
Breast cancer classification and prognosis
based on gene expression profiles from a
population-based study
Christos Sotiriou*†, Soek-Ying Neo‡, Lisa M. McShane§, Edward L. Korn§, Philip M. Long‡, Amir Jazaeri*,
Philippe Martiat†, Steve B. Fox¶, Adrian L. Harris¶, and Edison T. Liu*‡�

*Division of Clinical Sciences, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Gaithersburg, MD 20877; †Microarray Facility,
Jules Bordet Institute, Free University of Brussels, 121 Boulevard de Waterloo, 1000 Brussels, Belgium; ‡Genome Institute of Singapore, Singapore 117528;
§Biometric Research Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and ¶Imperial Cancer Research Fund Molecular
Oncology Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS Oxford, United Kingdom

Communicated by Patrick O. Brown, Stanford University School of Medicine, Stanford, CA, May 14, 2003 (received for review December 13, 2002)

Comprehensive gene expression patterns generated from cDNA
microarrays were correlated with detailed clinico-pathological
characteristics and clinical outcome in an unselected group of 99
node-negative and node-positive breast cancer patients. Gene
expression patterns were found to be strongly associated with
estrogen receptor (ER) status and moderately associated with
grade, but not associated with menopausal status, nodal status, or
tumor size. Hierarchical cluster analysis segregated the tumors into
two main groups based on their ER status, which correlated well
with basal and luminal characteristics. Cox proportional hazards
regression analysis identified 16 genes that were significantly
associated with relapse-free survival at a stringent significance
level of 0.001 to account for multiple comparisons. Of 231 genes
previously reported by others [van’t Veer, L. J., et al. (2002) Nature
415, 530–536] as being associated with survival, 93 probe elements
overlapped with the set of 7,650 probe elements represented on
the arrays used in this study. Hierarchical cluster analysis based on
the set of 93 probe elements segregated our population into two
distinct subgroups with different relapse-free survival (P < 0.03).
The number of these 93 probe elements showing significant
univariate association with relapse-free survival (P < 0.05) in the
present study was 14, representing 11 unique genes. Genes in-
volved in cell cycle, DNA replication, and chromosomal stability
were consistently elevated in the various poor prognostic groups.
In addition, glutathione S-transferase M3 emerged as an important
survival marker in both studies. When taken together with other
array studies, our results highlight the consistent biological and
clinical associations with gene expression profiles.

Breast cancer patients with the same diagnostic and clinical
prognostic profile can have markedly different clinical out-

comes. This difference is possibly caused by the limitation of our
current taxonomy of breast cancers, which groups molecularly
distinct diseases into clinical classes based mainly on morphol-
ogy. Microarray technology with its ability to simultaneously
interrogate 10,000–40,000 genes has changed our thinking of
molecular classification of human cancers (1). Two major reports
have described the use of microarrays to assess the molecular
classification of human breast cancer and have defined new
subgroups based on expression that are relevant to patient
management (2, 3). Sorlie et al. (2) investigated 51 carcinomas
from a single patient cohort with locally advanced T3�T4 breast
cancer with node involvement treated with primary chemother-
apy. van’t Veer et al. (3) studied 78 cases of patients with sporadic
cancer all under the age of 55 with no lymph node involvement
and not treated with adjuvant chemotherapy.

The tumors in both studies could be partitioned into two
majors subgroups based on their estrogen receptor (ER) status
as suggested by others (4, 5). Additionally, these expression
cassettes could provide a refined estimate of prognosis, perhaps

beyond those clinical indicators currently available to us. Sorlie
et al. (3) identified a luminal subgroup (subgroup A) of ER-
positive tumors associated with the best outcome. van’t Veer et
al. (3) addressed this problem, by investigating a narrow subset
of node-negative breast cancer patients. They found 231 genes
significantly associated with disease outcome as defined by the
presence of distant metastasis at the 5-year mark. Van de Vijver
et al. (6) provided a validation of the van’t Veer predictor applied
to 234 new patients from the same institution and using the same
array platform.

