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Abstract

Background: For genes that have been successfully delineated within the human genome
sequence, most regulatory sequences remain to be elucidated. The annotation and
interpretation process requires additional data resources and significant improvements in
computational methods for the detection of regulatory regions. One approach of growing
popularity is based on the preferential conservation of functional sequences over the course
of evolution by selective pressure, termed ‘phylogenetic footprinting’. Mutations are more
likely to be disruptive if they appear in functional sites, resulting in a measurable difference in
evolution rates between functional and non-functional genomic segments. 

Results: We have devised a flexible suite of methods for the identification and visualization of
conserved transcription-factor-binding sites. The system reports those putative transcription-
factor-binding sites that are both situated in conserved regions and located as pairs of sites in
equivalent positions in alignments between two orthologous sequences. An underlying
collection of metazoan transcription-factor-binding profiles was assembled to facilitate the
study. This approach results in a significant improvement in the detection of transcription-
factor-binding sites because of an increased signal-to-noise ratio, as demonstrated with two
sets of promoter sequences. The method is implemented as a graphical web application,
ConSite, which is at the disposal of the scientific community at http://www.phylofoot.org/.

Conclusions: Phylogenetic footprinting dramatically improves the predictive selectivity of
bioinformatic approaches to the analysis of promoter sequences. ConSite delivers
unparalleled performance using a novel database of high-quality binding models for metazoan
transcription factors. With a dynamic interface, this bioinformatics tool provides broad access
to promoter analysis with phylogenetic footprinting.
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Introduction
The information in genes generally flows from static DNA
sequences to active proteins via an RNA intermediary.
Depending upon the cellular context of physiological, devel-
opmental and environmental inputs, genes are selectively
activated via regulatory sequences in the DNA. At their foun-
dation, transcriptional regulatory regions in the human
genome are characterized by the presence of target binding
sites for transcription factors (TFs). Knowledge of the identity
of a mediating TF can give important insights into the func-
tion of a gene via inference of the processes or conditions that
lead to expression. Research in bioinformatics has developed
reliable methods to model the DNA binding specificity of
individual TFs. As most eukaryotic TFs tolerate considerable
sequence variation in their target sites, simple consensus
sequences fail to represent the specificity of binding factors.
This realization led to the development of the quantitative
representation of binding specificity with position weight
matrices [1]. Such matrices can be highly accurate in identify-
ing in vitro target sequences [2], but are insufficiently specific
in the identification of sites with in vivo function to provide
meaningful predictions [3]. The in vivo binding specificity of a
TF depends upon additional properties not modeled by a
weight matrix, such as protein-protein interactions, chro-
matin superstructures and TF concentrations. 

Comparison of orthologous gene sequences has emerged as
a powerful tool in genome analysis. ‘Phylogenetic footprint-
ing’ [4] provides complementary data to computational pre-
dictions, as sequence conservation over evolution highlights
segments in genes likely to mediate biological function. The
utility of phylogenetic footprinting extends to a broad array
of annotation challenges, but it is particularly suited to the
identification of sequences with a functional role in the regu-
lation of gene transcription [5,6]. Despite specific successes
[7] in studies of gene regulation, the central algorithms for
phylogenetic footprinting remain to be optimized and are
thus the focus of continuing research. In particular, new
algorithms based on phylogenetic footprinting have been
presented for the alignment of genomic sequences, data
visualization and the identification of exons [8,9]. Algo-
rithms for the analysis of regulatory sequences have
addressed the detection of over-represented patterns in the
promoters of co-regulated genes [10], and the improved dis-
crimination of regulatory modules [11], as well as compara-
tive studies of orthologous promoters across collections of
microbial genomes [12,13].

Here, we introduce a highly specific algorithm, ConSite, for
the detection of transcription-factor-binding sites (TFBSs)
that is based on phylogenetic footprinting. Three central
components underlie the advance: first, a non-redundant set
of transcription-factor binding models; second, a suitable

alignment algorithm for orthologous non-coding genomic
sequences; and third, modular software for the integration
of binding-site predictions with analysis of sequence simi-
larity. We show that our approach results in an increased
specificity of predicted TFBSs as a result of a significant
reduction of noise. The ConSite algorithm is thus particu-
larly suited to the analysis of pairs of orthologous genomic
sequences with limited or no experimental annotation of
regulatory elements.

