer
Internacional, S. A. (Barcelona, Spain) and is being tested for treatment of Alzheimer’s and
Parkinson’s disorders (7). CDP-choline is the only agent that is non-xenobiotic and has virtually
no side effects. In 1983, 22 articles were published that described the physi-co-chemical
properties, pharmacokinetics, toxicity and bioavailability of this agent (54). CDP-choline (600
or 1000 mg/day) or placebo to healthy volunteers did not show any abnormal side effects in
terms of hematological or clinical analysis (3). No clinically significant ECG and EEG
abnormalities were noticed. Neurological tests, tendon reflexes, blood pressure and heart rate
were not affected by any dose of the drug or placebo. The tolerance of CDP-choline is excellent
and side effects were rare, never severe and consisted mainly of digestive intolerance,
gastrointestinal discomfort and restlessness. In no case was it necessary to interrupt the
treatment for side effects attributed to CDP-choline use (55). Recent re-evaluation of USA
phase III stroke clinical trial data is encouraging (49) and this agent still holds promise for
treatment of acute ischemic stroke. Indevus Inc. licensed exclusive North American rights from
Ferrer Internacional, S. A. for the manufacture, use and sale of CDP-choline for the treatment
of stroke.

CDP-CHOLINE IN CLINICAL TRIALS
Stroke

There have been 13 stroke clinical trials of CDP-choline since 1980 (nine in Europe and Japan
and four in the USA) (5). The European clinical trials showed that CDP-choline improved
global and neurological function and promoted earlier motor and cognitive recovery. A large
multi-center study in Japan found that CDP-choline showed improvement in a global outcome
rating scale. Four major clinical trials in the USA have provided ambiguous results, and thus
the beneficial effects of CDP-choline have not been established (49 and references therein). In
the first study, CDP-choline improved functional outcome and reduced neurologic deficit.
However, two subsequent studies failed to demonstrate improvement in the outcome. On post-
hoc analysis, CDP-choline was shown to provide beneficial effects in a subgroup of moderate-
to-severe stroke cases. Subsequent pooling of individual patient data from four US trials
showed that CDP-choline treatment for 6 weeks improved overall recovery at 12 weeks in
acute ischemic stroke patients (49 and references therein). Pooled diffusion-weighted magnetic
resonance imaging (DW-MRI) data from two clinical trials showed a significant dose-
dependent reduction on percent change in lesion volume (56). We have summarized recent
experimental data on the effects of CDP-choline in cerebral ischemia and evaluated several
factors which might have hindered efficacy of CDP-choline in stroke clinical trials in the USA.
One of the factors is the brain uptake of CDP-choline. The European and Japanese trials used

Adibhatla and Hatcher Page 2

Neurochem Res. Author manuscript; available in PMC 2007 July 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



i.v. administration in contrast to oral route used in the USA trails. In animal studies, brain
uptake of CDP-choline or its metabolites was 0.5% of the oral dose, whereas i.v. administration
elevated brain uptake to 2%. Liposome encapsulation of the drug can further increase brain
uptake up to 23% (8,21) and also circumvent CCT, the key rate-limiting enzyme in PC
synthesis. Liposome encapsulation suggests a possible strategy to increase the CDP-choline
levels in the CNS and enhance its clinical effectiveness (8). In the light of recent clinical
evaluations, experimental data in cerebral ischemia, and realization that oral administration
was not appropriate, new phase III stroke clinical trials are warranted. Benefit from CDP-
choline in humans is far from proven, however future trials are essential before making any
conclusions that CDP-choline is ineffective for stroke treatment.

Alzheimer’s Disease and Other Memory Disorders
Clinical studies have demonstrated that CDP-choline improves cognitive performance in
elderly subjects (36). Blocking synthesis of PC is sufficient in itself to cause cell death (57,
58), and a 10% loss of cellular membrane is a threatening situation for neuronal viability
(59). Alzheimer’s brains have shown loss of PC and phosphatidylethanolamine (60) and CDP-
choline may rectify the membrane damage in these brains (36). Additionally, the cholinergic
system is dysfunctional in Alzheimer’s brain (50), and CDP-choline may provide benefit by
enhancing acetylcholine synthesis (Fig. 1A).

