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ABSTRACT

Oligoribonuclease is the only RNase in Escherichia
coli that is able to degrade RNA oligonucleotides
five residues and shorter in length. Firmicutes
including Bacillus subtilis do not have an
Oligoribonuclease (Orn) homologous protein and it
is not yet understood which proteins accomplish
the equivalent function in these organisms. We had
previously identified oligoribonucleases Orn from
E. coli and its human homolog Sfn in a screen for
proteins that are regulated by 30-phosphoadenosine
50-phosphate (pAp). Here, we identify YtqI as a
potential functional analog of Orn through its
interaction with pAp. YtqI degrades RNA oligonu-
cleotides in vitro with preference for 3-mers. In
addition, YtqI has pAp-phosphatase activity in vitro.
In agreement with these data, YtqI is able to
complement both orn and cysQ mutants in E. coli.
An ytqI mutant in B. subtilis shows impairment of
growth in the absence of cysteine, a phenotype
resembling that of a cysQ mutant in E. coli.
Phylogenetic distribution of YtqI, Orn and CysQ
supports bifunctionality of YtqI.

INTRODUCTION

Degradation of RNA is an important factor in the
regulation of gene expression. Impairment of regulation
of mRNA stability was implicated in the pathogenesis of
cancer, inflammatory diseases and Alzheimer’s disease (1).
Enzymes involved in RNA degradation fall into two
major classes: endoribonucleases, which cleave RNAs
internally and exoribonucleases, which degrade RNAs
from the ends. The phylogenetic distribution of endo- and
exoribonucleases (2–4) in genomes clearly shows that
different species vary considerably with respect to the
number and variety of the RNases they harbor.
Interestingly, two ribonucleases that are essential in
Escherichia coli do not have homologous counterparts in
Bacillus subtilis: RNase E (5) and oligoribonuclease (6).

Belonging to the degradosome, RNase E is widely
believed to be the enzyme initiating mRNA decay (7).

Oligoribonuclease, Orn, is the only known exoribonu-
clease that is essential in E. coli (6). The essentiality in
E. coli is due to its unique ability to degrade RNA
oligonucleotides with a length of 5 nt and shorter (8–10),
and oligonucleotides of these lengths were shown to
accumulate in a conditional orn-mutant (6). We would
like to introduce the term ‘nanoRNA’ here to distinguish
these extremely short oligonucleotides from the longer
microRNAs. We chose the term nano in reference to its
roots: Nano originates from the Greek word nanos, which
means dwarf. Micro on the other hand descends from the
Greek word mikros, which means small. Nano is therefore
used in this context simply to articulate ‘smaller than’
micro.

A recent study reveals the structural basis for the
constraints preventing RNase II as a member of the RNR
exoribonuclease family from degrading oligonucleotides
shorter than 5 nt (11–14). Another member of this
exoribonuclease family, RNase R was shown to process-
ively degrade RNA in a 30 to 50 directed manner until a
di- or trimer remains which cannot be degraded further by
this enzyme (12). This size limit is therefore likely to be
common at least among the members of this important
family of exoribonucleases. This highlights the importance
of enzymes that have the ability to degrade nanoRNA
and thus bring the degradation of RNA to completion.
Absence of an oligoribonuclease in Firmicutes is in
contrast to its general presence in Gram-negative prokary-
otic genomes as well as in eukaryotic genomes (3). This
prompted us to question which enzyme could functionally
replace oligoribonuclease in these organisms.

We had recently discovered an unexpected link between
sulfur- and RNA metabolism: oligoribonuclease binds
to 30-phosphoadenosine 50-phosphate (pAp) and is sensi-
tive to micromolar amounts of the nucleotide (15). pAp is
generated in sulfur assimilation and was implicated in the
molecular mechanism of lithium’s action in the treatment
of bipolar disorder due to strong inhibition of pAp-
phosphatase by lithium (16). The interaction between
pAp and oligoribonuclease was documented for E. coli
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oligoribonuclease, Orn and its human homolog, Sfn (15).
The purpose of this work was to explore whether the
conserved interaction between pAp and oligoribonu-
cleases could be exploited to identify a functional analog
of Orn in B. subtilis. Surprisingly, the protein identified by
this route, YtqI, points to the existence of an even closer
link between sulfur- and RNA-metabolism in this
organism: YtqI can degrade both nanoRNA and pAp
in vitro. The pAp-degrading activity of YtqI is similar in
magnitude to that of CysQ, the pAp-phosphatase from
E. coli. Consistent with its in vitro activities, YtqI can
replace both Orn and pAp-phosphatase (CysQ) in E. coli.