In the present work, we have undertaken a population-based
study from a regional cancer center where there are 350 new
patients a year referred in from a population of 1.5 million. Over
a 2-year period, 700 new cancer cases were seen, and of these 700
cases we analyzed 99 cases representative of the population. The
overall survival of this group of 99 cases, adjusted for standard
prognostic factors of tumor size and nodal status, is comparable
to that of the 700 patients selected from the cohort seen in the
years 1993–1995. Because patients were treated within existing
standards of practice in those years, there was variation in patient
management, reflecting the heterogeneity in clinical presenta-
tion of breast cancer.

Materials and Methods
Clinicopathological Characteristics of Breast Cancers. Tumor sam-
ples from 103 patients with primary local breast carcinoma were
accessed from the John Radcliffe Hospital from January 1993 to
December 1994. Four of the 103 samples were excluded from the
analyses because of technical difficulties, leaving a total of 99
breast tumors. A detailed list of all samples and clinical and
histopathological data for the patients is in Table 2, which is
published as supporting information on the PNAS web site,
www.pnas.org). All of the tumor samples were invasive ductal
carcinomas; 46 individuals were node negative and 53 were node
positive. Almost all of the patients received adjuvant treatment
after surgery, consisting of radiotherapy (80 patients), chemo-
therapy (32 patients), and endocrine therapy (78 patients)
according to accepted practice guidelines at that time. The
chemotherapy regimen for the majority of the patients consisted
of six cycles of cyclophosphamide, methotrexate, and 5-fluorou-
racil, and the endocrine therapy consisted of tamoxifen for at
least 5 years after surgery. All tumor samples had been flash-
frozen and stored at �80°C. All of the tumor samples contained
�50% of tumor cells based on frozen sections adjacent to the
selected samples.

Relapse-free survival (RFS) was defined as the interval
elapsed between the date of breast surgery and the date of

Abbreviations: ER, estrogen receptor; RFS, relapse-free survival; BCS, breast cancer survival;
PCNA, proliferating cell nuclear antigen.
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diagnosed further episode of breast cancer, whether the breast
cancer was classified as a recurrence or second primary, and
whatever the histology. Breast cancer survival (BCS) was defined
as the interval elapsed between the date of breast surgery and the
date of breast cancer-related death (documented from hospital
records). ER status was determined by using ligand-binding
assays and immunohistochemistry. Grade was determined by
using the Elston–Ellis grade system (7).

RNA Extraction and Probe Preparation. Isolation of RNA was
performed by using the TRIzol method (Invitrogen) according
to the manufacturer’s instructions. RNA quality from each
tumor biopsy was assessed by visualization of the 28S�18S
ribosomal RNA ratio on 1% agarose gel. Total RNA was linearly
amplified by using a modification of the Eberwine method (8, 9).
Total RNA from the Universal Human Reference (Stratagene)
was amplified and used as reference for cDNA microarray
analysis. The cDNA microarray chips consisted of 7,650 total
features and were manufactured at the National Cancer Institute
microarray facility.

A detailed protocol for RNA amplification and cDNA probe
labeling and hybridization is available at http:��nciarray.nci.nih.
gov�reference�index.shtml. GENEPIX software (Axon Instru-
ments, Union City, CA) was used to analyze the raw data, which
were then uploaded to a relational database maintained by the
Center for Information Technology at the National Institutes of
Health.

Data Analysis. Images of all of the scanned slides were meticu-
lously inspected for artifacts, and aberrant spots and slide regions
were flagged for exclusion from analyses. Log (base 2) ratios for
each spot were calculated as follows. In each channel, signal was
calculated as foreground median minus background median. If
the signal was �100 in any single channel, the signal value in that
channel was set to 100. If the signal was �100 in both channels,
the spot was flagged as unreliable and not used in any further
analyses. Also, if �50% of the pixels in the foreground in either
channel reached the saturation threshold, the spot was flagged
and not used in analyses. For all remaining (nonflagged) spots,
a log ratio was calculated as log2[(red signal)�(green signal)].
The log ratios were then normalized within each array by
subtracting from each the median log ratio value across the spots

on the array. The channel-specific intensity data and normalized
log ratios of all 99 experiments are available in Tables 3–5, which
are published as supporting information on the PNAS web site.