Results
A non-redundant set of high-quality transcription-
factor binding models
Potential TFBSs can be identified within a genomic
sequence by well-studied computational approaches based
on quantitative profiles describing the binding site charac-
teristics for TFs. The quality of matrix models is dependent
upon the number of biochemically determined target sites.
While the binding specificities of few eukaryotic TFs are
described richly in the literature by multiple in vivo func-
tional sites, a significant number of TF binding profiles have
been produced through the application of in vitro target-site
detection assays [14]. We collected available data of both
types from the biological literature to construct 108 non-
redundant high-quality profiles [15]. The profiles are derived
from the super-classes vertebrates, insects or plants, but the
majority (65%) of matrices model the binding of human or
rodent factors. As the majority of the profiles originate from
site-selection assays, the average number of TFBSs contribut-
ing to each profile is a robust 31.2 sites per model. Informa-
tion content, in terms of bits of information, is commonly
used within bioinformatics to describe the overall specificity
of a profile. The models in the collection range in informa-
tion content from 5.6 to 26.2 bits, with an average of 12.1
bits. All models are hyperlinked to corresponding sequence
accession numbers and the PubMed abstract for the article
describing the binding study.

Integrating binding-site prediction with analysis of
sequence conservation in orthologous genomic
sequences
Phylogenetic footprinting provides data complementary to
binding-site predictions, for the analysis of gene regulation.
The simple hypothesis that motivates phylogenetic foot-
printing is that important functional sequences will be under
selective pressure to be retained over moderate periods of
evolution. The classification of sequences as conserved or
freely evolving (as proposed by Kimura [16]) is not yet a
quantitative process. It should be noted that evolutionary
rates vary dramatically between genes and the choice of
species is an important consideration in phylogenetic foot-
printing studies. Too great an evolutionary distance can
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result in regulatory alterations or difficulty in aligning short
patches of similarity between long sequences. Inadequate
evolutionary distance does not significantly improve the
overall specificity of predictions. We have developed the
ConSite method to integrate phylogenetic footprinting with
profile-based predictions of TFBSs, in order to achieve spe-
cific predictions of functional regulatory elements in genes.
As an example of the influence of species selection on the
qualitative performance of the system, the human � globin
promoter was compared to a diverse range of orthologs
(Figure 1). 

In this report, we focus on human-rodent comparisons, as
several studies have suggested that only a small portion (17-
20%) of non-coding regions are conserved (on average) at
this evolutionary distance [10,17]. Furthermore, similarity
is punctuated, with distinguishable segments of high simi-
larity flanked by regions of apparently random sequence
(roughly 33% nucleotide identity is observed between
random genomic sequences, with wide variations depen-
dent upon the applied alignment algorithm, settings, and
sequence characteristics [18]). This compartmentalized
pattern of similarity is consistent with the emerging empha-
sis on multiple TFs binding to locally dense site clusters
termed regulatory modules [19], which suggests that dis-
tinct blocks of sequence are required for transcriptional reg-
ulation. In order to identify segments of preferential
conservation in orthologous genomic sequences, a suitable
set of classification criteria must be defined. As similarity or
rates of evolution vary widely across genomic sequences, no
single threshold will be perfectly suited. We elected to focus
the algorithm on segments of high similarity. This refers to
sliding windows of fixed size over the alignment, retaining
only those where the sequence identity exceeds a default or
user-specified threshold. If a cDNA sequence is available,
the analysis program can exclude from consideration
binding-site predictions situated within exons present in an
alignment of genomic sequences. 

Assessing the impact of phylogenetic footprinting on
the specificity of binding-site predictions
In order to assess quantitatively the contribution of compar-
ative sequence analysis to the specificity of TFBS predictions,
a reference collection of 14 well-studied genes was assem-
bled. We compared the selectivity and sensitivity of the TFBS
predictions between those generated with isolated human
sequences and those generated with the same human genes
filtered by comparative analysis with orthologous mouse
gene sequences (Table 1). The sequence pairs ranged in
length between 680 and 2,900 base-pairs (bp), but all
included the region -500 to +100 relative to the transcription
start site. Within the 14 paired sequences are 40 experimen-
tally defined TFBSs (Table 1) for 13 distinct TFs within the

set of available matrices. For clarity, these binding sites were
not utilized in the construction of the matrix models. A con-
servation cutoff was set to 70% for all tests, while the
window size for conservation analysis was set to 50 bp. 

