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Infants rapidly learn the sound categories of their native language,
even though they do not receive explicit or focused training.
Recent research suggests that this learning is due to infants’
sensitivity to the distribution of speech sounds and that infant-
directed speech contains the distributional information needed to
form native-language vowel categories. An algorithm, based on
Expectation—-Maximization, is presented here for learning the cat-
egories from a sequence of vowel tokens without (i) receiving any
category information with each vowel token, (i) knowing in
advance the number of categories to learn, or (iii) having access to
the entire data ensemble. When exposed to vowel tokens drawn
from either English or Japanese infant-directed speech, the algo-
rithm successfully discovered the language-specific vowel catego-
ries (/1, i, ¢, e/ for English, /i, iz, e, e:/ for Japanese). A nonparametric
version of the algorithm, closely related to neural network models
based on topographic representation and competitive Hebbian
learning, also was able to discover the vowel categories, albeit
somewhat less reliably. These results reinforce the proposal that
native-language speech categories are acquired through distribu-
tional learning and that such learning may be instantiated in a
biologically plausible manner.

language acquisition | speech perception | expectation maximization |
online learning

A central goal of language acquisition research is to charac-
terize how the ability to perceive one’s native language is
acquired during childhood. Infants are initially responsive to a
wide variety of native and nonnative speech sound contrasts. For
example, English infants discriminate the Hindi /d/-/d/ sounds
that English adults cannot (1), Japanese infants discriminate the
English /r/ and /I/ that are confused by Japanese adults (2), and
Spanish infants discriminate the /e/-/e/ Catalan vowel distinction
that is not used in Spanish (3). Indeed, English infants can
discriminate Zulu click contrasts even though clicks do not occur
in English (4). These perceptual abilities change within the first
6-12 months, involving decreasing sensitivity to nonnative
speech contrasts (3, 5), increasing sensitivity to native contrasts
(2), and realignment of initial boundaries (6).

There is a range of perspectives on how such changes might
occur. Some perspectives begin with the idea that infants are
born with some initial category structure, with linguistic
experience leading to maintenance of used categories, loss of
unused categories, and/or reshaping of category boundaries
(7). Other perspectives treat speech categories as emerging
largely from experience in response to the distribution of
experienced spoken inputs (8, 9). We explore the possibility of
category emergence for a subset of Japanese and English
vowels. This approach may be particularly appropriate for
vowels because they vary more smoothly with changes in
articulation than do many consonants, and their acoustics are
relatively well understood. Furthermore, infants as young as 6
months have been shown to be sensitive to the vowel categories
specific to their native language (10, 11). Central to elaborat-
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ing this view is an explication of the mechanism by which
speech categories could arise through experience.

There are two clues to how such a mechanism might work. The
first is that infants are sensitive to the statistical distributions of
speech tokens. For example, infants exposed to a stimulus
continuum with a bimodal distribution were better able to
distinguish the end points of the continuum, as compared with
infants who were exposed to a unimodal distribution (12).
Exposure to a bimodal distribution also seems to facilitate
discrimination of difficult speech sound differences (13). The
second clue is that infant-directed speech is acoustically different
from adult-directed speech, tending to have a slower tempo,
increased segment durations, enhanced pitch contours, and
exaggerated vowel formants (14-16). Thus, it is possible that the
acoustic distributions of infant-directed speech facilitate rapid
and robust vowel learning. In a recent investigation of this issue,
Werker et al. (17) recorded the infant-directed speech of English
and Japanese mothers. The English mothers produced two vowel
pairs, /1/-/i/ and /e/-/e/, in 16 monosyllabic nonce words in both
spontaneous and read contexts, while the Japanese mothers
produced /i/-/iz/ and /e/-/e:/. These categories occur in the same
general region of a multidimensional vowel space defined by
formant frequency and duration, but have different phonetic
realizations in the two languages. For example, the English /1/
and /i/ differ in both formant frequency and duration, whereas
the Japanese /i/-/iz/ differ almost solely in duration (for simplic-
ity, we refer to the vowel pairs in both languages as “length”
contrasts, although the English contrasts are sometimes referred
to as “lax” vs. “tense”). Despite the fact that the distributions of
the categories overlap within each language, logistic regression
was able to separate the long from short vowels in Japanese
(based on duration) and in English (based on the difference
between the first two formants). This demonstrated that the
infant-directed productions had language-specific information
for establishing native vowel categories.