The first phase of the analysis was to compare expression
profiles between specimens segregated according to values of
standard prognostic variables. In particular, we considered the
following comparisons: tumor grade 1 or 2 vs. 3; tumor size �2
cm vs. �2 cm; age �50 years vs. age �50 years (menopausal
status); node negative vs. node positive; and ER� vs. ER�.
These comparisons were made by parametric t tests using the
statistical software SPLUS (SPLUS 6.0 Professional, Insightful, Seat-
tle). To control for multiple comparisons, we reported as sig-
nificant genes only those that reached significance at level P �
0.001. Testing 7,650 probes at this significance level, we expect
that the average number of spuriously significant (false positive)
results will be eight or less.

Cluster analyses were conducted to search for natural group-
ings in the profiles. Before clustering, a screening procedure was
applied to eliminate genes showing minimal variation across the
set of 99 specimens. Specifically, for each gene, the 5th and 95th
percentiles of the ratios were calculated. If the ratio of the 95th
to 5th percentile was �3 that gene was not included in the cluster
analysis. This process left 706 probe elements for the cluster
analyses. Hierarchical agglomerative clustering using the statis-
tical package BRB-ARRAYTOOLS software (available at http:��
linus.nci.nih.gov�BRB-ArrayTools.html) was applied to these
normalized log ratios by using both compact linkage and average
linkage and both Euclidean and one minus Pearson correlation
distance metrics. Normalized log ratios were median-centered
within each gene for all of the cluster analyses. The clustering
results obtained by using compact linkage with one minus
Pearson correlation distance applied to the 706 probe elements
appeared by visual inspection to yield the most distinctive
clusters (remaining blinded to any clinical or outcome variables),
and hence this was the clustering algorithm used for the unsu-
pervised cluster analyses based on these probe elements (Fig. 1).
The presence of significant clustering was assessed by applying
the global test of clustering proposed by McShane et al. (10). The
same techniques were applied for the clustering analyses using
gene subsets sets derived from the van’t Veer and Sorlie studies
(Figs. 3–6 which are published as supporting information on the
PNAS web site).

Fig. 1. Dendrogram of 99 breast cancer specimens analyzed by hierarchical clustering analysis using 706 probe elements selected for the high variability across
all tumors (see Materials and Methods). The tumors were separated into two main groups mainly associated with ER status as determined by the ligand-binding
(LB) assay and confirmed by immunohistochemistry (IHC). The dendrogram further branched into smaller subgroups within the ER� and ER� classes based on
their basal and luminal characteristics: Her-2�neu subgroup, dark blue; basal-like 1 subgroup, pink; basal-like 2 subgroup, yellow; luminal-like 1 subgroup, light
blue; luminal-like 2 subgroup, red; and luminal-like 3 subgroup, green. Black bars represent ER� tumors assessed by IHC (a), ER� tumors assessed by LB assay
(b), grade 3 (c), and node-positive tumors (d).
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Survival comparisons among clusters resulting from unsuper-
vised cluster analysis were made by using Kaplan–Meier esti-
mation and Cox proportional hazards regression. To assess
univariate associations of individual genes (log ratios) with
survival, Cox proportional hazards regression methods using the
SPLUS software were used.

Results
Classification of Tumors Samples Based on Clinical�Pathologic Char-
acteristics. Clinical parameters such as ER status, nodal status,
tumor size, tumor grade, and menopausal status of the patient
affect the behavior of breast cancers. We asked whether these
clinical�pathologic characteristics were associated with differ-
ential gene expression. Parametric t tests identified 606 probe
elements of the 7,650 elements represented in our array that
could segregate ER� and ER� breast tumors (Table 1, P �
0.001). The detailed gene list is in Table 6, which is published as
supporting information on the PNAS web site. Within this list
were genes previously known to be estrogen responsive or
associated with ER status such as LIV-1, TFF3, GATA 3, c-myb,
and BTG2 (11–14). A total of 137 probe elements distinguished
high-grade and intermediate�low-grade breast tumors (Table 1,
P � 0.001), including genes involved in cell cycle progression
such as topoisomerase II �, MCM2, BUB1, and proliferating cell
nuclear antigen (PCNA) (15–17). The detailed gene list is
included in Table 7, which is published as supporting information
on the PNAS web site. Few genes, however, discriminated tumor
size (3 probes, P � 0.001), nodal (11 probes, P � 0.001), and
menopausal status (13 probes, P � 0.001). This finding suggests
that ER status has a strong association with gene expression, and
tumor grade has a moderate association. However, there is no
strong evidence that nodal and menopausal status of the patient
or tumor size is associated with the expression profiles of the
tumors.