Selectivity
Insufficient experimental data are available to confidently
classify predictions as false, because many functional sites
remain to be discovered. As the population of true TFBSs
within a genomic sequence is anticipated to be small, we
define the false-positive rate as the total number of predic-
tions from all models divided by the length of the query
sequence. The number of predicted TFBSs was determined
for incrementally increasing relative matrix score thresholds
(described in the Materials and methods section) between
65% and 90% for both single sequences and the corre-
sponding orthologous pairs:

�m�M Pm,cSel(c) = ———————
L

where M is the set of 108 models, Pm,c the number of
predicted sites using model m and relative matrix score
threshold c, and L the length of the analyzed sequence in
base-pairs (Figure 2a).

Predictive selectivity (measured by the average number of
predicted TFBSs per 100 bp of promoter sequence when
scanning with all models) improved by 85% (average ratio:
0.15) when phylogenetic footprinting is applied. The ratios
of the observed selectivity scores using phylogenetic foot-
printing to those obtained using single-sequence analysis
modes are shown in Figure 2c. 

Sensitivity
Sensitivity measures the ability to correctly detect known
sites (that is, when a prediction and an annotated TFBS
overlap by at least 50% of the width of the thinnest pattern),
given a corresponding transcription-factor binding-profile
model. Analyses were performed with incrementally
increasing relative matrix score thresholds between 65%
and 90%. The overall sensitivity (the fraction of known sites
detected) was reduced slightly under the conservation
requirement: 65.5% were detected with phylogenetic foot-
printing (settings of 75% relative matrix score threshold,
70% identity cut-off, 50 bp window) as compared to 72.5%
when analyzing single sequences (Figure 2b). The fact that a
few sites were not detected with the stringent requirements
for both regional sequence and specific-site conservation
can be attributed to multiple causes. For instance, TFBSs
may not be conserved or may be present but not detected by
the profile under the thresholds. We conclude that most
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Figure 1
Cross-species comparisons of the �-globin gene promoter. (a) Analysis of the human promoter without phylogenetic filtering generates numerous
predictions, most of which are biologically irrelevant. (b) Comparison with the chicken promoter fails to detect conserved sites (screened with the
artificially low conservation cutoff of 25%). (c) Comparison with the mouse promoter sequence identifies conserved sites, including a documented
GATA-binding site [49] (boxed). (d) Comparison with the cow promoter identifies more conserved sites. (e) Comparison to the Macaque monkey
(Macaca cynomolgus) promoter results in a plot similar to the single sequence analysis. Unless indicated, all plots were generated using all available
matrices from vertebrates, with 70% conservation cutoff, 50 base-pair window size and 85% transcription factor score threshold settings. The y axis
in all graphs specifies the percentage of identical nucleotides within a sliding window of fixed length (using the default of 50 base-pairs). The x axis
refers to the nucleotide position in the human sequence at which the window initiates. 

(a) (b) (e)

(c)

(d)



experimentally annotated binding sites are located within
conserved regions, as we can correctly detect 82.5% of the
TFBSs with a score threshold of 60%, using orthologous

gene pairs (data not shown). Ratios of the sensitivity results
obtained using single-sequence analysis to those obtained
using phylogenetic footprinting, are shown in Figure 2c. 
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Table 1

The reference collection of 14 gene pairs and 40 verified transcription-factor-binding sites used for testing 

Gene name Human Rodent Transcription Binding Location MEDLINE

sequence sequence factors sequence ID [49]

Skeletal muscle actin AF182035* M12347 SP1 GCGGGGTGGCGCG -64/-51 11017083
SRF ACCCAAATATGGCT -100/ -86 1922033
TEF-1 GACATTCCTGCG -73/-51 11017083

Aldolase A X12447* J05517 MEF2 CCTAAATATAGGTC -125/-111 8413246
� B crystallin M28638* U04320 SP1 AGGAGGAGGGGCA -343/-330 11017083

SRF GCCCAAGATAGTTG -393/-379 11017083

Cardiac � myosin Z20656 U71441 and MEF2 TTAAAAATAACTGA -327/-313 8366095
heavy chain M62404* TEF-1 AGGAGGAATGTGC -239/-226 7961957

