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We present a method for estimating the distribution of fitness
effects of new amino acid mutations when those mutations can be
assumed to be slightly advantageous, slightly deleterious, or
strongly deleterious. We apply the method to mitochondrial data
from several different species. In the majority of the data sets, the
shape of the distribution is approximately exponential. Our results
provide an estimate of the distribution of fitness effects of weakly
selected mutations and provide a possible explanation for why the
molecular clock is fairly constant across taxa and time.

What proportion of mutations are deleterious, neutral, and
advantageous? What is the strength of selection that acts

on nonneutral mutations? In short, what is the distribution of
fitness effects of new mutations? This is one of the most
fundamental problems in evolutionary biology, because it lies at
the heart of several important questions. It is the question that
has been debated for �30 years in the neutralist–selectionist
debate (1, 2), but it is also central to our understanding of the
molecular clock (3, 4) and the maintenance of genetic variation,
at both the molecular and phenotypic levels (5, 6).

The distribution of fitness effects is central to our understand-
ing of the molecular clock because certain distributions can
stabilize the clock (7). Although there are exceptions, the
molecular clock is remarkably constant over long periods of
time, particularly for amino acid substitutions (8, 9). Under the
neutral theory of molecular evolution, the rate of substitution
per year is equal to uf, where u is the nucleotide mutation rate
per year and f is the proportion of mutations that are neutral (2).
However, there is no reason why the mutation rate per year
should be constant across taxa; in fact, there is some evidence
that suggests that the mutation rate is higher in organisms with
short generation times (10–12). Ohta and Kimura (13) suggested
a solution to this problem. They suggested that there might be
a continuum of allelic effects, from very deleterious through
slightly deleterious to neutral mutations, rather than the two
categories of mutations, deleterious and neutral, proposed under
the original neutral theory. Because deleterious mutations with
effects less than 1�Ne are effectively neutral, the proportion of
mutations of effectively neutral mutations, f, is lower in large
populations. Thus, the rate of molecular evolution might be
constant if species with short generation times, and hence fast
mutation rates, tended to have large population sizes, and
therefore low numbers of effectively neutral mutations, i.e., f and
u might be negatively correlated. Ohta (4) showed theoretically
that this was indeed the case; she showed that if the distribution
of fitness effects was exponential and the mutation rate was
proportional to the effective population size, then the two factors
exactly cancelled each other out to yield a constant rate of
molecular evolution. Kimura (3) later showed that if the distri-
bution of fitness effects was gamma distributed with a shape
parameter of 1�2, then the two cancelled each other out if the
mutation rate was proportional to the square root of the effective
population size.

Unfortunately, we know relatively little about the distribution
of fitness effects, despite its importance. Analysis of mutation

accumulation experiments suggest that the distribution of fitness
effects for deleterious mutations is highly leptokurtic, with a few
mutations having large fitness effects, and the vast majority
having mild effects (14, 15). However, these analyses have very
little power to tell us about the precise shape of the distribution
of fitness effects; in Keightley’s analyses, the mutation rate and
the shape of the distribution of fitness effects are confounded
with one another. The situation is a little better for advantageous
mutations. Theoretical work suggests that the distribution of
fitness effects is likely to be exponential (16, 17), and recent work
with experimental populations of bacteria has confirmed that the
distribution is leptokurtic, with the majority of adaptive muta-
tions having small effects (18).