Parkinson’s Disease
CDP-choline stimulates tyrosine hydroxylase activity and dopamine release (3), which may
be due to increases in brain acetylcholine since choline administration produced the same
effects (61). Parkinson’s disease is characterized by a selective degeneration of the
dopaminergic neurons of the substantia nigra (62), however the phospholipid abnormalities
present in Alzheimer’s brains were not observed (60). Levodopa is the main therapeutic option
for treatment of Parkinson’s disease; its main disadvantage is progressive loss of efficacy
(63). CDP-choline has been tested in treatment of Parkinson’s disease because of its ability to
increase the availability of dopamine (3). Combination treatment of Parkinson’s patients with
CDP-choline and levodopa allowed significant reduction of the levodopa dose, thus
minimizing side effects of levodopa therapy (3).

CEREBRAL ISCHEMIA
The energy needs of the brain are supplied by metabolism of glucose and oxygen for the
phosphorylation of ADP to ATP. Rapid loss of ATP occurs following cerebral ischemia,
resulting in uncontrolled leakage of ions across the cell membrane, membrane depolarization
and release of neurotransmitters glutamate and dopamine (64). Excess glutamate release and
stimulation of its receptors results in phospholipases activation, phospholipid hydrolysis and
arachidonic acid release (5), ultimately leading to apoptotic or necrotic cell death (65).
Apoptotic cell death is mediated by activation of caspases. CDP-choline attenuated expression
of pro-caspases, cleaved caspase-3 and nuclear DNA fragmentation after focal cerebral
ischemia (27). CDP-choline in combination with nimodipine reduced infarction and increased
expression of anti-apoptotic Bcl-2 after focal cerebral ischemia (26). CDP-choline pre-
treatment prevented excitotoxic death caused by excessive glutamate exposure in cerebellar
granule neurons (45) and in in vivo focal cerebral ischemia model (101). These findings have
been summarized in Fig. 1A.

Phospholipases
In addition to being an essential membrane structural component, PC is the source of bioactive
lipids such as phosphatidates, 1,2-diacylglycerol, and arachidonic acid, among others (58).
Thus, PC hydrolysis serves important roles in signal transduction mediated by various stimuli
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including cytokines (59,84). PC can be hydrolyzed (66,67) by PC-phospholipase C (PLC)
(68), PC-phospholipase D (PLD) (69), or PLA2 (70). There is substantial evidence that
PLA2 is activated in transient ischemia and contributes to neuronal damage (12,24).

PLA2 isozymes occur in multiple forms (71,72) in the mammalian cell and are classified as
calcium independent, cytosolic (cPLA2) and secretory (sPLA2). sPLA2 isoforms are low
molecular weight (~14 kDa) and require millimolar Ca2+ concentrations for activity. Our
studies demonstrated significant increases in PLA2 activity in membrane and mitochondrial
fractions following transient cerebral ischemia (13,24). The majority of PLA2 activity required
mM Ca2+ for optimal activity, characteristic of sPLA2. CDP-choline treatment significantly
attenuated PLA2 activity in both membrane and mitochondrial fractions. In vitro, CDP-choline
and its components cytidine and choline had no effect on PLA2 activity, and thus CDP-choline
is not as such a PLA2 inhibitor (13). Since CDP-choline does not directly inhibit PLA2, our
data suggests that CDP-choline prevents activation of sPLA2 (Fig. 1B). These findings are
consistent with our data that CDP-choline attenuated loss of phospholipids and increase in free
fatty acids including arachidonic acid after both focal and global transient cerebral ischemia
(14–16,24).