SRF CTCCAAATTTAGGC -62/-48 8782063

CEBP� U34070* M62362 AP2 � GGCCGGGGGCGGA -243/-232 9520389
TBP TATAAAA -30/-24 96003748

Cell division L06298 and U69555 E2F TCTTTCGCGC -131/-119 94094909
cycle protein 2 X66172* cETS GGGAAG -109/-104 951721551

Cholesterol 7 � L13460 U01962* HNF3� TCTGTTTGTTCT -175/-166 9799805
hydroxylase cEBP ATGTTATGTCA -227/-217 28182075

Early growth  AJ243425 M22326* SRF TGCTTCCCATATATGGCCATGT -88/-67 90097904
response protein 1 SRF CCAGCGCCTTATATGGAGTGGC -358/-337 90097904

SRF GAAACGCCATATAAGGAGCAGG -412/-391 90097904

Glucose-6- AF051355* U57552 HNF3 � CCAAAGA -72/-66 9369482
phosphatase HNF3 � ACAAACG -91/-85 9369482

HNF3 � GTTTTTGAG -82/-74 9369482
HNF3 � TGTGTGC -180/-174 9369482
HNF3 � TGTTTGC -139/-133 9369482
HNF1 AGTTAATCATTGGCC -226/-212 9369482

Leptin U43589 U36238* SP1 GGGCGG -100/-95 9492033
cEBP GTTGCGCAAG -58/-49 9492033
TBP TATAAG -33/-28 9492033

Lipoprotein lipase M29549* M63335 NFY CAAT -65/-61 1918010
cEBP TAGCCAAT -68/-61 1918010
TBP TATAA -27/-23 1918010

Muscle creatine M21487 AF188002 SRF CCATGTAAGG -1236/-1227 93233638 
kinase and M21390* AP2� GGCCTGGGGA -1220/-1211 93233638

MEF2 TCTAAAAATAAC -1078/-1067 93233638
MYF GGGCCAGCTGTCCC -253/-240 96347575
MYF CCAACACCTGCTGC -1157/-1144 96347575
P53 ATACAAGGCC -176/-167 96047120
P53 ATACAAGGCC -158/-149 96047120

Rb susceptibility gene L11910* M86180 SP1 GGGCGG -202/-188 1881452
Troponin I L21905* U49920 and MEF2 AGACTATAATAGCC -976/-962 9774679

S66110 MYF TAAACAGGTGCAGC -879/-865 9774679 

GenBank accession numbers [41] are given for the human and rodent sequences. The transcription-factor-binding sequences refer to the human or
rodent sequence(s) marked with an asterisk. ‘Location’ refers to the position of the TFBS relative to the transcription start site. 
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Figure 2
The impact of phylogenetic footprinting analysis. Both (a-c) a high-quality set (14 genes and 40 verified sites), and (d-f) a larger collection of
promoters (57 genes and 110 sites, from the TRANSFAC database [20,21]) were analyzed. (a,d) Comparison of the selectivity (defined as the
average number of predictions per 100 bp, using all models) between orthologous and single-sequence analysis modes. (b,e) Comparison of the
sensitivity (the portion of 40 or 110 verified sites, respectively, that are detected with the given setting) between orthologous and single-sequence
analysis modes. (c,f) Ratios of the number of sites detected in single-sequence mode to the number detected in orthologous-sequence mode; the
pair: single-sequence ratios are displayed for both sensitivity (detected verified sites) and selectivity (all predicted sites).
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Performance assessment with an extended
phylogenetic footprinting TFBS reference collection
Assessment of comparative genome analysis methods
requires a broad collection of reference data to insure that
algorithms and settings are not overly oriented towards a
few genes or factors. A phylogenetic footprinting reference
collection was assembled on the basis of the TRANSFAC
database [20,21] (as described in the Materials and methods
section). For the identification of orthologous genes, only
intragenic regions (exons and introns) were used (that is, no
potential promoters were included). In any such large-scale
mapping, it is of critical importance to find truly ortholo-
gous sequences, as opposed to pseudogenes or homologs
which have no selective pressure to retain functional
binding sites. Our selection process resulted in 110
uniquely mapped TFBSs in 57 promoters of human-mouse
orthologous gene pairs (available at [22]). The reference col-
lection does not overlap with the initial set of 14 reference
genes described above. 