Analyses of DNA sequence data have also shed some light on
the distribution of fitness effects of new mutations. It is evident
from the highly conserved nature of most protein-coding se-
quences that most amino acid mutations are strongly deleterious.
It has been estimated that �70% of all amino acid mutations
have a deleterious effect of �2 � 10�5 (19). It has also become
apparent that there is a class of slightly deleterious mutations,
mutations that are sufficiently weakly selected that they can
contribute to polymorphism and occasionally become fixed. The
evidence for this category of mutations is threefold. First, the
ratio of the nonsynonymous to the synonymous substitution rate
is higher in species with smaller effective population sizes. This
has been shown in mammals (12, 19, 20), Drosophila (19, 21), and
birds (22); it is thought that a greater proportion of slightly
deleterious amino acid mutations are fixed in the species with the
smaller effective population size. Second, nonsynonymous poly-
morphisms segregate at lower frequencies than synonymous
polymorphisms in some species. This has been shown in Dro-
sophila (23, 24) and humans (25), and is thought to be caused by
the segregation of slightly deleterious nonsynonymous muta-
tions. Finally, it has been shown in several data sets that the ratio
of the number of nonsynonymous (Pn) to synonymous (Ps)
polymorphisms is greater than the ratio of the number of
nonsynonymous (Dn) to synonymous (Ds) substitutions. This
pattern is commonly seen in data sets where recombination is
rare, including mitochondrial DNA (26, 27), the self-fertilizing
plant Arabidopsis thaliana (28), and Escherichia coli (N. Smith
and A.E.-W., unpublished results). If all mutations were either
strongly deleterious or neutral, Pn�Ps would equal Dn�Ds; this is
the basis of the McDonald–Kreitman (MK) test of neutral
molecular evolution (29). However, if there is a class of slightly
deleterious mutations, they tend to contribute to polymorphism,
but rarely become fixed; they therefore lead to an excess of
nonsynonymous polymorphism. Fay et al. (30) recently estimated
that at least 20% of nonsynonymous mutations in humans are
slightly deleterious.
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Work has also started to elucidate the role of adaptive
evolution at the DNA sequence level. Several studies have
recently estimated that a substantial fraction of the amino acid
substitutions in higher primates (30) and Drosophila (24, 31, 32)
are a consequence of adaptive evolution rather than random
genetic drift. However, inferring the number of advantageous
mutations is difficult because the number of substitutions is a
function of both the mutation rate to advantageous mutations
and the strength of selection favoring them. We do not currently
have independent estimates of either of these quantities.

Recently, Nielsen and Yang (33) have estimated the distribu-
tion of fitness effects by using DNA sequence data by consid-
ering the variation in the rate of substitution between different
sites within a gene. They fit a number of distributions to primate
mitochondrial DNA data and found some power to differentiate
between models. The best fitting models were a normal and a
gamma distribution. Both of these distributions fit the data
significantly better than an exponential distribution.

Here we introduce a method, based on the MK test, to
estimate the distribution of fitness effects from DNA sequence
data. The method is suitable for estimating the distribution of
fitness effects when there are no strongly advantageous mu-
tations, i.e., all mutations are weakly selected or strongly
deleterious.

Materials and Methods
The Method. The method is based on the MK test. In the MK test,
we typically have a number of sequences of a gene from within
a species and a single sequence from a different species. With
data of this form, we can count the number of synonymous (Ps)
and nonsynonymous (Pn) polymorphisms, and estimate the
number of synonymous (Ds) and nonsynonymous (Dn) substitu-
tions that have occurred between the two species. For our
method, we also need estimates of the proportion of sites that are
synonymous (�S) and nonsynonymous (�n). We deal with the
practical aspects of how we estimate Ds, Dn, �S, and �n later.

Let us assume that synonymous mutations are neutral and that
the distribution of fitness effects of nonsynonymous mutations
follows some distribution Z(S). Under this model, assuming a
standard Fisher–Wright model of evolution and free recombi-
nation we expect to observe

P̂s � L�s� �
i�1

n�1 1
i

, [1]

synonymous polymorphisms in a sample of n sequences of length
L nucleotides (34), where � � 4Neu for a diploid or 2Neu for a
haploid, and u is the nucleotide mutation rate per generation.
The number of nonsynonymous polymorphisms we expect to
observe is

P̂n � LPn��
��

� �
0

1

H�S, x��1 � xn � �1 � x�n�Z�S��x�S, [2]

where

H�S, x� �
�1 � e�S�1�x��

x�1 � x��1 � e�S�

and

S � 2Nes �haploid� or S � 4Nes �diploid�.