Although Werker et al. (17) showed that the mother’s speech
contains cues that would make language-specific learning possible,
it was not clear how these categories might actually be learned.
Some previous models have addressed speech category learning by
using topographic maps (8, 18-20). Such models are sensitive to
category structure (in that they assign neighboring units in the map
to members of the same category) but do not represent that
structure explicitly. We explore an alternative approach in which
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the model explicitly learns a probability distribution for each
category. Subsequently, when an input is presented, the model
assigns it to one of the learned categories. Such explicit represen-
tations can then serve as points of contact between the auditory
input and other task-relevant information (e.g., semantic content or
motor program specification). Discovering such categories is a
challenging problem. Speech to children does not contain category
labels, lacks information about the number of categories to be
learned, and contains exemplars of different categories in inter-
mixed order. Furthermore, language learners are likely to rely on
an online learning procedure: one that adjusts category represen-
tations as each exemplar comes in, rather than storing a large
ensemble of exemplars and then calculating statistics over the entire
ensemble.

Previous work on explicit speech category learning has made
some progress on these issues: the Expectation-Maximization
(EM) algorithm for unsupervised category learning (21) suc-
ceeded in learning English /i/, /a/, and /u/ without category labels
(22); a cross-modal clustering algorithm has been successful
without labels or knowledge of the number of categories (23),
and competitive Hebbian learning has been used to model
unsupervised online learning of Japanese liquids (9). Some
models can address all aspects of the challenge under restricted
conditions: a Bayesian online variant of EM was applied to
one-dimensional (1D) VOT distributions (24), and Adaptive
Resonance (25) and competitive learning models (26) are po-
tentially applicable when all of the categories have equal and
homogenous variance. Thus far, however, none of these ap-
proaches has been developed into a robust solution for learning
vowel categories from distributions found in real speech.

These challenges are addressed by the work reported here. We
present an algorithm that can be seen both as a variant of EM
and as an extension of competitive learning models. The model
simultaneously estimates the number of categories in an input
ensemble and learns the parameters of those categories, adjust-
ing its representations online as each new exemplar is experi-
enced (24). The algorithm is applied to the problem of discov-
ering the category structure in the infant-directed speech
recorded by Werker et al. It is “parametric” in that it treats the
distribution of speech sounds in a category as an n-dimensional
Gaussian, and estimates the sufficient statistics of each distri-
bution. We later present a nonparametric variant to investigate
the robustness of the learning principles and how they relate to
neurologically motivated models (9, 27, 28).

Parametric Algorithm for Online Mixture Estimation (OME)

The algorithm treats the vowel stimuli as coming from a set of
Gaussian distributions corresponding to a set of vowel catego-
ries. Each vowel category is a multivariate Gaussian distribution
that has its own overall tendency (“mixing probability”) of
contributing a token to the data ensemble. The tokens are
sampled independently and at random from the ensemble of
Gaussians, so that the probability of encountering a particular
vowel token is unaffected by the previously encountered tokens.
The goal is to recover, given just the sequence of vowel tokens,
the number of Gaussians, the parameters of each Gaussian and
the respective mixing probabilities. Although this formulation
simplifies the learning problem, it provides a reasonable starting
point because the vowel spectra for a population of speakers tend
to have Gaussian distributions when projected into a 2D space
(29). Likewise, when an isolated vowel is repeated several times
by the same speaker, the formant distributions of the repetitions
follow a Gaussian distribution (30). A further advantage of this
formulation is that it connects to a large body of work in machine
learning (21) and theories of human categorization (31).