The promoter regions from the reference set were analyzed
using the same procedures as were applied above (Figure 2d-f).
In spite of the likelihood that the new reference collection
will have greater noise than the small set collected by
detailed literature analysis, the performance results are com-
parable between sets. The sensitivity is slightly lower for the
large collection (Figure 2e,f), which in addition to the poten-
tial difference in annotation standards could be attributable
to the TFs associated with the sites. The average information
content of the models for TFs linked to sites in the reference
collection is lower than that for the factors associated with
the small test set (median information content: 9.7, as com-
pared to 15.3 bits in the first test set). Selectivity performance
is virtually identical to the test (Figure 2d,f).

Web implementation
The algorithm described for the identification of regulatory
regions by comparative sequence analysis has been imple-
mented as an intuitive and easy to use web service named
ConSite [23]. The implementation allows for three analysis
modes: first, alignment and conserved-site analysis of two
orthologous genomic sequences applying one or more TF
profiles; second, conserved site analysis on a submitted
alignment, which allows users to generate alignments from
their preferred tools and allows for the analysis of longer
genomic sequences; and third, a single-sequence analysis
tool. The single-sequence service is functionally comparable
to the TESS system [24], but utilizes the JASPAR profile col-
lection [15]. Alignment submission accepts the de facto stan-
dard CLUSTALW format [25]. In all operating modes, users
are allowed to submit a cDNA sequence to define exon loca-
tions. Users may also submit new matrix profiles of their
own construction.

Results can be obtained in three distinct report formats.
Graphical view (Figure 3a) displays an alignment overview
and conservation plots with x-axis reference for each sub-
mitted sequence. Positions of conserved TFBSs are indicated
above the plot. The transcription-factor labels are equipped
with mouse-over function to display additional data (the
name and structural class of the factor, and the absolute and
relative site scores), and are hyperlinked to further informa-
tion on the TF and its binding profile (Figure 3b). The pop-
up windows provide data summaries, including a sequence
logo (graphical representation of the specificity of the
profile based on position-specific information content [26])
with the corresponding profile from the database. Align-
ment view (Figure 3c) provides a detailed overview of the
detected potential TFBSs displayed on the sequence. The
numbering indicates positions in the actual sequences, and
the predicted TFBSs are marked. For convenience, a tabular
output of detected sites with associated details is also pro-
vided in Table view. 

Discussion
Comparison of orthologous genomic sequences is an effec-
tive method for the identification of segments likely to
mediate a sequence-specific biological function. The perfor-
mance of phylogenetic footprinting methods for the detec-
tion of TFBSs is dependent upon multiple factors, including
the alignment algorithm, the available binding profiles and
the evolutionary distance between the target sequences. Two
key data resources are introduced in this study: a novel col-
lection of transcription-factor binding profiles compiled
from the biological research literature and a reference test
set for phylogenetic footprinting methods. The ConSite web
interface to the system facilitates user control, an essential
feature for users studying diverse genomes. 

The binding profile collection is an important resource for
bioinformatics projects. Like the TFBS programming system
[27], the JASPAR profile collection is available freely to the
research community [15]. The profiles are non-redundant
and are restricted to those cases for which sufficient binding
data were available to generate a meaningful representation
of the binding specificity of a TF. Continuing expansion of
the collection is anticipated, given the strong research
progress in modeling DNA binding sites [28].

The new phylogenetic footprinting reference collection of
TFBSs allows for quantitative assessment of the performance
of new methods. This is the largest collection of its kind avail-
able for broad use. In our study, we could detect around 68%
of the experimentally defined TFBSs in conserved segments
(at 65% relative matrix score threshold; see Figure 2). This
differs slightly from the outcome of a study of conservation
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properties proximal to TFBSs [29], which indicated that only
around 50% of sites are situated in conserved regions. There
are several key factors that may account for this difference.
The procedures for defining the collections were different.
For instance, the amount of flanking sequence used for
mapping the locations of the sites onto genome sequences
was lower in the previous study. These short fragments were
mapped onto a commercial human genome assembly and
the mapped regions compared to shotgun-generated frag-
ments of mouse genomes from multiple strains. The align-
ment procedures were also different, with the older set
aligned by BLAST [30] and assessed by a stringent similarity
threshold (> 80% identity over 40 bp). There was no exclu-
sion of pseudogenes or paralogous genes indicated in the
previous study, which would result in decreased sensitivity
due to the erroneous application of phylogenetic footprint-
ing to genes evolving under distinct evolutionary pressures. 