H(S, x) is the time a semidominant mutation with a selective
advantage of S spends between x and x 	 dx (35, 36).

The expected number of synonymous substitutions is

D̂s � L�s�, [3]

where � � 2ut is the time of divergence between the two species
under consideration. The expected number of nonsynonymous
substitutions is

D̂n � L�n��
��

�

Z�S�F�S��S, [4]

where

F�S� �
S

1 � e�S

F(S) is 2Ne (or Ne for a haploid) times the fixation probability of
a semidominant mutation with selective advantage S (2). Note
that we implicitly assume here, and in the actual implementation
of this method, that the time of divergence is much greater than
the age of polymorphisms being considered, and that we can
therefore ignore any contribution polymorphism makes to the
apparent divergence between the two species.

Because we have four observations, we can potentially esti-
mate four parameters; we need to estimate � and �, but this then
leaves us with two degrees of freedom to estimate two param-
eters that describe the distribution of fitness effects of nonsyn-
onymous mutations.

Distribution of Fitness Effects. We have chosen to model the
distribution of fitness effects in four ways. In the first model
(model 1), we assume that all nonsynonymous mutations are
equally deleterious with a selective disadvantage of S. In the
second model (model 2), we assume that all nonsynonymous
mutations are deleterious, but that they are gamma distributed:

Z�S� �
��S��1e��S


���
. [5]

The gamma distribution provides us with considerable flexibil-
ity; the distribution can take a number of shapes, which allows
the relative proportions of mutations that are effectively neutral,
slightly deleterious (or advantageous), and strongly deleterious
to vary independently of each other. For example, if � �� 1, then
most mutations are either neutral or strongly deleterious, the
relative proportions being dictated by the value of �; if � � 1,
then a substantial proportion of mutations are neutral, slightly
deleterious, and strongly deleterious; and if � �� 1, then most
mutations fit into one particular category. Bimodal distributions
cannot be modeled by using the gamma distribution.

However, both model 1 and 2 are unrealistic because they
assume that all mutations are deleterious. It seems likely,
particularly for weakly selected mutations, that each slightly
deleterious mutation is matched by a slightly advantageous
mutation; for example, if a T mutation occurs at a site that is
fixed for C, and has an disadvantage of �S, then a C mutation
at the same site, when it is fixed for T, will have a selective
advantage of 	S. This is the model used to describe the evolution
of synonymous codon use (for example, see refs. 37 and 38). If
we have a site at which allele A1 has an advantage of 	S over
allele A2 and the mutation rate is the same between the two
alleles, then the time the site will be fixed for A1 is

X�S� �
eS

eS 	 1
[6]

(37, 38). This leads to two new models. If we assume that all pairs
of alleles have the same absolute strength of selection, the
realized distribution of fitness effects will be as follows: a
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proportion X(S) of the mutations will be selectively disadvan-
tageous with selection �S, and a proportion [1� X(S)] will be
selectively advantageous with selection 	S (model 1a). For the
gamma distribution, the distribution becomes

Z��S� � �1 � X�S��Z��S�� [7]

(model 2a). We might refer to this as a partially reflected gamma
(PRG) distribution, because part of the distribution is reflected
around the y axis. Examples of PRG distributions are given in
Fig. 1.

Parameter Estimation. To estimate the parameters of our models,
we assumed that Pn, Ps, Dn, and Ds are independent Poisson
distributed variables, so the likelihood of the data given the
parameters of the model is

L � 
�P̂n, Pn�
�P̂s, Ps�
�D̂n, Dn�
�D̂s, Ds�, [8]

where


�m, x� �
e�mmx

x!