MATERIALS AND METHODS

Strains, plasmids and growth conditions

Escherichia coli strains were grown in LB or MOPS
minimal medium (17) containing 40 mg/ml of amino acids
as indicated, K-phosphate at 2mM, vitamin B1 at
0.0005%, biotin at 0.001% when needed, glycerol at
0.4%, glucose or arabinose as indicated. Bacillus subtilis
was grown in minimal medium (18). Ampicillin
(100 mg/ml), kanamycin (25 mg/ml) or erythromycin
(1 mg/ml) was added for plasmid maintenance or to
select for chromosomal marker. Anhydrotetracycline
(Atc) was added at 250 ng/ml for induction of PLtetO-1.

To test growth in the absence of cysteine (Figure 7),
overnight cultures grown in MOPS minimal medium
containing all amino acids were washed twice with
medium lacking cysteine before inoculation into medium
containing cysteine (100 mM) or lacking this amino acid.

All experiments were performed in accordance with the
European regulation requirements concerning the use of
Genetically Modified Organisms (level 1 containment,
agreement n82735).

The plasmid for expression of his-tagged YtqI under
control of the arabinose-inducible promoter Para

(pUM412) was constructed as follows: Primer UM175
and UM176 were used to PCR-amplify ytqI from
B. subtilis 168 chromosomal DNA. The EcoRI, XhoI
digested fragment was used to replace the EcoRI/XhoI
fragment of pUM407 coding for Orn leaving the region
coding for the C-terminal his-tag and the ribosomal-
binding site intact.

The conditional E. coli orn mutant (strain UM341) uses
the anhydrotetracycline (Atc)-inducible promoter PLtetO-1

(19) together with a Tet-repressor (TetR) to ensure tight
control in the absence of Atc. This strain was created by
introducing the PLtetO-1 promoter in front of orn together
with a cassette coding for TetR and a kanamycin selection
marker (KmR). Two PCR fragments were amplified:
PCR1 amplified PLtetO-1, kmR and the transcription
terminator T0 from pZE21-MCS1 (19) using primer
UM153 and UM156, PCR2 amplified tetR including its
constitutive promoter PN25 and terminator T1 from
chromosomal DNA of DH5aZ1 (19) using primer
UM155 and UM154. pZE21-MCS1 and DH5aZ1 were
kindly provided by Hermann Bujard. The outside primers
UM155 and UM156 and equimolar amounts of PCR
fragments 1 and 2 were used to perform overlapping PCR.

The obtained PCR fragment was then cloned into
pGEMT-Easy (Promega) by TA cloning followed by
sequencing using primer UM172 and UM173. A verified
clone was used as template for PCR amplification using
primers UM155 and UM156. The obtained PCR fragment
was transformed into CF10230 to create the orn mutant
by lambda Red-assisted recombination according to the
protocol of Yu et al. (20). CF10230 is a nicþ derivative of
DY329 (20) that was kindly supplied by Michael Cashel
(Cashel,M., unpublished data). Mutants were verified
by confirmation of the 50 site of integration into the
chromosome by means of PCR using primers UM158 and
UM159 yielding a 432 bp fragment, as well as the 30 site
of integration using primer UM160 and UM161, yielding
a 446 bp fragment.
The cysQ mutant we used here has been described

before (15). We will refer to cysQ mutant 1 as UM285
from now on. UM285 has a replacement of the complete
coding DNA sequence (CDS) for CysQ by kmR.
The ytqI mutant strain (BSF66) was part of the

European/Japanese effort to inactivate the whole gene
set of B. subtilis 168 and has an insertion of
pMUTIN2MCS after the codon for amino acid 108 (21).

pAp-agarose binding

pAp-agarose-binding experiments were performed as
described previously (15). Two hundred milliliter cultures
of B. subtilis 168 or a protease-deficient mutant, DB430
(22) were grown in minimal medium containing 1.5mM
MgSO4 at 378C to an OD600 between 1.6 and 1.8. Cells
were harvested and washed once with 50mM NaPO4 pH
8.0, 300mM NaCl before freezing. Frozen pellets were
resuspended in 2ml pAp-agarose buffer (50mM HEPES,
pH 7.5, 10mM CaCl2, 50mM KCl) containing 100mM
NaCl, 0.4mM phenylmethylsulfonyl fluoride (PMSF) and
130 mg/ml lysozyme. After incubation for 45 min on ice,
the cells were opened using a Fastprep apparatus
(Bio101). Blocking with agarose beads, incubation with
pAp-agarose, elution, PAA electrophoresis and identifica-
tion of proteins was done exactly as described before (15).