While the work presented here focuses on mammalian
sequence comparisons, there is no limitation within the
ConSite system precluding studies of other organisms (the
ConSite website includes samples with insect and nematode
sequences). In the future it will be important to develop
methods capable of analyzing multiple genomic sequences
in parallel, but this is a non-trivial task. Such a system must
allow for weighting based on evolutionary distances to pre-
serve sensitivity, and requires advances in multiple sequence
alignment algorithms. Some steps in this direction are
beginning to emerge [31,32].

No single resource offers the same set of functions or inte-
gration as ConSite. The only similarly scoped resource is the
recently published rVista [33], which searches for TFBSs in a
reference sequence and filters the results for sites in regions
of high conservation with respect to a second genomic
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Figure 3
The ConSite result report and visualization tools for the analysis of two orthologous genomic sequences. (a) Graphical view, with conservation
profile plots for the two orthologous sequences, as well as the control panel for altering the visualization parameters. (b) Pop-up window containing
information about individual TFBSs. (c) Detailed alignment view, providing sequence-level details on putative TFBSs conserved between two
orthologous sequences.
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sequence. Unlike rVista, ConSite searches both sequences
for TFBSs, for better specificity, and enables easy modifica-
tion of the parameters for interactive analysis, as well as
providing different output formats to aid the design and
interpretation of experiments in molecular biotechnology.
ConSite’s publicly available collection of transcription-
factor profiles allows users to access information about the
TFs associated with the predicted sites. Given that many
users focus on a specific TF and have developed high-
quality models of their own, ConSite also allows for user-
defined profiles. 

We present an algorithm that uses phylogenetic footprinting
to identify potential TFBSs. The approach to identifying reg-
ulatory elements presented here yields greater specificity
than previous approaches that were based purely on profile
searches of single genomic sequences. In short, using phylo-
genetic footprinting to filter the computational predictions
significantly reduces noise at the price of a slight decrease
in sensitivity. The web application we present enables
researchers to utilize this approach in a straightforward
manner. With the culmination of the human and mouse
genome sequencing efforts [34,35], we believe this new
algorithm will be of significant use in the ongoing efforts to
ascribe function to non-coding sequences. 

Materials and methods
Genomic sequence alignment
As a result of the low overall similarity of non-coding
regions across moderate evolutionary distances (for example,
between human and mouse), many alignment algorithms
will fail to produce biologically meaningful alignments or
will require an arduous process to tune the algorithm para-
meters. In order to obtain high-quality global alignments,
we utilized the DPB algorithm (L.M. and W.W., unpub-
lished; see [23]), which is optimized for the global align-
ment of long genomic sequences containing short, colinear
segments of similarity.

Measurement of local similarity in global alignments
The most common approach used to measure local similar-
ity between two globally aligned orthologous sequences uti-
lizes a fixed-size sliding window to scan an alignment and
identify segments containing a minimum number of identi-
cal nucleotides. The difficulties that arise with sliding-
window approaches are related to the treatment of edges
and gaps in the alignment. Sliding a window along the
alignment itself will assign a low identity score to short
regions of high identity flanked by long regions of greater
variation (for example, a large gap or insertion in one of the
sequences). We elected to collapse the gaps in the alignment
(that is, to remove the positions containing gaps in the

sequence in question) and to calculate a separate conserva-
tion profile for each orthologous sequence. 

Classification of motif-match conservation within
aligned genomic sequences
Within the conserved segments, conserved sites are detected
by, firstly, scanning each of the two orthologous sequences
with position-specific weight matrices [1] for the TFs of
interest, and secondly, retaining only those predicted sites
(for each given TF model) that are in equivalent positions
in the alignment. The scores for matches to the position-
specific weight matrix models must exceed the user-defined
relative matrix score threshold.