In reality, Pn, Ps, Dn, and Ds are neither independently nor Poisson
distributed because recombination is not free in the data sets we
have considered, and we have corrected for multiple hits in the
divergence data. For models 2 and 2a, there was generally a set of
parameters that gives a perfect fit of the model to the data because
there are four parameters and four observations. Although Eqs. 2
and 4 should be integrated between �� and 	�, this was not
necessary; it turned out to be adequate to integrate the functions
between �1,000 and 1,000. To find the maximum likelihood or
point estimates, we followed the slope of steepest ascent, as
implemented in the MATHEMATICA routine FINDMINIMUM. MATH-
EMATICA routines to perform the analyses are available on request.

For a number of data sets, we estimated the confidence
intervals for our maximum likelihood (ML) estimates by per-
forming a random walk of 4,000 steps around the ML parameter
estimates by using the Metropolis–Hastings algorithm (39). The
confidence intervals estimated by this method are underesti-
mates because free recombination is assumed. Graphical anal-
ysis showed that 4,000 steps was sufficient to estimate the
confidence intervals.

Data. We have applied our method to mitochondrial data from
several species. To compile the data, we considered each of the data
sets given in the compilations of Nachman (26), Rand and Kann

(40), and Gerber et al. (27). If several data sets shared sequences in
common, we randomly selected a data set so that data sets were
independent. To these data sets we added a data set of complete
human mitochondrial sequences with chimpanzee used as the
outgroup (41). For each of these data sets, we took a single
sequence from each of the two species being considered and
calculated the numbers of synonymous and nonsynonymous sub-
stitutions by using the FCODON model of Goldman and Yang (42)
as implemented in PAML (43). We excluded any data set in which
there were more than two synonymous substitutions per site (full
details of all data sets analyzed can be found in Table 5, which is
published as supporting information on the PNAS web site,
www.pnas.org). This left us with 18 of a total of 26 data sets. We
used the polymorphism counts given by Nachman (26), Rand and
Kann (40), and Gerber et al. (27), unless they combined polymor-
phism counts from different species, in which case we selected the
species with the greatest number of sequences and calculated
the number of polymorphisms by using DNASP (44). To estimate the
proportion of sites that are nonsynonymous and synonymous,
we used the estimates from the Goldman–Yang method; the
Goldman–Yang method estimates of the proportion of sites as the
proportion of mutations that are nonsynonymous and synonymous,
and are therefore appropriate for our application (42). The data are
summarized in Table 1.

Results
Although our method for estimating the distribution of fitness
effects is seemingly quite general, it can in practice only be
applied to data sets in which there are few strongly advantageous
mutations. This is because advantageous mutations decouple
polymorphism and substitution: if the advantageous mutations
are under directional selection, they contribute little to poly-
morphism, and if they are under balancing selection, they
contribute little to divergence. We have therefore applied the
method to data sets in which the data appear to be dominated
by deleterious mutations, namely, data sets in which an MK test
shows an excess of amino acid polymorphism (Table 1). Such a
pattern is most readily interpreted as being caused by the
segregation of slightly deleterious mutations in a gene that has
undergone little adaptive substitution.

It has previously been reported that many mitochondrial DNA
data sets show an excess of amino acid polymorphism in an MK
test. We compiled data from 18 pairs of species, which are
summarized in Table 1. As in previous analyses, we find that the
vast majority of data sets show an excess of amino acid poly-
morphism (16 of 18, P � 0.01); this is also true if we analyze those
data sets that were excluded because their level of synonymous
substitution was too high (8 of 8 data sets P � 0.01; see Table 5).
The proportion of data sets showing an excess of amino acid
polymorphism is somewhat higher than others have found,
because we have corrected for multiple substitutions.

To begin our analysis, we fit a simple model in which we
assumed that all mutations were equally deleterious (model 1).
Estimates of the average strength of selection are given in Table
2. Our estimates are slightly different to those given by Nachman
(26) because he did not correct the divergence for multiple hits.
Interestingly, the fit of the model is often poor and can be
rejected in a goodness-of-fit test in 12 of the 18 data sets.
However, it should be noted that the goodness-of-fit test is only
approximate because Pn, Ps, Dn, and Ds are not multinomially
distributed as assumed under the test (see above).