The Gaussians used to generate the tokens for training and
testing the model were derived from the productions recorded by
Werker et al. (17). There were 20 English speakers and 10
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Fig. 1. The Gaussian distributions for the English /1i,e,e/ and Japanese
/i,iz,e,e1/, computed over the read vowels from all speakers (the tokens were
z-scored for each speaker before the analysis). The ellipsoids are equal-
probability surfaces, 1 SD along each principal axis, enclosing ~19% of the
total probability mass. Note that these are aggregate tendencies; the vowel
categories of individual speakers varied greatly, covered a wider range, and
overlapped with each other considerably.

Japanese speakers, and each speaker produced the nonce words
spontaneously and also read them aloud to her infant. For the
current analyses, we used only the read words because they were
more consistent across speakers in the number of productions of
each vowel. Because the mother—infant interactions were not
scripted, each speaker had a different number of “read” pro-
ductions, with an average of 27 productions per English speaker
and 85 productions per Japanese speaker (Fig. 1). The vowel
portion of each production was characterized by three param-
eters: the location of the first and second formants (F1 and F2,
respectively, measured from the first quarter of the vowel) and
the duration of the steady-state. The Gaussians were derived
separately for each vowel category of each speaker (see Methods;
one English speaker was excluded because of an insufficient
number of productions). The four Gaussians for each speaker
(henceforth, the “training distribution”) were used to generate
2,000 data points for each vowel category, for a total of 8,000
training tokens for that speaker.

The algorithm used to learn the categories is fundamentally an
online version of EM (21); the basic innovation here is the
estimation of the covariance matrix by a gradient descent rule,
which allows the algorithm to be simple, robust, and generaliz-
able to higher-dimensional data. Each run of the algorithm is
initialized with 1,000 equally probable Gaussian categories with
randomly initialized means (Fig. 2). On each trial, one token is
randomly drawn, with replacement, from the set of 8,000 for that
speaker (see Methods). The algorithm first calculates the “re-
sponsibility” of each category for the token (the responsibility is
proportional to the probability of the token given the category’s
current mean and covariance matrix times its mixing probabil-
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Fig. 2. Anillustration of unsupervised OME learning for 2D inputs. Before
training, there are a large number of categories (grid of black circles), all
equally probable and each sensitive to a different part of the input space
(shaded ellipses). During training, the inputs (filled points) are presented one
at a time. After training, categories that do not match the inputs have mixing
probabilities close to zero (open circles in the grid), whereas the dominant
categories have adapted to the input clusters.

ity). Next, it updates the means and covariance matrices of all
categories based on the current token, with more responsible
categories receiving larger updates. Finally, it increments the
mixing probability of the winning category (i.e., the category
with the greatest responsibility) by a small amount n, and reduces
the mixing probabilities of all others so that the total probability
sums to 1; this update enforces the constraint that each data
point should belong to only one category (24). As the training
progresses, categories that are very far from input data clusters
end up with very low mixing probabilities and “drop out” of the
competition. At the end of training, the categories “left stand-
ing” are the final estimated categories of the algorithm.

There were 50,000 training trials on each run. After the
training, the category structure was tested by using a new sample
of 2,000 points drawn from that speaker’s training distribution.

Each test point was classified with the category that had the
greatest likelihood for that point. The run was considered
“successful” if 95% of the test points were classified into four
categories. For evaluation purposes, the categories were also
assigned labels (e.g., the category to which most of the /i/ tokens
were classified was labeled /i/). This allowed the test perfor-
mance to be characterized by a confusion matrix, from which
three measures were derived: the percent-correct (the propor-
tion of the 2,000 test points that were correctly classified), the
length d’ (sensitivity in distinguishing /i,e/ from /iz,e:/ in Japanese
speech, /Le/ from /i,e/ in English speech), and the spectrum d’
(sensitivity in distinguishing /i,iz/ from /e,e:/ in Japanese speech,
/Li/ from /e,e/ in English speech). Ten independent runs were
carried out per speaker, with training and test points being drawn
anew on each run.