Unsupervised Clustering Identifies Natural Groups Corresponding to
Breast Lineage Markers. Using an unsupervised hierarchical clus-
tering approach, we sought to define natural subclasses of breast
tumors as determined by gene expression profiles. We per-
formed the unsupervised clustering on the 706 probe elements
selected as exhibiting high variability across all tumors (see
Materials and Methods). Included in this list are genes corre-
sponding to the standard prognostic parameters, such as ER and
HER-2�neu status. Application of the global test of clustering
and reproducibility measures of McShane et al. (10) showed
borderline statistically significant evidence for clustering (P �
0.057), and the robustness indices suggested (robustness �75%)
that the most reproducible clustering structure was evident when

the dendrogram was cut at two clusters. Our results show that the
tumor samples could be confidently separated into two main
groups primarily associated with ER status as determined by the
ligand-binding assay and confirmed by immunohistochemistry
(Fig. 1). The entire cluster diagram including gene expressions
is included in Fig. 7, which is published as supporting information
on the PNAS web site. Eighty-two percent of the tumors in the
left main branch are ER�, and 88% of the tumors in the right
main branch are ER� by immunohistochemistry. This finding
corroborated the earlier analysis (Table 1) that the major factor
discriminating the expression phenotype is ER status. As ex-
pected, the ER� cluster had a higher percentage of high-grade
tumors than the ER� cluster (Fig. 1).

The dendrogram further branched into smaller subgroups
within the ER� and ER� classes. Although our sample size was
not large enough to establish high reproducibility of smaller
subgroups, we were able to locate in our dendrogram several
subgroupings previously identified in other studies. We describe
here what we observed in our data relative to those clusters that
have been reported by others. Within the ER� cluster are
tumors with ‘‘basal’’-like expression characteristics as defined by
higher gene expression of keratin 5, keratin 6, metallothionein
1X, and fatty acid binding protein 7 as reported (Table 8, which
is published as supporting information on the PNAS site) (2, 18).
Furthermore, they exhibited higher expression of the secreted
frizzled-related protein 1 (SFRP1) and the oncogene c-kit and
lower expression of fibronectin 1 and mucin 1. Basal 1 subgroup
was differentiated by higher expression of matrix metal-
loproteinase 7 and cell growth-related genes such as topoisom-
erase II �, mitotic feedback control protein Madp2 homolog
(MAD2L1), cell division control protein 2 homolog (CDC2),
and PCNA, suggesting a signature for a high proliferation rate
(Table 8). In contrast, the basal 2 subgroup was distinguished by
higher expression of many components of the transcriptional
factor AP-1 such as c-fos, c-jun, and fos B, as well as by
overexpression of activating transcription factor 3, caveolin 1 and
2, hepatocyte growth factor, and transforming growth factor �
receptor II. A subgroup distinct from the basal-like groups in the
ER� subset is defined by a high rate of HER-2�neu overex-
pression (HER-2�neu: 5�7 tumors). This HER-2�neu subgroup
was further distinguished from the basal-like subgroups by the
higher expression of MDR1, S100 calcium-binding protein P,
fatty acid synthase, RAL-B, RAB6A, fibronectin 1, and syndecan
1 and lower expression of c-kit and c-myc.

The ER� subgroup showed differential expression of genes
associated with ER activation such as LIV-1, trefoil factor 3,
neuropeptide Y receptor Y1, keratin 8, GATA3, and X-box
binding protein 1. These are also genes that define the ER�
cluster as having ‘‘luminal’’ characteristics as defined (2, 18).
Moreover, the ER� cluster could be further segregated into
three smaller subclasses: luminals 1, 2, and 3 (Fig. 1).