Purification of his-tagged YtqI and activity assays

YtqI was purified from a 200ml culture of MG1655
carrying pUM412 according to the his-tag purification
protocol described previously (15).
Activity assays determining nanoRNase activity were

performed using custom-made RNA oligo 5-mers or
3-mers (50Cy5-CCCCC30 or 50Cy5-CCC30) as substrates
in reactions containing 50mM HEPES, pH 7.5, 5mM
MnCl2, 1.6–3.4 mM substrate. At intervals, 4.5 ml reaction
aliquots were taken and stopped by adding to an equal
volume of sample buffer (4� TBE, 100mM DTT, 16%
glycerol, 20mM EDTA) and frozen at �208C. For
analysis of the reaction products, 1.5 or 2.5 ml of samples
were applied to PAA gel electrophoresis on a 22%
SDS-PAA gel containing 2� TBE and run in 2� TBE.
Fluorescent RNA oligos were visualized using a
Molecular Dynamics STORM 860 in 650-nm long-pass
filter mode. Quantification of the data was done by
calculating the percent of fluorescence of each band at a
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given time point relative to the total fluorescence of the
same time point. Separating reaction products on 22%
SDS-PAA gels, we observed a reverse migration phenom-
enon. This effect can be accounted for by the fact that
cyanine dyes have a lower net negative charge than nucleic
acids: thus, removing nucleotides will reduce the charge
relative to the mass of the oligonucleotide and cause it to
shift up instead of down.
Inhibition of YtqI-catalyzed degradation of RNA

5-mers (50Cy5-CCCCC30) by pAp was performed in
30 ml reactions containing 3 mM substrate RNA 5-mers,
9 mg YtqI and pAp as indicated. Reactions were
incubated for 30 min at 378C. Relative activities were
assigned as conversion of the substrate into monomers.
The activity in the reaction without pAp was set to 100%.
Assays determining degradation activity on a longer

substrate were done using a custom-made RNA 24-mer
(50CACACACACACACACACACACACA30) that was
50-end labeled with [g-33P]ATP. This oligonucleotide was
labeled using the MirVana Probe and Marker Kit
(Ambion) in a 20 ml reaction containing 100 pmol oligo,
6.7 pmol [g-33P]ATP (20 mCi), 90 pmol ATP and 1 ml T4
Polynucleotide Kinase. Incubation was done for one hour
at 378C. The reaction was stopped by the addition of 2 ml
of 10mM EDTA and incubation at 958C for 2min. The
reaction mixture was purified from the unincorporated
nucleotides using NucAway spin columns (Ambion)
according to the instructions of the supplier. Three
microliter of the labeled RNA (�800 000 c.p.m.) were
used in a 20 ml reaction containing 5mM MnCl2, 50mM
HEPES pH 7.5 and 3 mg enzyme; incubation was for
30 min at 378C after which the reaction was stopped by
the addition of 20 ml loading buffer and incubation for
3min at 958C. An aliquot of 5 ml of the samples were
resolved on a 20% PAA, 7M Urea gel containing 2� TBE
that was ran in 2� TBE. Labeling of the decade-
marker was done with [g-33P]ATP (125 mCi, 1.7 pmol)
as suggested by the manufacturer including purification
from unincorporated nucleotides. One-fourth of the total
volume of labeled decade-marker was used per gel; this
amount corresponded to �800 000 c.p.m. A previously
characterized nuclease (with DNase and RNase
activity) from B. subtilis, YhaM (23) served as positive
control in experiments on RNA 24-mers. This protein was
purified employing a C-terminal his-tag. HEPES was
replaced by Tris pH 8.0 in the reaction containing YhaM
as this enzyme is less active in HEPES.
pAp degradation was assayed in 20 ml reactions

containing 6mM pAp, 2mM MnCl2, 50mM HEPES
(pH 7.5) at 378C. Reactions were started by the addition
of 1 mg YtqI. Aliquots of 4.5 ml were taken as indicated
and mixed with 0.5 ml 100mM EDTA before
resolving them by polyethyleneimine (PEI) thin-layer
chromatography with 0.8mM LiCl as solvent. Authentic
pAp and AMP were used as migration standards.
Accumulation of reaction products was estimated after
visualization by UV.
Expression of his-tagged proteins was monitored by