It should be noted that classification uses a maximum-
likelihood (ML) criterion (21). This criterion can result in errors
even if the categories are accurately estimated because of the
overlap among the categories. Thus, the key question is, “How
good is the unsupervised learning compared with optimally
estimated categories that also use the ML criterion?” We refer
to the latter as the “supervised” training, and these results were
calculated separately for each run by using the same training and
testing data points as the OME algorithm. The supervised
training consisted of (i) calculating the mean and covariance for
each category by using the 8,000 training points from the yoked
unsupervised run, (if) classifying the 2,000 test points with these
supervised categories by using the ML criterion, and (iif) calcu-
lating the resulting percent correct and d’ measures.

Table 1 (under the heading Parametric Model, OME) shows
the results for the successful runs in each language, averaged
across the speakers. In a majority of the runs, the unsupervised
learning discovered the correct number of categories and closely
tracked the supervised performance: the correlation between
the unsupervised and supervised percent correct is 0.84 (suc-
cessful English runs) and 0.95 (Japanese runs). Furthermore, the
one English speaker with no successful runs had a supervised
percent correct of 84%, the lowest among all of the English
speakers. There are two other points of interest. First, the length
d’ is greater than the spectrum d’, even though English length is
cued by a combination of formant and duration (the tense/lax
contrast), whereas Japanese length is cued almost solely by
duration. Consequently, the analyses here indicate that length is
acoustically more salient than spectrum in both languages, at
least in infant-directed productions. Second, the length d’ for the
unsupervised case is occasionally greater than the corresponding
supervised value. The reason is that although unsupervised
learning is more likely to misclassify a token, that misclassified
category is likely to be a “nearby” category (i.e., which differs in
just the duration or just the height, but not both). This bias is a
consequence of the unsupervised learning, during which the

Table 1. Learning performance for successful runs

No. of speakers Average no. of Median d’ Median d’
w/successful successful Median percent for length for spectrum
Language runs* runs* correctt discrim.* discrim.*
Parametric model, OME
English 18 of 19 7.7 28 92.7 (93.4) 3.91 (3.90) 3.19 (3.22)
Japanese 10 of 10 79 3.0 91.1 (91.9) 4.09 (4.09) 3.32(3.30)
Nonparametric model, TOME
English 18 of 19 54+29 83.0 (91.3) 3.78 (3.83) 2.70 (3.06)
Japanese 10 of 10 55+ 1.6 85.2 (91.2) 4.05 (3.98) 3.11 (3.25)

*Speakers with successful runs, with 10 runs per speaker.

fPercent-correct and d’ values are medians across speakers of the average over successful runs within a speaker.

Parenthetical values show supervised training results.
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extent of a category is subtly conditioned by overlaps with nearby
categories.

One issue here is that, although English and Japanese vowel
spaces are clearly different (Fig. 1), there is also considerable
variability between speakers of the same language. This raises the
following question: Can the productions of an individual speaker
support the discovery of speaker-general but still language-specific
structure? To assess this, training with each speaker was tested with
all other speakers of either the same language [within-language
generalization (WLG)] or the other language [cross-language gen-
eralization (CLG)]. In the latter case, test performance was mea-
sured by the consistency with which exemplars from distinct cate-
gories in the test language were assigned to distinct categories in the
trained language [see supporting information (SI)]. The WLG
proved to be substantially greater than the CLG: the average WLG
was 69% (English training) and 77% (Japanese training), whereas
the average CLG was 51% (English training) and 53% (Japanese
training). Almost identical results are obtained with supervised
training. It therefore is clear that the productions of individual
speakers contain substantial language-specific information. Even
so, the superiority of the same-speaker test performance (92.7%
and 91.1%; Table 1) over the WLG suggests that robust acquisition
of vowel categories depends on exposure to multiple speakers (32).

Finally, when the unsupervised learning was unsuccessful, it
was almost always because two categories were incorrectly
merged. Generally, the categories merged across spectrum
rather than length, consistent with the results in Table 1 showing
a greater d’ for length (see SI).