TNF-α and IL-1β Disrupt PC Homeostasis
Brain PC homeostasis is regulated by a balance between synthesis and hydrolysis by
phospholipases. Two forms of IL-1 are present in brain tissue, IL-1α and IL-1β, and act on the
IL-1 receptor (73). TNF-α and IL-1β are induced following brain ischemia (74–77). TNF-α
(78–81) and IL-1 (82–88) stimulate hydrolysis of PC through induction of PLA2 and PC-
phospholipase C (PC-PLC), which mediate their cytotoxicity (84,86,87). Activation of PLA2
by TNF-α/IL-1 may be mediated by increases in PLA2 activating protein (PLAP) (88–90).
Treatment with TNF-α antibody attenuated infarction (24,77), loss of phospholipids and
increase in ceramide and free fatty acids including arachidonic acid after focal cerebral
ischemia (24).

CCT and Lyso-PC (4)
With the exception of liver, the CDP-choline pathway is the main source of de novo PC
synthesis in mammalian tissues. Thus, CCT is a key enzyme in regulation of PC synthesis in
non-hepatic tissues including the brain. CCT is an amphitropic enzyme in mammalian tissue
and is distributed between cytosol and membrane. The catalytic activity of CCT has an absolute
requirement for a lipid environment, which is provided by the phospholipids of the cellular
membrane. Lyso-PC, a PLA2 hydrolysis product of PC, inhibits CCT (Fig. 2A) (91).

TNF-α can also stimulate proteolytic degradation of CCT, resulting in a decrease in CCT
protein (Fig. 2A) (93). Thus, TNF-α/IL-1 disrupt PC homeostasis by increasing PC hydrolysis
(increase PLA2 and PC-PLC activities) and inhibiting its synthesis (decrease CCT activity)
(Fig. 2B).

We have shown stimulation of PLA2, loss of phospholipids including PC (13–15,24), decrease
in CCT activity and increase in lyso-PC (4) following transient brain ischemia. CDP-choline
significantly increased CCT activity (4) and attenuated lyso-PC. Thus, many of the effects of
CDP-choline are in a direction opposite to those of TNF-α/IL-1; one hypothesis is that the
beneficial effects of CDP-choline result by partly counteracting TNF-α/IL-1 mediated events
(Fig. 2B). However, further studies are required to validate this hypothesis.

These findings may have important implications for treatment of ischemic brain injury with
CDP-choline. Loss of CCT was an early event in cerebral ischemia that persisted throughout
1 day reperfusion. While CDP-choline increased CCT activity in the membrane fraction, this
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did not occur until 6-h reperfusion. Thus, even with CDP-choline treatment, PC synthesis may
be impaired for several hours after cerebral ischemia.

CDP-choline treatment delayed by 3 h did not offer any neuroprotection (8). This later
treatment could further delay the recovery of CCT activity during the critical early reperfusion
time. Identification of the factor(s) responsible for CCT loss may lead to new therapeutic
interventions in stroke, or combination treatments that could enhance CDP-choline’s efficacy.
Cholinephosphotransferase (CDP-choline-1,2-diacylglycerol cholinephospho-transferase
(CPT), EC 2.7.8.2) catalyzes the final step of the Kennedy (CDP-choline) pathway for the de
novo synthesis of PC. Though CPT is non-rate limiting under normal conditions, it may act as
regulatory switch under some pathological conditions and set in motion the apoptotic cell death
program (102,103). The role of this enzyme in CNS injury and the effect of CDP-choline need
to be examined. Emerging lipidomics (104,105) may offer some solutions on elucidating CDP-
choline mechanisms through integration of cytokine biology and lipid metabolism (106,107)
in the near future.