PAA gel electrophoresis followed by staining with Bio-
Safe Coomassie stain (BIO-RAD) or by western blot using
Anti-His6 Peroxidase antibodies (Roche) at 1:200 in

1� PBS, 1% skim milk, 0.1% Tween and ECL Plus
Western Blotting Detection System (GE Healthcare). For
these experiments, different expression levels of the Para-
controlled genes were achieved by growing cultures
in liquid LB in the presence or absence of arabinose
(0.2 or 0.02%).

Phylogenetic analysis

A total of 393 completely sequenced bacterial genomes
published before 4 January 2007 (http://www.ebi.ac.uk/
genomes/) were analyzed for the presence of YtqI, Orn
and CysQ orthologous proteins. Orthologs were defined
by searching for bi-directional best hits (BBH) (24) based
on the following parameters: 540% amino acid similarity
and 420% difference in protein length. The phylogenetic
tree presented in Figure S1 was constructed from 141
representative species based on 16S rRNA similarity.

RESULTS

Identification of YtqI among the proteins binding to pAp

The conserved interaction of pAp and oligoribonucleases
between E. coli and human cells encouraged us to ask if we
could identify a functional analog of oligoribonuclease in
B. subtilis among the pAp-binding proteins from this
organism. Extracts of B. subtilis 168 and a protease minus
mutant (DB430) (22) were used in pAp-binding experi-
ments. The protein pattern obtained looked similar for
both strains; we therefore present only the data acquired
for the wild-type strain. Two major protein bands were
visible in the pAp-binding fraction (Figure 1). Analysis of
band A by liquid chromatography tandem mass spectro-
metry (LC-MS/MS) revealed HisIE (SwissProt, O34912)
with an overall score of 2080 and 5 identified peptides
covering 22.5% of the total mass of the protein. HisIE was
identified previously as pAp-binding protein in E. coli
(15). The second major band gave high scores for two
proteins: GuaC (SwissProt O05269), GMP reductase with
an overall score of 292 and 4 peptides covering 13% of the
total mass, and YtqI (SwissProt O34600) with an overall
score of 140 and 4 peptides covering 11.5% of the total
mass. YtqI is an unknown protein that belongs to the
DHH/DHHA1 family (25). This family of proteins
consists of enzymes with phosphoesterase activity, includ-
ing RecJ. YtqI was therefore our best candidate for a
potential functional Orn analog.

YtqI complements an E. coli ornmutant

In order to perform complementation experiments, we
created a conditional promoter mutant of the essential orn
gene in E. coli (Figure 2). This mutant (strain UM341)
uses the anhydrotetracycline (Atc)-inducible promoter
PLtetO-1 (19) together with a Tet-repressor (TetR) to
ensure tight control in the absence of Atc. A growth defect
of this mutant was easily observable in cultures lacking
Atc grown in LB liquid medium. While growth of the orn
mutant carrying a plasmid-borne copy of orn (pUM408)
was not affected by the absence of Atc (42 versus 41min
doubling time for cultures minus and plus Atc,
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respectively), mutants carrying the vector control
(pBAD18) had a 1.9-fold longer doubling time when Atc
was missing (77 versus 43 min, respectively) and their
growth leveled off at an OD600 of �0.5. On plates, a
similar effect could be observed in the absence of Atc;
transformants of strain UM341 with pBAD18 produced
pinpoint-sized colonies that stopped growing, while
transformants with the orn carrying plasmid were
significantly larger after overnight exposure and continued
to grow (Figure 3).