Nonparametric Algorithm for Online Mixture Estimation

Part of the success of the OME algorithm stems from the
assumption that the categories are Gaussian. This places strong
constraints on the category representations and limits the num-
ber of parameters to estimate for each category (namely, its
mean and variance). We now consider an alternative that allows
us to examine the extent to which learning can occur without the
Gaussian constraint while also moving closer to a possible
neurobiological implementation. In this variant, the distribution
of each category is represented nonparametrically, by dividing
the input space into many small regions and tabulating the
proportion of inputs in each region (33). This scheme has a
natural “neural network” interpretation: the proportions can be
encoded as connection weights between neuron-like units stand-
ing for the input regions and units standing for the category
representations. The resulting learning algorithm has similarities
to connectionist models of categorization (31), topographic
map-based perception (8, 18, 19), and competitive Hebbian
learning (34, 35), and we refer to it as “Topographic OME”
(TOME).

In more detail, in TOME the input space is represented by a
grid of units, each of which represents a particular “conjunction”
of values on each of the input dimensions. For example, the 2D
input range [x1, x2] X [y1, y2] can be mapped onto a 2D grid of
units where the lower-leftmost unit represents (x;, y1) and the
upper-rightmost unit represents (xz, y2). This grid of units is fully
connected to a set of “category units”, where the connection wy;
between the input unit at (i, j) and category unit r represents the
estimated probability that a member of that category will be
found at that location. When a stimulus is presented, the
connections are updated, increasing the estimated probability
that a category member will be found in the current stimulus
location (and, to a lesser extent, immediately neighboring loca-
tions). Thus, learning consists of estimating the conditional
probabilities w;; as well as the mixing probabilities mix, of each
category. The resulting algorithm parallels the OME algorithm
step by step, with the only major difference being the manner in
which category parameters are updated. Fig. 3 illustrates this
nonparametric learning in a system with a 1D input space and
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Fig.3. A comparison of representations learned by OME and TOME for a 1D
input space (see Sl). (a) The distribution from which the input stimuli were
drawn. (b) The three categories discovered by OME. Each line shows the
conditional probability of one category, multiplied by its mixing probability.
(c) The three categories discovered by TOME, with 50 input units. The distri-
butions are shown as discrete to emphasize the histogram-based category
representation in TOME.

with stimuli drawn from three distributions (right-skewed, sym-
metric, and uniform). Note that TOME accurately estimates the
probability distribution of exemplars within each category and
also is able to learn very different distribution shapes. In
contrast, OME treats all categories as Gaussian distributions, an
approximation that is effective only for the symmetric unimodal
distribution.

For learning the infant-directed vowels, we used a 3D (25 X
25 X 25) grid of input units (the three dimensions being F1, F2,
and duration), along with R = 512 category units. The mixing
probabilities for the categories were initialized to 1/R, and the
conditional probabilities were initialized to spherical Gaussian
distributions, with the centers placed systematically over the
input space (see SI). As with the OME learning, training was
done separately for each speaker, with 10 runs per speaker. On
each run, 32,000 input stimuli were drawn from the same training
distributions used for the OME learning, and rescaled to match
the input grid. On each trial, one stimulus was drawn from this
set of 32,000 (with replacement) and presented to the network
(see Methods).

Each run of the TOME learning was evaluated in the same way
as the OME learning, by drawing 2,000 new points from the
training distribution and calculating a confusion matrix. Once
again, for comparison, we also calculated the performance of
TOME with supervised training. This consisted of executing the
TOME algorithm over the 32,000 training data points, setting the
responsibility to 1 for the correct category and 0 for all others
(similar to supervised training with OME). The resulting mod-
el’s performance was measured by using the 2,000 test points.
Table 1 (under the heading, Nonparametric Model, TOME)
shows the final results for each language, averaged across the
speakers. The performance is worse than the OME algorithm,
with fewer successful runs per speaker and lower percent correct
rates. The main reason is that TOME places few constraints on
the category structure and consequently has weaker generaliza-
tion than OME (whereas TOME’s discretization of the input
space and fewer number of initial categories might potentially
play a role, we used exploratory simulations to select parameter
values that minimized their importance).