Reactive Oxygen Species (ROS) Lipid Peroxidation and Glutathione
Formation of ROS and the resultant oxidation of biological molecules is a well-recognized
mechanism of tissue damage in ischemia/reperfusion (65,94). ROS induce lipid peroxidation,
resulting in formation of malondialdehyde (MDA), 4-hydroxy-nonenal (HNE) and acrolein
(95). HNE and acrolein induce neuronal apoptosis by covalently cross-linking with proteins
(95,96). CDP-choline significantly attenuated ischemia-induced hydroxyl radicals (OH•) and
MDA formation (12,13). PLA2 releases free fatty acids including arachidonic acid from
membrane phospholipids. Arachidonic acid metabolism by COX/LOX is considered to be a
significant source of ROS (12,17,97). The other important free fatty acid, docosahexaenoic
acid (DHA) is a major source of ROS, lipid peroxidation and neuronal injury. Bazan’s group
(106,107) showed some elegant relationship between pro-inflammatory gene expression and
lipid metabolism by tandem liquid chromatography-photodiode array-electrospray ionization-
mass spectrometric-mass spectrometry (LC-PDA-ESI-MS-MS) using lipidomic (104,105)
approaches. The decrease in OH• production in transient brain ischemia following CDP-choline
treatment may be due to attenuation of PLA2 activation. Glutathione is the primary endogenous
antioxidant defense system and removes H2O2 and lipid peroxides in the brain. CDP-choline
increased total glutathione levels, glutathione reductase activity, decreased GSSG and
glutathione oxidation ratio (an indicator of the redox status of glutathione) after transient
cerebral ischemia (15).

SINGLE DRUG INTERVENTIONS MAY NOT BE EFFECTIVE
Due to the multiple pathways involved in ischemic injury, no single agent is likely to provide
complete neuroprotection (98,99). CDP-choline in combination with NMDA receptor
antagonist MK801 (100), thrombolytic agent (recombinant tPA) (29), urokinase (28), or basic
fibroblast growth factor (23) showed synergistic benefit in experimental ischemia models.
There seems to be a growing consensus to adopt a multi-pronged approach using drug cocktails
since the nature of stroke injury is complex and multi-dimensional (98,99,108). CDP-choline
is non-xenobiotic, safe and well tolerated, which makes it a viable choice to be used in
combinational therapy for the treatment of stroke and Parkinson’s disease (with levodopa).
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Abbreviations
CDP-choline (Citicoline) 

cytidine-5′-diphosphocholine

CMP  
cytidine 5′-monophosphate

CCT, CTP  
phosphocholine cytidylyltransferase

CTP  
cytidine triphosphate

GSH  
glutathione

IL-1  
interleukin 1

PC  
phosphatidylcholine

PLA2  
phospholipase A2

PLC  
phospholipase C

ROS  
reactive oxygen species

PLAP  
PLA2 activating protein

TNF-α  
tumor necrosis factor-α
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Fig 1.
CDP-choline: (A) possible neuroprotective pathways based on the published reports, (B)
effects mediated by attenuating PLA2 stimulation (based on authors’ work). ↑ indicates
increase; ↓ indicates decrease.
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Fig 2.
TNF-α, IL-1β, CDP-choline and PC homeostasis. (A) Potential pathways of CCT inhibition
mediated by TNF-α. TNF-α and IL-1β are induced after brain ischemia (74,77,92) and stimulate
PLA2 (78) and releases lyso-PC. TNF-α can inhibit CCT activity by two pathways: (1)
proteolysis of CCT (93), and/ or (2) inhibition by lyso-PC (91). (B) TNF-α and IL-1β may be
responsible for the loss of PC through modulation of PLA2 (78), PC-PLC (80) and CCT (84,
93) following transient cerebral ischemia. Hypothesis: CDP-choline may counteract the TNF-
α/IL-1β mediated disruption of PC homeostasis by attenuating PLA2 activation and increasing
CCT activity (Fig. 1B). ↑ indicates increase; ↓ indicates decrease. PLAP, PLA2 activating
protein.
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Table I
CDP-Choline Studies in in vivo (Normal and Pathological) and in vitro Conditions

Effect/Outcome by CDP-choline References

Reviews
Pharmacology and clinical use Review of pharmacology and clinical use (3,6)

Development for stroke trials by drug companies (Ferrer, Takeda, and
Indevus, formerly Interneuron)

(7)

CNS injury Mechanisms in cerebral ischemia & clinical efficacy (5,8)
Action in CNS injury and stroke trials (9,10)