C-terminally his-tagged YtqI was expressed under
control of the arabinose-inducible Para promoter (plasmid
pUM412) for complementation experiments. As seen in
Figure 3, ytqI expression completely rescued the growth
defect of the orn mutant on plates lacking Atc. Expression
was induced by the addition of 0.2% arabinose.
Expression levels of YtqI and Orn were similar under
these conditions as judged from Coomassie-stained gels

(data not shown). Complementation could be seen even in
the absence of arabinose. As opposed to the expression
level of YtqI in the presence of 0.2% arabinose, in the
absence of arabinose expression was not visible on a
Coomassie-stained protein gel and was below the amount
that could be detected by western blotting using Anti-His6
antibodies (data not shown). We concluded therefore that
even low levels of YtqI expression were sufficient for Orn
complementation.

YtqI degrades nanoRNA in vitro, with 3-mers being
a preferred substrate

Purified recombinant YtqI was tested for nanoRNase
activity. In the presence of manganese, YtqI was able to
degrade nanoRNA 5-mers (Figure 4). The activity in the
presence of other ions tested (magnesium, zinc and
calcium) was negligible (data not shown). Comparing
YtqI- and Orn-catalyzed degradation of nanoRNA
5-mers, we noticed significant differences: The amount of
YtqI required for appreciable activity was two orders of
magnitude higher than that necessary for Orn-catalyzed
activity. In addition, the pattern of degradation products
as well as the kinetics of this reaction looked very
different. Here, 3-mers were virtually missing and other
intermediates (2-mers and 4-mers) accumulated less than
in Orn-catalyzed hydrolysis (Figure 4). Therefore, we
hypothesized that 3-mers might be a preferred substrate
for YtqI and as such they might be hydrolyzed so fast that
accumulation could not be observed. We tested this
hypothesis by comparing degradation of 3-mers and
5-mers (Figures 4 and 5). We used three times more
enzyme in the reaction with 5-mers as substrate in order to
obtain appreciable conversion into monomers (Figure 4A)
as compared to the reaction on 3-mers (Figure 5A).
Turnover numbers for 3-mers were one order of magni-
tude higher than for 5-mers (1.5 versus 0.14 pmol/mg/min).
In Figure 5B, we compare the kinetics of the disappear-
ance of different substrates (3-mers or 5-mers) and the
appearance of the final reaction product monomers in
reactions with equal amounts of YtqI (1.5 mg). These
results clearly document that 3-mers were a much better
substrate for YtqI than 5-mers. Moreover, it seems that
degradation of 3-mers to 2-mer was the fastest step in
catalysis as the 2-mers formed here disappeared consider-
ably slower.
In order to ask whether YtqI degrades specifically

nanoRNA or is active on longer substrates as well, we
tested degradation of a RNA 24-mer 50-end labeled with
33P. Figure 6 shows that activity of YtqI on this substrate
was insignificant. The YtqI-catalyzed turnover of 24-mers
into monomers could be roughly estimated from this
experiment as 0.01 pmol/mg/min.

Sensitivity of YtqI to pAp

Binding of YtqI to pAp could point to the following
possibilities: (i) activity of YtqI is affected by pAp or
(ii) pAp can be a substrate for YtqI. We had reported
before that Orn-catalyzed degradation of nanoRNA is
highly sensitive to pAp (15). Therefore, we decided to test
the possibility (i) first. Unlike what we observed with Orn,
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Figure 1. pAp-binding proteins from B. subtilis. Shown is a colloidal
Coomassie stained SDS-PAA gel separating the pAp-binding fraction
of B. subtilis extract. M: marker, lane 1: fraction binding to blocked
agarose beads (control), lane 2: pAp-binding fraction.

Figure 2. Design of the conditional PLtetO-1 orn mutant. The PLtetO-1

promoter together with a cassette coding for the kanamycin resistance
marker (KmR) and the Tet-repressor (TetR) were inserted directly in
front of orn. The arrows correspond to the direction of transcription.
DH5aZ1 (19) was the source of TetR and terminator T1, and
plasmid pZE21-MCS1 (19) was the source of the PLtetO-1, kmR and
terminator T0.
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the addition of small amounts of pAp to the YtqI-
catalyzed reaction (10, 20 and 50 mM) did not produce
an easily observable effect on degradation of nanoRNA.
At 100, 200 or 500 mM pAp the activity of YtqI based