The poor fit of the model could be because we have assumed
that all mutations are deleterious, because it seems likely that if
some mutations are slightly deleterious, then other mutations
will be slightly advantageous. However, the fit of model 1a is no
better than model 1 (Table 2).

A more likely reason for the poor fit of model 1 is that there
is variation in the strength of selection between mutations, with

Fig. 1. Some examples of partially reflected gamma distributions. The
probability density is plotted as a function of S, the strength of selection. The
curves in descending order of leptokurtosis are for shape parameters of 0.5, 1,
and 2. Each distribution has a mean value of 1.
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some mutations being very deleterious, whilst others are only
mildly deleterious or neutral. We therefore fit a model in which
all mutations were assumed to be deleterious, but in which the
strength of selection was assumed to be gamma distributed
(model 2). The model fits the data perfectly in all but two data
sets, but this is not surprising because we have four parameters
for the four observations (Table 3). The model does not fit the
data from Pomatostomus (PT) and Gila (GC) because these data
sets do not show an excess of amino acid polymorphism; the best
fitting model appears to be one in which the � is infinitely large
and � is infinitely small.

The shape of the gamma distribution, as measured by the
parameter �, is quite consistent across data sets: the value lies
between 0 and 4.7, with the majority of data sets being between 0.2

and 1.0; the mean of � is 0.93 (SE � 0.26). In contrast to the shape,
the location of the distribution, as measured by either � or the mean
strength of selection, varies by several orders of magnitude between
data sets: e.g., S� varies from �15 to �920,000. The values of � and
� tend to be very similar under model 2a, when some of the
mutations are allowed to be slightly advantageous (Table 3). For all
data sets � and � are greater than under model 2, with average
strength of selection being somewhat lower, as we would expect
given that some of the mutations are advantageous.

Unfortunately, because we have corrected the number of
substitutions for multiple hits, and because there is little or no
recombination in mitochondrial DNA, we cannot estimate con-
fidence intervals for the parameters or test whether is significant
variation in � or � (or S�) between data sets. However, we can
estimate the minimum confidence interval by assuming that Dn,
Ds, Pn, and Ps are poisson distributed, i.e., we assume that there
is free recombination in our data sets and we have not corrected
for multiple hits. If we do this, we find the confidence intervals
for � to be generally quite small, and those for � and S� to be very
large. For example, for model 2 in humans � � 0.39 with
confidence intervals of 0.36 and 0.50, � � 0.00027 (0.00015,
0.0012), and S� � �1,400 (�420, �2,400), and in Drosophila
melanogaster � � 0.58 (0.48, 2.0), � � 0.00035 (0.000097, 0.081),
and S� � �1,700 (�25, �5,000).

Discussion
We have developed a method to estimate the distribution of
fitness effects from a combination of polymorphism and diver-
gence data. The method can be applied to any data set in which
one category of mutations are neutral and the other category are
either weakly advantageous, neutral or deleterious. The method
cannot be applied to data sets in which there many are strongly
advantageous mutations. We have applied our method to a range
of mitochondrial data sets in which the ratio of nonsynonymous
to synonymous changes is greater for polymorphism than sub-
stitution. This pattern appears to be remarkably consistent
across mitochondrial data sets and is consistent with a low rate
of adaptive amino acid substitution and the segregation of
slightly deleterious mutations.

We have shown that many data sets do not appear to fit simple
models in which all mutations are equally deleterious, or in which

