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Abstract

Recent cloning and computational studies have sought to catalog all the microRNA genes
encoded in animal genomes. Here, we highlight recent advances in identifying Caenorhabditis
elegans and Drosophila melanogaster microRNAs.
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One of the big surprises of the past few years has been the

emergence of microRNAs (miRNAs) as a major new class of

regulatory gene products. These small RNA molecules

control gene expression by regulating the stability or transla-

tion of mRNAs. The growing awareness that there might be

quite large numbers of miRNA genes has triggered the use of

systematic approaches to define the complete set of miRNAs

encoded in animal genomes. Here, we summarize these

efforts, highlighting recent papers that estimate the miRNA

complement of the Caenorhabditis elegans and Drosophila

melanogaster genomes. 

microRNAs are thought to control gene expression by binding

to complementary sites in target mRNAs from protein-coding

genes. Much of our understanding of miRNA biogenesis and

function comes from their similarity to small interfering RNAs

(siRNAs), short RNAs of around 22 nucleotides that mediate

RNA interference [1-5]. Like siRNAs, miRNAs are processed by

endonucleolytic cleavage from larger double-stranded RNA

precursor molecules. The resulting small single-stranded RNAs

are incorporated into a multiprotein complex, termed RISC, in

the case of siRNAs, or miRNP, in the case of miRNAs [2,6],

although these may prove to be two names for the same thing.

The small RNA provides sequence information that is used to

guide the RNA-protein complex to its target RNA molecules

[7,8]. The degree of complementarity between the small RNA

and its target determines the fate of the bound mRNA [9,10].

Perfect pairing induces target RNA cleavage, as is the case for

siRNAs and most plant miRNAs [11,12]. Imperfect pairing in

the central part of the duplex presumably does not allow cleav-

age to occur and instead leads to a block in translation, as

shown for the founding members of the miRNA family, lin-4

and let-7 of C. elegans [13-15]. Despite these similarities,

miRNAs can be distinguished from siRNAs according to the

following four criteria [16]. First, miRNAs are excised from

endogenous transcripts that have the ability to locally form

stable, primarily double-stranded, hairpin structures of

around 70 nucleotides. Second, the hairpin structure is usually

conserved in closely related species and often in distantly

related species. Third, the hairpin is processed into one dis-

crete mature miRNA. Finally, miRNAs regulate the expression

of genes encoded at another locus, whereas siRNAs regulate

the locus from which their sequence derives.

Evolutionary conservation of many miRNAs, even across

phyla [17], suggests ancient and important roles for this class

of regulator. The observation that they are found in multicel-

lular plants and animals but not in unicellular eukaryotes led

to speculation that miRNAs were essential in the evolution

of multicellular organisms [18]. How many of these tiny reg-

ulators are hidden in animal genomes? Systematic miRNA-

sequencing efforts and computational approaches are

converging on an answer to this question. 

Cloning endogenous RNAs that fall into the 18-25 nucleotide

size range has proven to be a powerful way to identify



miRNAs [6,18-24]; more than 200 miRNA-coding genes

have been identified in this way. Cloning efforts are limited

by transcript abundance, and it can be expected that they

might not find miRNAs expressed at low levels or in few

cells, or miRNAs expressed only under particular conditions.

Other difficulties include background from small RNAs that

arise as degradation products of abundant cellular RNAs,

which range from one quarter to over half of all clones in dif-

ferent studies. Where possible, affinity purification of the

miRNP complex can enrich for miRNAs [6].

As an alternative approach, four groups have used structural

features of known miRNAs to develop computational strate-

gies for searching nematode, fly and vertebrate genomes for

miRNA genes [18,22,23,25,26]. Despite some slight differ-

ences, each study used a similar overall strategy consisting of

three major steps: One, hairpin-like structures residing in

intergenic or intronic sequences are identified; two, the

identified hairpin-set is refined by applying a series of struc-

tural filters; and three, sequence conservation filters are

applied between closely and distantly related species, or

sequence similarity to already known miRNAs, to further

refine the set. These searches were successful in identifying

most cloned miRNAs and led to the identification of many

new miRNAs. Expression of some newly predicted miRNAs

was validated by northern blot analysis, and others too low

in abundance to be detected in this way were validated using

a more sensitive PCR-based assay [18,23]. The Bartel lab’s

C. elegans study [18] found no correlation between miRNA

abundance and the success of the computational method in

predicting them, emphasizing the utility of computational

screens for identifying rare miRNAs. 