Collection and annotation of binding models
All profiles are derived from published collections of experi-
mentally defined TFBSs for multicellular eukaryotes. The
database, named JASPAR [15], represents a curated collec-
tion of target sequences. The motif-detection program ANN-
Spec [36] was used to align each binding site set. The
ANN-Spec alignments were performed with a range of motif
widths, using three random seeds and 80,000 iterations.
The profile matrices and associated information are stored
in a relational database (MySQL); a flat file representation
of the data is available for academic use [22]. Users may
also submit their own profiles for private use within the
ConSite system.

Identification of relative matrix score thresholds
Candidate TFBSs in individual sequences have a score as
determined by the position weight matrix for the given
sequence, which has been reviewed elsewhere [1]. The score
ranges are unique for each binding model, so it is advanta-
geous to convert the score range to a common, relative unit
scale as given by

score – scoremin
100 � ——————————

scoremax – scoremin

Score ranges are used for defining relative matrix score
thresholds. The applied scoring method is in direct relation
to the protein-DNA binding energy [1], and it therefore
does not take into account statistical significance of an
observed motif in relation to the local nucleotide composi-
tion (for example, GC-rich regions). The influence of the
background distribution on the protein-DNA interaction is
poorly understood. This is recognized as an open problem
within the field, as it is highly controversial whether the sur-
rounding base composition could have any influence on the
thermodynamics of binding [37]. For these reasons, we
choose to score the matrix profiles using a uniform base
composition.
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Parameter settings and manipulation
In all three analysis modes the user can choose relative
matrix score thresholds (default 80%). In alignment analysis
modes, one can also choose the size of the sliding window
(default 50 nucleotides) and the conservation cutoff (per-
centage sequence identity within the window for the defini-
tion of conserved regions). There is no fixed default value for
the latter parameter; instead, the conservation cutoff is set to
retain the top 10% of conserved windows (based on
nucleotide identity within a window of sequence in the
alignment). This latter mechanism was motivated by the dif-
ferent rates of evolution across genomes.

Matrix manipulation, site detection and
phylogenetic footprinting
For matrix manipulation, TFBS detection and some other
actions (such as sequence ‘logo’ drawing) we intensively used
the ‘TFBS software’, a set of object-oriented Perl modules
(with extensions in C and C++) developed for the accelera-
tion of promoter analysis scripting [38].

The phylogenetic footprinting TFBS reference
collection
An initial set of annotated binding sites was identified from
TRANSFAC (version 4.0) [20,21] for human (662 sites) and
mouse (376 sites). Each binding site was extended with 50
bp of flanking sequence in both directions from the respec-
tive promoter to allow unambiguous mapping onto the cor-
responding genome assembly (human version hg13 and
mouse version mm2 [39,40]). Only sites bound by a TF
with a corresponding matrix model in the JASPAR collec-
tion were kept.

In order to define orthology without regard to the
sequences flanking the binding sites (which would intro-
duce circularity problems), we defined human-mouse pair-
ings on the basis of cDNA sequences. The mappings of
GenBank [41] and RefSeq [42,43] cDNAs to the assemblies
were obtained from the UCSC Genome Browser Database
[39,40]. In addition 50,821 mouse cDNAs from the RIKEN
project [44] were mapped to the mouse genome assembly
using the client/server version of BLAT [45] with default set-
tings. In brief, for all mappings of a given cDNA, we con-
sider only those with cDNA coverage > 75% and with
> 99% sequence identity to the genomic sequence, then sort
the set by (number of matches)*(cDNA coverage), and
finally take the first mapping in the sorted set.

Each promoter fragment was mapped to its corresponding
genome assembly using BLAT, as above. Extended site
sequences that unambiguously mapped to the promoter
region of the TRANSFAC annotated gene were kept. For each
mapped TRANSFAC binding site, the nearest downstream

cDNA mapping was located and the GeneLynx record con-
taining that cDNA retrieved. cDNAs with mouse-human
ortholog pairs defined in the GeneLynx Mouse [46] data-
base were retained. 

For a pair of cDNA sequences thus identified, the genomic
sequences spanning representative mappings were extracted
and aligned, using BLASTZ [47] (default settings). For each
aligned sequence pair, the alignment coverage and the simi-
larities in gene structure as indicated by the mappings were
manually evaluated to select not more than one ortholo-
gous region per initial TFBS-cDNA-GeneLynx identifier
‘triplet’. Promoter-region pairs corresponding to 1,000 bp
upstream of the binding site and 100 bp into the first exon
were extracted, using the BLASTZ alignment as reference.
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