Table 1. The 18 data sets analyzed

Data set Polymorphism species Outgroup species Gene n L �n Dn Ds Pn Ps NI

AL Ambystoma laterale Ambystoma jeffersonianum cytb 10 306 0.71 3 90 1 4 7.5
BM Brachyramphus marmoratus Brachyramphus brevirostris cytb 14 1,041 0.75 1 118 1 13 9.1
DM Drosophila melanogaster Drosophila simulans nd5 59 1,515 0.90 19 157 11 17 5.4
DP Drosophila pseudoobscura Drosophila miranda nd5 22 1,399 0.87 9 174 2 19 2.0
FC Fringilla coelebs Fringilla teydea cytb, atp6, nd5 15 1,283 0.83 11 96 13 63 1.8
GA Grus antigone Grus rubicunda cytb 9 1,143 0.78 3 41 7 10 9.6
GC Gila cypha Gila elegans Nd2 18 758 0.6 17 69 1 5 0.8
GM Gadus morhua Gadus ogac cytb 41 300 0.66 0 20 3 22 �1
HS Homo sapiens Pan troglodytes All 53 11,259 0.68 186 1,765 91 320 2.7
IB Isothrix bistriata Isothrix pagurus cytb 10 798 0.71 15 150 15 103 1.5
MA Microtus arvalis Microtus

rossiaemeridionalis
cytb 10 1,143 0.72 12 80 13 20 4.3

MD Mus domesticus Mus spretus nd3 56 342 0.67 3 57 11 13 16
MH Mesomys hispidus Mesomys stimulax cytb 29 798 0.69 7 120 30 118 4.4
PI Passerella iliaca Melospiza melodia cytb 19 431 0.78 12 186 5 10 7.8
PL Phyllobates lugubris Dendrobates pumilio cytb 8 292 0.71 7 156 11 59 4.2
PT Pomatostomus temporalis Pomatostomus isidori cytb 35 282 0.72 9 118 0 17 0.0
SA Sciurus aberti Sciurus niger cytb 20 1,140 0.68 26 487 12 38 5.9
UA Ursus arctos Helarctos malayanus cytb 166 1,140 0.64 23 167 11 44 1.8

n is the number of sequences in the first species listed, L is the length of the sequence, and NI is the neutrality index. Dn and Pn are numbers of nonsynonymous
substitutions and polymorphisms, respectively; Ds and Ps are numbers of synonymous substitutions and polymorphisms, respectively.

Table 2. Parameter estimation and goodness of fit test for
models 1 and 1a

Species

Model 1 Model 1a

S G test �S� G test

AL �6.2 NS 7.0 NS
BM �8.8 ** 9.5 **
DM �6.2 ** 7.0 **
DP �7.0 ** 7.8 **
FC �6.2 ** 6.9 **
GA �5.8 NS 6.6 NS
GC �3.0 NS 3.9 NS
GM �120 NS 120 NS
HS �4.6 ** 4.9 **
IB �5.6 ** 6.3 **
MA �4.4 NS 5.3 NS
MD �5.4 NS 6.2 NS
MH �6.5 ** 7.2 **
PI �5.8 * 6.6 *
PL �6.5 ** 7.2 **
PT �5.3 ** 6.2 **
SA �5.5 ** 6.3 **
UA �4.1 ** 4.9 **

See Table 1 for species abbreviations. NS, not significant. *, P � 0.05. **,
P � 0.01.
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the absolute strength of selection is the same for all mutations,
but some mutations are advantageous and some are deleterious.
This is perhaps not surprising, because there is ample evidence
from studies of mutations with measurable phenotypic effects
that mutations vary considerably in their effects on fitness (45).

A model in which the strength of selection varies according to
a gamma distribution fits all but two of the data sets perfectly,
the data sets that do not fit the model perfectly are those that do
not show an excess of amino acid polymorphism. The shape of
the gamma distribution varies relatively little between data sets;
� varies between 0 and 4.7 for model 2, and between 0 and 5.3
for model 2a. The mean shape parameters are 0.93 (0.26) and 1.2
(0.3), respectively, where the numbers in parentheses are stan-
dard errors. These results contrast strongly with those of Nielsen
and Yang (33), who estimated the distribution of fitness effects
by considering the variation in the rate of substitution between
sites in primate mitochondrial DNA. They found that a gamma
distribution with a shape parameter of 3.22 (or a normal
distribution) fit the data significantly better than an exponential
distribution, the best fitting gamma distribution was one in which
a substantial fraction of the mutations had S values between �5
and �0.1. In contrast, the distributions we have estimated have
relatively few mutations in the range �5 � S � �0.1; for
example, if we consider the distribution we have estimated from
humans, just 7% of the mutations lie in the range �5 � S � �0.1,
whereas this fraction is 98% in the gamma distribution estimated
by Nielsen and Yang (33) (and about half of this when they
include a fraction of strongly deleterious mutations). The reason
for the difference between their results and ours is not obvious,
both methods make many assumptions and use rather different
data. Possibly the most conspicuous difference between their
method and ours, besides the use of polymorphism data, is their
assumption that the strength of selection on new mutations is
constant through time at a particular codon. In contrast, we
make the assumption that just the distribution of S across sites
is constant through time. More work will be needed to resolve
the differences between the results from these two methods.