on the conversion of 5-mer into monomers in 30min
dropped to 28, 4 and 1%, respectively (data not shown).
The effect produced by 500 mM pAp was comparable
to the effect seen in the presence of 20 mM pAp in an
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Figure 4. Comparison of YtqI and Orn-catalyzed degradation of nanoRNA 5-mers. Shown are the separation of reaction products on 22% PAA gels
(upper panel) and the corresponding quantification (lower panel). Reactions contained 12 mg YtqI (A) or 0.14 mg Orn (B) and 1.5 mM or 2.7 mM
RNA 5-mer (50Cy5-CCCCC30), respectively. The minus indicates a control lacking enzyme. M specifies a size marker obtained by Orn-catalyzed
reaction. Closed circle: 5-mers, open circle: 4-mers, closed triangle: 3-mers, open triangle: 2-mers, square: 1-mers.
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ytqI
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Figure 3. Complementation of the conditional orn mutant by expression of YtqI. Transformants of strain UM341 with pBAD18 (vector control),
pUM408 (arabinose-inducible orn) or pUM412 (arabinose-inducible ytqI) were spread on LB plates containing 0.2% arabinose in the presence or
absence of anhydrotetracycline (Atc).
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Orn-catalyzed reaction with 0.07 mg Orn and 3 mM
substrate (15).

YtqI is also a pAp-phosphatase

The observed effect of pAp on YtqI-catalyzed degradation
of nanoRNA did not exclude the possibility of pAp being
a substrate for YtqI. We therefore tested the ability of
YtqI to degrade pAp in vitro. Remarkably, YtqI was able
to degrade pAp to AMP (data not shown). YtqI converted
6 nmol of pAp/mg/minute. The pAp-degrading activity
of YtqI was similar in magnitude to that of CysQ
(33 nmol/mg/min), the pAp-phosphatase from E. coli
(15). Unlike CysQ activity, pAp-degrading activity of
YtqI was not affected by either LiCl or CaCl2 at
concentrations of 5mM (data not shown).

To test if this in vitro activity of YtqI has physiological
relevance, we asked whether the expression of ytqI could
complement the cysQ mutant phenotype, i.e. the growth
impairment of CysQ-lacking cells in the absence of
cysteine. Figure 7 shows that complementation could
indeed be achieved. Transformants of UM285 (�cysQ)
with the vector control formed very small colonies when
plated on medium lacking cysteine (Figure 7A). In liquid
medium, growth of the vector control strain was severely
affected in the absence of cysteine (Figure 7B).
Transformants of UM285 with a plasmid expressing
YtqI (pUM412) or CysQ (pUM404) however formed
normal size colonies (Figure 7A). In liquid medium,
UM285 strains transformed with plasmids expressing
YtqI or CysQ were not affected in their growth when
omitting cysteine (Figure 7B). A comparison of expression
levels of YtqI and CysQ in the presence of 0.02%
arabinose showed that CysQ was expressed at a somewhat
higher level than YtqI (data not shown).
The ability of ytqI to complement a cysQ mutant in

E. coli, prompted us to investigate the phenotype of an
ytqI mutant (BFS66) in B. subtilis. Growth rates of the
B. subtilis wild type and BFS66 were compared either in
the absence or in the presence of cysteine. Doubling times
were similar in the presence of cysteine with 42 and 44min
for wild type and the ytqI mutant, respectively, but varied
considerably in the absence of cysteine with 43 versus
68min. This phenotype resembled that of a cysQ mutant
in E. coli. The latter seemed however more pronounced as
withdrawal of cysteine affected growth more severely
(88 versus 203min) (Figure 7B).
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Figure 5. Substrate preference of YtqI for RNA 3-mers. (A) YtqI-
catalyzed degradation of RNA 3-mers. A 30 ml reaction contained 3 mg
YtqI and 3.5 mM RNA 3-mers (50Cy5-CCC30). The minus indicates a
control-lacking enzyme. (B) Comparison of YtqI-catalyzed degradation
of RNA 5-mers or 3-mers. Shown are the amounts of substrate and
reaction product monomer present at times indicated. Numbers
indicate fractions of the total amount of fluorescent present in
substrate, intermediate and complete reaction products. Reactions
contained 2.7 mM substrate RNA 5-mers or 3-mers and 1.5 mg YtqI.
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Figure 6. Activity of YtqI on RNA 24-mers. Reactions containing
50 33P-labeled RNA 24-mers (50CACACACACACACACACACACA
CA30) were incubated for 30 min at 378C. M, decade marker; 1, no
enzyme control; 2, YtqI; 3, positive control (YhaM).
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Phylogenetic distribution of YtqI