Glaucoma Application for glaucoma treatment (11)
In vivo studies
Transient forebrain ischemia in gerbil Affected CCT activity, lyso-PC, OH• radical, lipid peroxidation, lipids,

phospholipases A2 and C, arachidonic acid release, leukotriene C4, GSH,
and hippocampal neuronal death

(4,12–18)

CDP-choline but not cytidine alone provided hippocampal neuroprotection (19)
Permanent forebrain ischemia in gerbil Intracerebroventricular pre-treatment affected brain lipids (20)
Transient global ischemia in rat Liposome encapsulation decreased lipid peroxidation and increased survival (21)

Restored glucose metabolism and increased acetylcholine synthesis (22)
Transient focal cerebral ischemia in rat Combination with MK-801 or basic fibroblast growth factor synergistically

reduced infarction
(23) and references
therein

Attenuated PLA2 activity, phospholipid loss and increase in FFA and
ceramide

(24)

Decapitation ischemia in rat Effects on lipids, Na+–K+-ATPase and acetylcholinesterase activities (25)
Permanent focal cerebral ischemia in SD
rat

In combination with nimodipine reduced apoptosis, infarct size, and
increased Bcl-2 expression

(26)

Attenuated caspase cleaved products of PARP and DNA fragmentation (27)
Embolic ischemic stroke in rat Combination with urokinase improved neurobehavioral score and reduced

infarction
(28)

Combination with rtPA promoted functional recovery and reduced
infarction

(29)

Subarachnoid hemorrhage Neuroprotection could be mediated by recovery of arterial pressure in
hypotensive rats

(30)

Cardiovascular effects on rat Increased blood pressure and reversed hypotension in hemorrhagic shock (31)
Traumatic brain injury in rat Attenuated blood-brain barrier dysfunction, edema, cortical contusion

volume, CA3 neuronal death, and neurological dysfunction
(32,33)

Improved cognitive deficits (34)
Parkinson’s disease model in rat Attenuated substantia nigra dopaminergic cell dropout and tyrosine

hydroxylase immunoreactivity
(35)

β-amyloid deposit + hypoperfusion in rat Attenuated hippocampal neuronal apoptosis, and reduced microglia
activation

(36)

Rat Reduced benzodiazepine-induced cognitive impairments (37)
Increased CCT activity and decreased platelet activating factor (38)

Female rats Protected selective impairment in hippocampal deficits (39)
PC levels increased only after 42 days of CDP-choline administration (40)

Intracerebral hemorrhage in Swiss albino
mice

Improved functional outcome, reduced infarct volume (41)

Hypoxia in guinea pig Affected phospholipid biosynthesis in brain mitochondria. (42)
Dog Increased memory and learning (43)
In vitro studies
PC12 cells Cytidine + choline stimulated phospholipid production, expression and

secretion of amyloid precursor protein
(44)

Cerebellar granule neurons/MCAO Prevented glutamate mediated cell death (45,101)
Human neuroblastoma SH-SY5Y cells Increased glutathione redox ratio and attenuated caspase-3 activation in

staurosporine-treated cells
(46)

Mouse retinal ganglion cells Showed protective effects on damaged retinal ganglion. (47)
Rat brain homogenates Stimulated acetylcholinesterase and Na+–K+-ATPase activities in tissue

homogenates
(48)

Clinical studies
Stroke Review of US clinical trials. Oral treatment of patients within the first (49 and references

cited therein)
24 h after stroke increased probability of recovery at 3 months

Alzheimer’s disease Improved mental performance in Alzheimer’s disease (50)
Parkinson’s disease In combination with levodopa showed functional improvement and

decreased side effects of levodopa
(3)

Normal subjects Increased choline and uridine but not cytidine levels (51)
Memory Improved memory deficits in elderly subjects (52)
Amblyopia/glaucoma Improved the visual activity, function in patients (11)
Drug addiction Reduced craving for cocaine (53)
Alcoholism Improved concentration in patients with alcoholic abstinence syndrome (3)

Neurochem Res. Author manuscript; available in PMC 2007 July 28.