Gamma distributions with the shapes we have estimated from
mitochondrial DNA have the interesting property that the
average probability of fixation is proportional to a function of the
inverse of the effective population size [f � (1�Ne)�] (3, 4, 46).
These distributions therefore have the potential to make the

molecular clock more robust if species with high mutation rates
tend to have large effective population sizes. We might expect
population size and mutation rate to be correlated, because
species with large effective population sizes tend to have short
generation times (46), and there is some evidence that species
with short generation times have high mutation rates (10–12).

However, if the distribution of fitness effects is exponential
(i.e., � � 1), as our data suggest, then the ratio of the nonsyn-
onymous to the synonymous substitution rate, hereafter the
dn�ds ratio, is expected be proportional to the inverse of the
effective population size, and this is not seen for the limited data
we have. We are assuming here, as we do in our method to infer
the distribution of fitness effects, that synonymous mutations are
neutral and that nonsynonymous mutations are deleterious;
dn�ds therefore provides an estimate of f, the proportion of
mutations that are effectively neutral, or equivalently, the aver-
age probability of fixation relative to that of neutral mutations.
The effective population size of Mus domesticus appears to be
�10-fold greater than that of hominids both for nuclear (19) and
mitochondrial genes (unpublished results). However, the dn�ds
ratio is �2-fold higher in human–chimpanzee than mouse–rat
for nuclear genes (19), and also 2-fold higher in human–
chimpanzee than M. domesticus–Mus spretus for mitochondrial
genes (see Table 1). So, given the difference in effective popu-
lation size and the mean estimate of �, we would expect a 10-fold
difference in the dn�ds ratio; this is not observed, the difference
is only 2-fold. However, one might argue that data sets that do
not reject model 1 are uniformative about the distribution of
fitness effects and therefore should be ignored. If we ignore
those data sets, then the mean value of � � 0.52 (0.09); under
such a distribution, we would predict that the dn�ds ratio should
be �3-fold higher in hominids than rodents, which is more
consistent with what is observed.

We have made a number of assumptions in developing our
method. First, we have assumed that there are few strongly
advantageous mutations. Advantageous mutations potentially
have two effects, a direct effect and an indirect effect secondary
effect. If there are some strongly advantageous mutations, then
a proportion of the nonsynonymous substitutions or nonsynony-
mous polymorphisms are a consequence of adaptive evolution.
To investigate the consequences of adaptive substitution and
polymorphism, we reanalyzed the human data set, assuming that