Vallabha et al.
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As previously noted, TOME is closely related to several biolog-
ically plausible neural network models. Some relations are evident
in the terminology (e.g., net,, connections), but further parallels may
be drawn. For example, the likelihoods p, may be treated as output
activities of the category units and the mixture probabilities as the
gains of these activities (36). Furthermore, plasticity kernels have
been proposed for modulating connection updates (27). Alterna-
tively, if we let the input stimulus be a bump of activity in the input
space rather than a single point, then step 4 of the algorithm (viz.,
the parameter update) closely approximates a common variant of
Hebbian competitive learning (34, 35).

Discussion

The results of the OME and TOME training suggest that speech
categories contain enough acoustic structure for explicit unsu-
pervised acquisition of both the number of categories and their
respective distributions. The algorithms have some similarity to
other proposals for speech learning (22, 24) as well as to more
general architectures involving radial basis functions (37). In
addition, TOME suggests a way of reconciling EM-type ap-
proaches with biologically plausible Hebbian learning (9, 28, 38)
and topographic map-based learning in speech perception (8,
18-20). In light of current interest in Bayesian theories of
perception (39), it should be noted that OME shares some
characteristics of Bayesian approaches. However, it deviates
from a “pure” Bayesian approach in that it does not keep track
of the complete probability distribution over the parameters, but
rather keeps track of only a point estimate of these parameters
(40). Furthermore, the update for the mixing probabilities is
restricted to the single most responsible category rather than
graded by the responsibilities. However, these deviations do not
imply a theoretical divergence, because it may be possible to have
a Bayesian formulation of these ideas (41, 42).

The success of the OME algorithm has several implications for
theories of vowel acquisition. The current results show that
infant-directed speech in English and Japanese contains enough
acoustic structure to bootstrap the acquisition of (at least some)
vowel categories. In tandem with other work (8, 9, 18, 22-25),
this provides a mechanistic underpinning and feasibility assess-
ment of the proposal that, for at least some speech sounds,
infants initially have a homogeneous auditory space that devel-
ops category structure although experience. Although we have
focused on categorization, OME also has implications for the
development of speech-sound discrimination. For example, the
vector of responsibilities {Resp,} for a token may be taken as a
graded category representation and discriminability indexed as
a distance measure over these category representations. Such
measures also may be used to model the time course of percep-
tual category learning. More generally, OME can be seen as an
unsupervised extension of mixture-based models of human
categorization, whereas TOME can be seen as a kernel-based
model (in which categories are aggregates of smoothed data
points) but which avoids the memory requirements of exemplar
models (31, 43). A simplification adopted in the present work
(one shared with most other models of vowel learning) has been
to treat vowels as static stimuli. However, dynamic information
has been shown to be crucial in vowel perception (44). In future
work, temporal structure can be incorporated into the input
representation by, for example, coding the formant trajectories
by using the Discrete Cosine Transform (45).

Both OME and TOME represent categories by dedicating a
single category unit to each one. This fact should not be viewed as
a claim about neural implementation, because it is unlikely that
there are neurons in the brain dedicated to individual categories. It
is more likely that category representations should be sought in the
collective activity of neural populations, and that this distributed
activity exhibits behavior akin to localist representations (28, 46).
Further work also is needed to examine the relationship between
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the current approach in which category distribution and member-
ship are represented explicitly and topographic models in which
they are represented implicitly (8). One possibility is that these
approaches coexist within a single system, with different represen-
tations engaged in different tasks (9).

Finally, the OME algorithm has implications for the larger
debate about the nature of speech acquisition, namely, whether
it is guided primarily by innate, domain-specific constraints that
unfold over time or by the statistics of the speech stimuli. The
present work is based on a position between these two extremes.
Although it incorporates an innate bias for Gaussian-distributed
categories, such a bias appears to be justified for stop consonants
(47) as well as vowel spectra (29). Moreover, such a bias is very
generic and unlikely to be relevant only to speech (31, 48); the
gradient descent algorithm that underlies OME is also very
general. The use of relatively domain-general principles together
with domain-specific input statistics has been shown to account
for phenomena such as stage-like development (49) and quasi-
regularity (50), and the success of the OME algorithm suggests
that such an approach may prove fruitful in the domain of speech
category acquisition. Within the present approach, an issue for
further research is whether something approximating the bias
favoring Gaussian or unimodal category structure used in the
OME version of the model can be incorporated in a future
version of the biologically more realistic TOME model, while still
preserving TOME’s ability to model non-Gaussian distributions
should the input deviate from the Gaussian constraint.