Analysis of the phylogenetic distribution of Orn and YtqI
(Supplementary Figure S1), clearly demonstrated that the
majority of bacterial species possess only one of the two
proteins. YtqI was present in Firmicutes, Bacteroidetes,
Chlorobi and in the delta subdivision of Proteobacteria.
Orn, however, was present in beta and gamma-
Proteobacteria and in Actinobacteria. This distribution
points to some anti-correlation: the presence of one of the
genes seemed to exclude the presence of the second one
(26). The two proteins of different origin might therefore
exert the same function. Some Actinobacteria were excep-
tional in that they had both orn and ytqI. Cyanobacteria
and alpha-proteobacteria had neither Orn nor YtqI.
Figure 8 shows the distribution of YtqI, Orn and CysQ

in 393 completely sequenced genomes. This figure shows
that most organisms that had YtqI, did not have CysQ or
Orn. Whereas the overlap between organisms carrying
both Orn and CysQ was considerable (58% of the
species having Orn have also CysQ), only 21% of
the species having YtqI had also CysQ, and only 11%
of species having YtqI carried also Orn. This distribution
supports our hypothesis that YtqI might fulfill the
function of two proteins, Orn and CysQ.

Interestingly, while Orn was absent in all sequenced
archeal genomes (27), YtqI was represented in 42%
of them.

A complete list of genomes investigated and details
concerning presence of YtqI, Orn or CysQ orthologs is
shown in Table S1.

DISCUSSION

This study was conducted in order to search in the model
organism B. subtilis for a functional analog of E. coli
oligoribonuclease, Orn. Encouraged by the observation
that the pAp-oligoribonuclease interaction is conserved
between E. coli and humans, we identified YtqI as
potential functional Orn analog through its binding
to pAp. The other B. subtilis proteins interacting with
pAp, HisIE and GuaC, are of known function and were
not the focus of this study. It is however noteworthy that
the interaction between HisIE and pAp was observed
previously using E. coli extracts (15), which points to
biological relevance of this interaction.

YtqI belongs to the DHH family of phosphoesterases,
more specifically to the DHHA1 subfamily (25), some
members of which are involved in nucleic acid

cysQ

ytqI vector
vector

cysQ

ytqI

+Cys−Cys

B

A

Figure 7. Complementation of the cysQ mutant by the expression of YtqI. (A) Transformations of strain UM285 with pBAD18 (vector control),
pUM404 (arabinose-inducible cysQ) or pUM412 (arabinose-inducible ytqI) were spread on MOPS-minimal plates containing 0.4% glycerol and 0.2%
arabinose in the presence or absence of cysteine. (B) Growth of strain UM285 carrying the plasmids indicated in MOPS-medium containing 0.4%
glycerol and 0.02% arabinose in the presence or absence of cysteine (100 mM).
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metabolism. It was therefore a good candidate for a
functional Orn analog. YtqI can complement a condi-
tional orn mutant in E. coli when expressed at similar
levels as Orn. This complementation does not require high
amounts of YtqI, as expression levels that are below the
detection limit of Anti-His6 antibodies are sufficient.
Recombinant YtqI is able to degrade nanoRNA 5-mers
in vitro in the presence of manganese. Whereas Orn is
essential in E. coli, YtqI is not essential in Bacillus. This
points to the existence of at least one more enzyme with
the ability to degrade nanoRNA.

The pattern of degradation products on the PAA gel as
well as the kinetics of their appearance make it clear
that Orn and YtqI employ different mechanisms for
the degradation of nanoRNA. 5-mers are not a good
substrate for YtqI, they might be degraded in a
distributive rather than a processive way. Another obvious
difference was the absence of 3-mers from the degradation
pattern. One possible explanation for this could be a
preferred degradation of 3-mers into 2-mers. When used
as substrate, 3-mers are degraded much faster than
5-mers, requiring approximately 10 times less enzyme
than 5-mers for complete degradation. We therefore
concluded that 3-mers are much better substrates than
5-mers. This in vitro result could reflect the intriguing
possibility that YtqI acts preferentially on 3-mers in vivo
and cannot efficiently degrade 5-mers. In this case, the fact
that YtqI can complement Orn in E. coli could suggest
that the accumulation of 3-mers and not 5-mers is the
main cause of growth deficiency in E. coli lacking Orn.
According to the literature (28,29), 90% of RNA
degradation in E. coli is done hydrolytically, implying a
more significant contribution of RNase II and RNase R as
compared to PNPase. The relative contribution of RNase
II and RNase R is under dispute; RNase II was considered