Table 3. Parameter estimation under models 2 and 2a

Species

Model 2 Model 2a

� � s� � � s�

AL 1.1 � 10�2 1.1 �100 1.7 � 10�2 1.3 76
BM 9.2 � 10�4 0.91 �990 1.4 � 10�3 1.0 710
DM 3.5 � 10�4 0.58 �1,700 5.8 � 10�4 0.67 1200
DP 3.7 � 10�7 0.34 �920,000 3.3 � 10�6 0.42 130,000
FC 3.7 � 10�6 0.31 �84,000 2.5 � 10�5 0.39 16,000
GA 6.3 � 10�2 1.6 �25 1.0 � 10�1 2.2 22
GC � 1�� – � 1�� –
GM 3.3 � 10�2 4.7 �140 3.8 � 10�2 5.3 140
HS 2.7 � 10�4 0.39 �1,400 5.7 � 10�4 0.47 820
IB 4.5 � 10�7 0.23 �510,000 8.7 � 10�6 0.30 34,000
MA 3.7 � 10�2 1.0 �27 6.8 � 10�2 1.4 21
MD 1.5 � 10�1 2.2 �15 2.4 � 10�1 3.3 14
MH 1.6 � 10�3 0.62 �390 2.8 � 10�3 0.74 260
PI 1.1 � 10�2 0.99 �90 1.6 � 10�2 1.2 75
PL 3.0 � 10�3 0.75 �250 5.5 � 10�3 0.93 170
PT � 1�� – � 1�� –
SA 7.8 � 10�3 0.85 �110 1.3 � 10�2 1.1 85
UA 2.8 � 10�6 0.21 �75,000 5.3 � 10�6 0.23 43,000

See Table 1 for species abbreviations.
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25, 50, and 75% of the substitutions were a consequence of
adaptive substitution; to do this, we reduced Dn by 25, 50, and
75%, respectively. Likewise, to investigate the effect of balancing
selection on some amino acid mutations, we reduced Pn by 25,
50, and 75%. The results are presented in Table 4. Interestingly
adaptive substitution has relatively little effect on the estimates
of �. The effect of balanced polymorphism is a little more
marked, particularly on �, but even here the basic nature of the
distribution is not greatly affected.

Advantageous mutations will also have indirect effects either
by the process of genetic hitchhiking (6), in the case of adaptive
substitutions, or by leading to the effective subdivision of the
population, in the case of a balanced polymorphism. We have
also assumed that the population size is stationary, that sampling
was random, that synonymous mutations are neutral, and that
there is free recombination. The direct effect of assuming free
recombination, when there is in fact little or no recombination,
would be to lead to an underestimate of the variance associated
with our estimates. The indirect effect of assuming free recom-
bination is to ignore the effects of genetic hitchhiking (6),
background selection (5), and weak Hill–Robertson interference
(37). The fact that the shape parameter estimate is fairly constant
across data sets, which come from diverse taxa, suggests that this
result is robust to these complications.

It is, at first sight, puzzling why the estimate of the shape
parameter is consistent across data sets and robust to assump-
tions about the level of advantageous mutation. However, the
results are perhaps not surprising given two facts: (i) there is an

excess of amino acid polymorphism in almost all mitochondrial
DNA data sets, and (ii) there is variation in the strength of
selection on amino acid polymorphisms. Between them, these
two facts constrain the shape parameter: the shape parameter
cannot be too small or there would be very few slightly delete-
rious mutations; when � � 0.1, almost all mutations are either
strongly deleterious or neutral. However, the shape parameter
cannot be too large, because we know there is variation in the
strength of selection acting on deleterious mutations (45).

We have assumed that the distribution of fitness effects is
gamma distributed because this is a flexible monotonic distri-
bution. However, other distributions would fit the data; for
example, a model in which a proportion of mutations are slightly
deleterious, and the remaining mutations are strongly deleteri-
ous fits the data, as does a model in which the strongly delete-
rious class is replaced by a neutral class (although, of course, the
proportion of slightly deleterious mutations and the strength of
selection acting on them would differ substantially between the
two models). In fact, many distributions may fit the data; it is
therefore be best to regard our analysis as demonstrating that a
gamma distribution is consistent with the mitochondrial DNA
data.
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Table 4. Parameter estimation under model 2a assuming a proportion of substitutions or polymorphisms
are adaptive

Data set 0

Proportion of adaptive substitution Proportion of balanced polymorphism

0.25 0.5 0.75 0.25 0.5 0.75

HS � 5.7 � 10�4 1.3 � 10�3 2.7 � 10�3 6.0 � 10�3 6.6 � 10�5 2.8 � 10�13 �

HS � 0.47 0.58 0.75 1.0 0.35 0.11 1��

See Table 1 for data set details.
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