We then asked whether the array-derived tumor groups
demonstrated any differences with respect to survival. When the
basal�neu (predominantly ER�) and the luminal-like (predom-
inantly ER�) cluster were compared by Kaplan–Meier and Cox
regression analysis, the luminal-like subgroup had a significant
advantage in both RFS and BCS (Fig. 2 A and B). The three
subclasses within the basal�neu (ER�) cluster appeared to have
similarly poor survival characteristics (Fig. 2 C and D). By
contrast, the three subgroups within the luminal-like (predom-
inantly ER�) cluster showed distinct differences in survival (Fig.
2 E and F). Luminal 1 had the best outcome with an 80% 10-year
RFS. This luminal 1 subgroup was also correlated with lower-
grade tumors and was further characterized by differential
higher expression of c-kit, hepatocyte growth factor, insulin-like
growth factor-binding protein-3, ATF-3, and components of the
AP-1 transcriptional factor such as c-fos, c-jun, fosB, and jun-D,
and as expected by lower expression of cell growth related genes

Table 1. No. of genes discriminating known clinico-pathological
phenotypes in breast cancer

Clinico-pathological parameters
No. of significant expressed

genes, P � 0.001*

ER status
ER� versus ER� 606

Grade status
Grade 1�2 versus grade 3 137

Node status
Node positive versus negative 11

Tumor size
�2 cm versus �2 cm 3

Menopausal status
Premenopausal versus postmenopausal 13

*For 7,650 comparisons, the expected number of spuriously significant (false
positive) findings at level P � 0.001 is �8 or less.
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such as topoisomerase II �, mitotic kinesin-like protein-1,
PCNA, CDC2, BUB1, and MAD2L1 (Table 8). This was signif-
icantly different from the luminal 2 subgroup that had the worst
outcome with a 10-year RFS of 40% (P � 0.022 luminal-like 1
vs. luminal-like 2). This subgroup showed higher expression of a
protein tyrosine phosphatase type IVA member, tumor necrosis
factor receptor-associated factor 3, RAD21, and BRCA1-
associated protein 1 (BAP1) and lower expression of FGFR1,
CXCR4, ATF-3, and vascular cell adhesion molecule 1. The
luminal 3 subgroup had an intermediate survival outcome of
60% at 10 years. Intriguingly, although some of the ER� tumors
were HER-2 overexpressors (6 of 66), they were dispersed
among the luminal subgroups.

In the Sorlie et al. study (3), tumor classification was per-
formed based on the 456 cDNA clones (427 unique genes) in
their ‘‘intrinsic’’ gene list. To assess how these genes could
perform in classifying our tumor set, we sought the overlap
between either the intrinsic gene list and our cDNA array or the
overlap between the intrinsic gene list and the 706 variably
expressed probe elements in this study. We found 332 (285
unique genes) that overlapped with the full set of probe elements
on our cDNA array and 105 (96 unique genes) probe elements

that overlapped with our 706-gene list. Interestingly, in both
situations hierarchical cluster analysis segregated our tumors
into two distinct subgroups mainly based on their basal (pre-
dominantly ER�) and luminal (predominantly ER�) charac-
teristics (Figs. 5 and 6).

The luminal-like tumors were further segregated into at least
two (possibly three) smaller subgroups, which may correspond to
luminal A, B, and C subtypes. Additional analysis revealed that
100% of the specimens in the luminal A subtype in the 332-gene
cluster and 77% in the 105-gene cluster were assigned as
luminal-like 1 tumors in our unsupervised cluster analysis (based
on the 706-element cluster, Fig. 1). In contrast, the specimens in
the luminal B and C subtypes were assigned either as luminal-like
2 or luminal-like 3 tumors.

Although the luminal A subtype showed a favorable clinical
outcome when compared with other luminal subtypes, this
difference was not statistically significant.