Methods

Rescaling of the Inputs and Estimation of the Training Distributions.
The F1, F2, and duration values cannot be used directly because
they differ in scale. Hence, they were converted to z-scores [e.g.,
Fl, = (F1 — Flmean)/Flsq)- Means and SDs were calculated
separately for each speaker. The z values were then used to
estimate the mean and covariance for each category for each
speaker [to minimize bias due to the small number of data points,
small-sample estimation was used (51); see SIJ.

Initialization of OME. There were R = 1,000 initial categories, and
M,, C, and mix, are, respectively, the mean, covariance matrix,
and mixing probability of category r. The parameters of the R
initial categories were initialized as M, ~ N(0, 3 1), C, = 0.2 1,
and mix, = 1/R, where I is the identity matrix and r ranged from
1to R.

Operation of OME. On each trial, the algorithm goes through six
steps, summarized as (i) get the input stimulus D; (ii) calculate
the likelihood of D for each category r; (iii) calculate the
responsibility for each category r; (iv) update the parameters for
each category r; (v) update the mixing probability for winning
category 7; and (vi) Ensure mixing probabilities sum to 1. p, is the
likelihood of the data point given category r, and Resp, is the
corresponding responsibility.

i. Get a data point D

ii. Forr=1...R, p, < mix-Pr(D|M,, C,)
iii. Forr =1...R, Resp, < p/Zp;

iv. Forr=1...R

M, <M, + nResp, (D — M,)
C, < C, + mResp,[(D = M,)(D - M,)" — C,]

v. 7 < arg max{Resp,}; mix; < mix; + 71
vi. Forr = 1...R, mix, < mix,/2mix;.

Each run was 50,000 trials with learning rate n = 0.005. For
efficiency, a category was eliminated from consideration once its
mix, fell to <0.0005.
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Evaluation of OME. At the end of a run, a confusion matrix CM was
constructed from the system’s classification of the 2,000 test
points, where CM(a, ¢) is the number of test items from (actual)
vowel category a that were classified under (estimated) category
e. The columns of CM were ordered by the number of points in
each, and if 4 columns were needed to account for 95% of the
test points, the run was counted a success. For the performance
measure, let CM' be CM with columns reordered to maximize
Trace(CM). The ith column of CM' was taken as the system’s
estimate of the ith vowel category, and percent-correct was
defined as 100 X Trace(CM')/2Z;Z,CM'(i, j). The d' values were
measured by collapsing CM'. If rows 1-4 of CM' are /i/, /i/, /e/,
and /e:/, then for the length d’ CM’ was collapsed into a 2 X 2
matrix CM"” where, for example, CM” (1, 2) was the number of
/i/ or /e/ tokens that were classified as either /i:/ or /e:/. The d’
values were calculated from the resulting hit and false alarm
rates.

Operation of TOME. On each trial, the algorithm goes through six
steps paralleling those in OME. p, is the likelihood of the data
point given category r, Resp, is the corresponding responsibility,
w; s is the connection between the input unit at (i, j, k) and
category unit r, and the indices i, j, and k range from 1 ... 25.

i. If the data point is closest to grid location 7, f, k
p [l i=hi=jk=k
Lk 0 otherwise

ii. Forr=1...R
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r . r
net, < EiZ/Ekwi,j,k'Di,j,k = Wik
P, < net mix,

iii. Forr =1...R, Resp, < p/Z.ps
iv. Forr =1...R, and for all , j, k

sz(,j,k = ’fTReSPr‘G(i - i:] _ja k— I%)

r r r
Wijk eWi,j,k/Ea,b,c Wa.b,c

v. P < arg max{Resp,}; mix; < mix; + 7
vi. Forr = 1... R, mix, = mix,/2,mix,,.