to be the main contributor to mRNA degradation (30),
but this result was questioned by a genome-wide analysis
of mRNA levels in a strain deleted for RNase II (31). The
end products of degradation catalyzed by RNase II and
RNase R differ slightly in size; for RNase II experimental
data indicate 3–5-mers (12) or 4–6-mers (11,32) as final
product and 4-mers according to the structural model
(13), and RNase R leaves 2–3-mers (12,14) or 1–2-mers
(11). The size range of fragments produced by RNase R
seems to be more suitable for degradation by YtqI than
that of oligonucleotides produced by RNase II. The
importance of RNase R is increasingly recognized. RNase
R has the ability to degrade stable RNA (12,33) and
contributes to quality control of rRNA (33). More
recently this enzyme was shown to be involved in the
degradation of mRNA substrates with extensive second-
ary structure (27). In addition, RNase R was shown to
increase dramatically under different stress conditions
(34–36). Bacillus subtilis harbors only one member of the
RNR family of exoribonucleases, RNase R, which seems
to be equally important for the degradation of highly
structured RNA as its counterpart in E. coli (37). Another
requirement for oligonucleotide degradation might also
come from systems expressed under the control of
cyclic dGMP. Indeed this regulatory molecule is
degraded by a phosphodiesterase, which should result in
formation of pGpG, a dinucleotide that needs to be
further degraded (38).
We previously demonstrated that Orn and Sfn bind

pAp, but cannot degrade it, instead pAp is a strong
inhibitor of these enzymes (15). YtqI however can degrade
pAp in vitro; it also complements a cysQ mutant in
E. coli. Both results clearly indicate that YtqI is a pAp-
phosphatase. The phenotype of an ytqI mutant in
B. subtilis resembles that of an E. coli cysQ deletion:
growth is impaired in the absence of cysteine. Withdrawal
of cysteine causes doubling times to increase 1.6-or
2.3-fold in an ytqI mutant in B. subtilis or an E. coli
cysQ mutant, respectively. The effect of withdrawal of
cysteine seems therefore slightly more moderate in
B. subtilis lacking YtqI than in E. coli lacking CysQ. In
fact, the difference between B. subtilis and E. coli in this
respect could be somewhat larger, considering the fact that
E. coli strain MG1655 used in our experiments has a
rather leaky cysQ mutant phenotype as compared to other
strains of E. coli (39). One possible explanation for this
interspecies difference could be bispecificity of B. subtilis
protein CysH1. This enzyme has the ability to reduce both
PAPS and APS (40) in vitro. In addition, expression of
B. subtilis cysH1 can complement an E. coli mutant
defective for APS kinase encoded by cysC (41). This raises
the possibility that APS could be reduced directly in
B. subtilis, which would bypass the requirement for PAPS
synthesis and thus pAp accumulation could be unneces-
sary. The direct reduction of APS is commonly used in
plants (42) and was documented for some bacteria
including Mycobacterium tuberculosis (41), Pseudomonas
aeruginosa (43) and Rhizobium meliloti (44).
The existence of a second enzyme able to hydrolyze pAp

could be an alternative explanation for the only partial

Figure 8. Distribution of CysQ, Orn and YtqI in bacterial genomes.
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growth defect of the ytqI mutant in the absence of
cysteine.
The phylogenetic distribution of YtqI, Orn and CysQ

and in particular the anti-correlation is in agreement with
the hypothesis that YtqI fulfills the functions of two
proteins in E. coli, Orn and CysQ.
Until now, RNase R was the only exoribonuclease

known in the small genomes of Mycoplasma species (3).
Noteworthy is therefore the presence of YtqI homologs
among the small set of proteins of unknown function in
the genomes of Mycoplasma genitalium and Mycoplasma
pneumoniae, where proteins MG371 and MPN140 respec-
tively, are likely to perform the essential function of
nanoRNA degradation.
Different species seem to have found different

solutions to the same cellular problem, the problem
being the degradation of nanoRNA or pAp. Yet another
solution to the problem of nanoRNA degradation
awaits to be discovered, as cyanobacteria and the alpha
division of proteobacteria have neither YtqI nor Orn
orthologs.
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