One difficulty with the computational approaches that have

been used is sorting out new miRNA genes from random

sequences that can form plausible-looking hairpins. It is

necessary to set thresholds that enrich for true positives

while not including too many false positives. In each case,

this was done by evaluating how well the methods predicted

known miRNAs. The different studies [18,22,23,25,26]

found most previously validated miRNAs, but only 50-75%

were among the ‘high-confidence’ predictions; it was not

possible to find rules that do not miss any of the known

miRNAs. Some real miRNAs were also missed, for trivial

reasons such as problems of genome annotation or incom-

plete genome data (conversely, some validated miRNAs were

not found in closely related genomes). In most cases,

however, the identification seems to have been hampered by

our limited knowledge of the specific sequence or structural

features in the short miRNA genes that distinguish them

from background ‘hits’ in the genome. 

The most powerful step in refining the initially large sets of

candidates without losing many of the known examples

seems to be evolutionary conservation. This is exemplified by

the following comparison. Using the identical computational

strategy, the sensitivity in identifying known miRNAs rose

from 50% for worms (two genomes) to 75% for vertebrates

(three genomes), despite the fact that the analyzed verte-

brate genomes are between 4 and 30 times larger [18,25].

Third and fourth genome comparison was also successfully

used in the Drosophila study, where mosquito and honey-

bee sequences were crucial in identifying new miRNAs

among many potential candidates [26]. Sequencing addi-

tional vertebrate, worm and insect genomes is likely to be a

powerful resource for improving computational prediction

methods for miRNA genes. In addition, Lai et al. [26] found

that sequence conservation was significantly higher in the

miRNA-producing arm of the hairpin than in the opposite

arm or the terminal loop, providing a powerful filter to

reduce the number of false positives.

A closer look at the Drosophila studies [24,26] illustrates

that a combination of experimental and computational

approaches will be needed to identify the full set of miRNA

genes. The total number of fly miRNAs validated by

sequencing or by northern blot stands at 76. Of these, 61

were identified by sequencing and 60 were predicted in the

top scoring set by computation, with 48 in common between

the two sets. It is interesting to note that 3 of the 76 vali-

dated miRNAs were not found by either method, but were

picked out because of their proximity to known miRNAs. 

The combined results of the sequencing efforts and compu-

tational searches provide a basis for estimating the number

of miRNA genes in invertebrate and vertebrate genomes.

Upper limits have been derived by extrapolating from the

fraction of previously known miRNAs in the high-confidence

prediction sets. On this basis, the worm and fly genomes are

estimated to contain 100-120 distinct miRNA genes each, of

which 96 and 76 have been experimentally validated; 109 of

the predicted 200-250 vertebrate miRNAs have been vali-

dated. Ruvkun and colleagues [23] estimated 140-300

miRNA genes in C. elegans, considerably more than the esti-

mates in the two other studies [18,22]. Nevertheless, the

various estimates for the number of miRNA genes are

around 0.5-1% of the number of predicted protein-coding

genes, underlining the potential importance of miRNAs as a

class of regulatory gene products. 

Despite several advantages, computational approaches only

allow the identification of genes that resemble those in the

training set. The miRNA sequencing projects identified two

additional classes of Dicer-processed small RNAs. A large

class of siRNAs (termed rasiRNAs) that derive from chromo-

somal repeats and others complementary to transposons

have been identified in Drosophila [24]. Tuschl and col-

leagues suggest that rasiRNAs could play important roles in

chromosomal maintenance and transposon silencing [24].

In addition, siRNAs complementary to more than 500 dis-

tinct protein-encoding genes were identified in C. elegans,

suggesting that regulation of gene expression by RNAi is a
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common feature of C. elegans development [22]. The

Ambros lab also reports the identification of a new class of

small noncoding RNAs that they call tncRNAs, which seem

to be related to miRNAs except that they do not appear to be

encoded by conserved hairpin-like precursors [22]. 

In retrospect, it is perhaps surprising that the large class of

genes that encode small RNAs could have gone almost unno-

ticed for so many years. Elegant new cloning strategies and

computational methods have brought us to the point where

we can now say that most genes that fit the current defini-

tion of miRNAs have been identified (although some sur-

prises might still come). The next big challenge will be to

find out what all these miRNAs do. Genetics will help, but it

seems likely that a combination of new experimental and

computational approaches will provide the solution to this

problem as well. 
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