Each run had 40,000 trials with learning rate n = 0.001. G is
the plasticity kernel, defined to be G(i, j, k) = exp(—[i* + j* +
k?]); « is a “sharpening” parameter, set to 1.15 (« > 1 assigns
greater responsibility to the winning unit). For efficiency, a
category was eliminated once its mix, fell to <0.001, and the
update of the conditional probabilities was restricted to input
units for which plasticity kernel G(-) > 0.01.

We thank Christiane Dietrich, Sachiyo Kajikawa, and Laurel Fais for
their help in collecting and analyzing the original infant-directed speech
samples. J.F.W. was supported by grants from the Natural Sciences and
Engineering Research Council of Canada and the Human Frontiers
Science Program. G.K.V. and J.L.M. were supported by National
Institutes of Mental Health (NIMH) Grant MH64445 (to J.L.M.).
G.K.V. also was supported by NIMH Training Grant 5T32-
MHO019983-07 (to Carnegie Mellon).

26. Rumelhart DE, Zipser D (1985) Cognit Sci 9:75-112.

27. Kohonen T (1993) Neural Networks 6:895-905.

28. Rosenthal O, Fusi S, Hochstein S (2001) Proc Natl Acad Sci USA 98:4265-4270.

29. Pijpers M, Alder MD, Togneri R (1993) in First Australian and New Zealand
Conference on Intelligent Information Systems, Perth, Australia (IEEE Press,
Menlo Park, CA).

30. Vallabha GK, Tuller B (2004) J Acoust Soc Am 116:1184-1197.

31. Rosseel Y (2002) J Math Psychol 46:178-210.

32. Lively SE, Logan JS, Pisoni DB (1993) J Acoust Soc Am 94:1242-1255.

33. Silverman BW (1986) Density Estimation for Statistics and Data Analysis
(Chapman & Hall/CRC, Boca Raton, FL).

34. Oja E (1982) J Math Biol 15:267-273.

35. O’Reilly RC, Munakata Y (2000) Computational Explorations in Cognitive
Neuroscience (MIT Press, Cambridge, MA).

36. Gold JI, Shadlen MN (2001) Trends Cognit Sci 5:10-16.

37. Poggio T (1990) Cold Spring Harb Symp 55:899-910.

38. Petrov A, Dosher BA, Liu Z-L (2005) Psychol Rev 112:715-743.

39. Kersten D, Yuille A (2003) Curr Opin Neurobiol 13:1-9.

40. Neal RM, Hinton GE (1999) in Learning in Graphical Models, ed Jordan MI
(MIT Press, Cambridge, MA), pp 355-368.

41. Roberts SJ, Husmeier D, Rezek I, Penny W (1998) IEEE T Pattern Anal
20:1133-1142.

42. Marin J-M, Mengersen K, Robert CP (2005) in Handbook of Statistics, eds Dey
D, Rao CR (Elsevier Sciences, London), Vol 25, pp 459-507.

43. Johnson K (1997) in Talker Variability in Speech Processing, eds Johnson K,
Mullennix JW (Academic, San Diego), pp 145-165.

44. Andruski JE, Nearey TM (1992) J Acoust Soc Am 91:390-410.

45. Zahorian SA, Jagharghi AJ (1993) J Acoust Soc Am 94:1966-1982.

46. Kawamoto A, Anderson J (1985) Acta Psychol 59:35-65.

47. Schouten MEH, van Hessen A (1998) J Acoust Soc Am 104:2980-2990.

48. Maddox WT, Bogdanov SV (2000) Percept Psychophys 62:984-997.

49. McClelland JL (1994) in Leading Themes, International Perspectives on
Psychological Science, eds Bertelson P, Eelen P, d”Ydewalle G (Erlbaum, East
Sussex, UK), Vol 1, pp 57-88.

50. Plaut DC, McClelland JL, Seidenberg MS, Patterson K (1996) Psychol Rev
103:56-115.

51. Hoffbeck JP, Landgrebe DA (1996) IEEE T Pattern Anal 18:763-767.

Vallabha et al.