Identification of Gene Clusters Associated with Survival. Our data-
base includes the survival data of all patients studied with a
median follow-up of 6.1 years. To determine the genes associated
with improved RFS, we performed Cox proportional hazards

Fig. 2. RFS and BCS analysis of the 99 breast cancer patients based on the gene expression cluster analysis classification. RFS (A) and BCS (B) of the predominantly
ER� and predominantly ER� clusters (the Her-2�neu and basal-like 1 and 2 subgroups were considered in one group and the luminal-like subgroups 1, 2, and
3 were considered in the other group). RFS (C) and BCS (D) of the Her-2�neu and basal-like 1 and 2 subgroups. RFS (E) and BCS (F) of the luminal-like 1, 2, and
3 subgroups.
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regressions on each of the 7,650 probe elements on our array. A
group of 485 different probe elements were identified that could
separate RFS in the 99 patients with a P value �0.05, but only
16 probe elements were significant at the more stringent P �
0.001 level used to control for multiple comparisons (Table 9,
which is published as supporting information on the PNAS web
site). We discuss results for the larger list of 485 so that our
results may be compared with results of previous studies. Of the
genes reported to be associated with prognosis in breast cancer,
only PCNA and topoisomerase II � were found to be elevated in
the poor prognostic group (HER2-neu�basal-like). Interestingly,
this gene list did not include the ER, Her-2�neu, or p53. This is
consistent with the findings of van’t Veer et al. (3), who found
no association between HER2 and ER expression levels and
survival in the node-negative cases included in their study.

In the van’t Veer et al. data set, 231 genes were noted to be
prognostic for RFS in the node-negative breast cancer patients.
We asked first whether any of these potentially prognostic genes
were included in our 7,650-element array. We observed that 93
probe elements representing 56 unique genes overlapped, and
based on their expression levels hierarchical cluster analysis we
could separate our patients into two distinct subgroups. When
Kaplan–Meier analysis was performed, a statistically significant
survival difference was seen between these two groups (P � 0.03,
Fig. 3). This finding demonstrated that a subset of the genes
identified by van’t Veer et al. to be prognostic in untreated
node-negative patients could be confirmed to have an associa-
tion with clinical outcome in an independent cohort of treated
individuals with mixed nodal status. To identify a minimal
number of the most important prognostic genes, we sought the
overlap between our optimal survival list of 485 probe elements
and the 231 genes in the van’t Veer et al. prognostic gene set. This
overlap survival gene list consisted of only 11 unique genes
represented by 14 probe elements. As expected (because these
14 elements were among those selected because of their ob-
served significant univariate association with survival), these 14
elements separated our patients into two major groups, showing
a significant difference in survival (as visualized in Fig. 4).
Intriguingly, 5 of the 11 unique genes, RFC4, MCM6, MAD2L1,
BUB1, and CKS2 appear to be involved in DNA replication and
chromosomal stability, and all were up-regulated in the poor
prognostic group. This finding suggests that differences in rep-
licative potential distinguish the prognostic groups.

Discussion
Microarray analyses on breast cancers have identified gene
expression profiles able to separate tumor classes associated with
patient survival (1). Perou et al. (18) and Sorlie et al. (2) showed
that the expression profiles primarily distinguished ER� from
ER� tumors and called them luminal and basal subtypes be-
cause of their respective luminal and basal characteristics. van’t
Veer et al. (3) had similar observation but extended this to gene
expression (or genetic profile) associations with survival in an
untreated, node-negative cohort.

Here, we present an analysis on 99 tumors from node-positive
and node-negative patients, the majority receiving adjuvant
treatment according to accepted practice guidelines at the time
of the diagnosis. Our results were significant in their concor-
dance with those of the earlier studies despite the differences in
patient populations, treatments used, and technology platforms
used. Thus, our results provide supporting evidence for the
prognostic importance of genes identified in previous reports on
a completely independent patient cohort with an independent
microarray platform. We found that the ER status of the tumor
was, indeed, the most important discriminator of expression
subtypes and that tumor grade was a distant second. Other
clinical features, namely lymph node positivity, menopausal
status, and tumor size were not strongly reflected in the expres-

sion patterns obtained with the 7,650-feature microarray in this
investigation. This finding confirms that ER biology plays a
central role in breast carcinogenesis defining the configuration
of the final tumor. Furthermore, investigation of gene expression
in primary tumors may be unlikely to identify a set of genes
whose expression reliably correlates with lymph node metastasis.
This finding is consistent with data showing that only a small
fraction of cells in a tumor mass have metastatic potential (19,
20). The genetic signature from this metastatic fraction would be
‘‘diluted’’ by the signals from nonmetastasizing cells.

Similar to the findings of Sorlie et al. (2), unsupervised
hierarchical clustering analysis segregated the tumors into two
main clusters based on their basal (predominantly ER�) and
luminal (predominantly ER�) characteristics. Furthermore,
within each of these clusters we could identify smaller subgroups
that were characterized by distinct gene expression signatures
involving potential different oncogene-specific pathways. A
HER-2�neu subgroup was characterized by higher expression of
the oncogene her-2�neu and higher expression of genes involved
in the ras pathway such a Ras-related GTPases, RALB, and
RAB6A. Convergence of neu and ras pathways in breast cancer
tumorigenesis has already been documented (21). In contrast,
basal 1 and 2 subgroups were characterized by higher expression
of the oncogenes c-kit, c-myc, and SFRP1. SFRP1 is a modulator
of Wnt signaling. Recently, aberrations of Wnt signaling were
reported to be involved in the pathology of various human
neoplasms (22). Activation of the Wnt signaling pathway appears
to lead to the cytosolic stabilization of a transcriptional cofactor,
�-catenin, that can regulate the transcription from a number of
target genes including the cellular oncogene c-myc. In breast
carcinoma, SFRP1 expression has been associated with loss of
ER and the presence of lymphoplasmocytic reaction around the
tumor associated with a more aggressive disease (23, 24).
Furthermore, basal 1 type exhibited higher expression of genes
involved in cell cycle and growth such as PCNA, CDC2, and
BUB1 whereas the basal 2 type showed higher expression of
transcription factors such as c-fos and ATF3, expression signa-
tures that both could be modulated by c-myc (21). These data
raise the possibility that Myc, which is amplified in 15% of breast
cancers, may have a more important role in determining the
expression profile of a breast cancer than previously thought.

Moreover, as noted in earlier studies, our basal and luminal
subgroups also showed the expected differences in survival with
a better outcome in the luminal group. More interestingly, we
found that the 231 genes described by van’t Veer et al. (3) as
separating survival groups in node-negative untreated patients
may have distinct prognostic capabilities in a more heteroge-
neous population of node-positive�negative patients treated
with adjuvant therapy. Using the 93 probe elements, 56 unique
genes, from the van’t Veer prognostic set represented in our
microarrays, we could easily separate our 99 patients into two
prognostic subsets. This finding appears to confirm the impor-
tance of some subset of these 56 genes as bona fide prognostic
markers. In particular, the overlap between the van’t Veer 231
genes and our 485 probes associated with survival (at P � 0.05
level) was 14 probe elements representing 11 unique genes. Five
of the 11 genes in this set are involved in cell replication and
chromosomal stability and were up-regulated in the poor prog-
nostic setting, suggesting a molecular mechanism for this clinical
outcome. An intriguing question is what might be a ‘‘minimal’’
set of genes necessary to establish a reproducible prognostic
classification. In leukemia, with well-defined genetic changes,
gene profiles segregate with particular translocations (25). In our
breast cancer series the major groupings follow previously
defined signaling pathways such as ER�, ER�, and c-erbB2�
ras. Our study design did not permit us to relate BRCA1 and
BRCA2 status to these expression patterns.
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Finally, gene profiles that relate to prognosis may help define
new therapeutic targets. In our study, cell cycle regulation is
clearly important and suggests continued use of antiprolifera-
tives is a rational approach. However, the melanoma tumor
antigen PRAME was highlighted and should be further investi-
gated in breast cancer as a potential tumor antigenic target. Also
the glutathione S-tranferase pathway, well recognized to have a

role in drug resistance, was associated with poor outcome and
appeared to be strongly correlated with survival in both our
study and that of van’t Veer et al. (3).

This work was supported in part by Fonds National de la Recherche
Scientifique Grant Ext. 260 V6�5�2-ILF 14773 (to C.S.), the National
Cancer Institute, and the Genome Institute of Singapore.
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