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ICP = injectable calcium phosphate; IL-1 = interleukin-1; MPC = mesenchymal progenitor cell; MSC = mesenchymal stem cell; PGA = polyglycolic
acid; PLA = polylactic acid; PLGA = poly D,L-lactide-co-glycolide; TGF-β = transforming growth factor-β.
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Introduction
Cartilage degeneration caused by congenital abnormali-
ties or disease and trauma is of great clinical conse-
quence, given the limited intrinsic healing potential of the
tissue. Because of the lack of blood supply and subse-
quent wound-healing response, damage to cartilage
alone, or chondral lesions, results in an incomplete
attempt at repair by local chondrocytes. Full-thickness
articular cartilage damage, or osteochondral lesions, allow
for the normal inflammatory response, but result in inferior
fibrocartilage formation. To prevent progressive joint
degeneration in diseases such as osteoarthritis, surgical
intervention is often the only option. In spite of the
success of total joint replacement, treatments for repair of
cartilage damage are often less than satisfactory, and
rarely restore full function or return the tissue to its native
normal state.

The rapidly emerging field of tissue engineering holds
great promise for the generation of functional tissue sub-
stitutes, including cartilage, by engineering tissue con-
structs in vitro for subsequent implantation in vivo. The
basic principle is to utilize a biocompatible, structurally
and mechanically sound scaffold that is seeded with an

appropriate cell source, and is loaded with bioactive mole-
cules to promote cellular differentiation and/or maturation.
Although recent progress has been made in engineering
cartilage of various shapes and sizes for cosmetic pur-
poses [1], the challenges of engineering a weight-bearing
tissue, such as articular cartilage that consists of multipha-
sic cellular architecture, are significant. There have been a
number of successful approaches to tissue engineer carti-
lage, including the use of natural and synthetic biomaterial
scaffolds, allogeneic and autologous sources of mature
chondrocytes and chondroprogenitor cells, chondroinduc-
tive growth factors, such as the transforming growth
factor-βs (TGF-βs), and combinations thereof. We have
highlighted here some of the current advances in cartilage
tissue engineering.

Cell-scaffold composites
Given the lack of cell retention when cell suspensions are
directly transplanted at the cartilage defect site [2], as well
as potential donor site morbidity associated with proce-
dures that utilize a periosteal flap to increase cellular
retention of such cell suspensions [3], porous three-
dimensional scaffolds are increasingly being used to facili-
tate cellular attachment while providing superior
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mechanical properties. Although recent studies utilizing
hyaluronan- and collagen-based natural biopolymeric scaf-
folds have shown promise, lot inconsistency, combined
with the potential for immunogenic problems, has
prompted investigators to focus mainly on synthetic
polymer-based scaffolds, such as the poly-α-hydroxy
esters. Freed et al. have shown that the rates of chondro-
cyte proliferation and deposition of cartilage-specific gly-
cosaminoglycans are significantly higher on polyglycolic
acid (PGA)-based scaffolds as compared to poly(L)lactic
acid (PLA)-based scaffolds [4], while both polymers have
been shown to promote proteoglycan synthesis at higher
rates than collagen scaffolds [5]. The ability to promote
chondrocyte proliferation, maturation, and differentiation,
and the superior mechanical properties of polyester-based
biodegradable polymers strongly suggests the feasibility
of their application in cartilage repair. Interestingly, the co-
polymer, polyD,L-lactide-co-glycolide (PLGA), was
recently shown to be most effective in promoting
osteoblastic cell attachment with increased α2, α5, and
β1 integrin expression [6], suggesting that patterned scaf-
folds consisting of different synthetic polymers may be
considered for biphasic tissue engineering, such as an
osteochondral construct.

Injectable materials are also being considered for cartilage
tissue engineering applications to circumvent the need for
invasive surgery, as would be required with prefabricated
scaffolds. The naturally derived polysaccharide gel, algi-
nate, has been successfully shown to support cell reten-
tion and the chondrocytic phenotype by maintaining cell
shape through encapsulation [7]; however, its inferior bio-
mechanical properties as well as concerns over its
immunogenicity have raised biocompatibility issues [8]. In
a promising study, a chondrocyte-fibrin suspension
injected into critical-sized cartilage defects in vivo,
resulted in the successful deposition of cartilage-specific
extracellular matrix molecules and improved healing as
compared to untreated control defects [9]. Additionally,
using an injectable, biocompatible, and biodegradable
polyethylene oxide-based gel for the encapsulation of iso-
lated chondrocytes, Sims et al. [10] observed that, when
injected subcutaneously into nude mice, the gel scaffold
maintained three-dimensional spatial support, promoted
chondrocyte proliferation, and facilitated production of a
well-formed cartilaginous matrix [10]. However, the excel-
lent biocompatibility, resorbability, and malleability of poly-
ethylene oxide-based hydrogels, give way to their inferior
biomechanical properties; consequently, optimal applica-
bility of such materials is likely to be limited to cosmetic
surgical procedures, such as craniofacial surgeries. A
novel approach to significantly improve mechanical
strength involves amalgamation of a biodegradable
polymer with alginate as a scaffold to support chondrocyte
or mesenchymal stem cell (MSC) differentiation and trans-
plantation – the polymer providing adequate support to

the mechanically unstable gel, thereby facilitating in vivo
implantation. For example, Caterson et al. have utilized a
three-dimensional biodegradable PLA-alginate amalgam
scaffold in combination with TGF-β1 to support the
attachment/retention and chondrogenic differentiation of
MSCs, while conferring mechanical stability to the con-
struct [11]. Marijnissen et al. compared demineralized
bone matrix to a PLA-PGA fleece, both used in conjunc-
tion with alginate gel, in their capacity to support the chon-
drocytic phenotype in vivo. Structural homogeneity as well
as the number of collagen type II positive cells was found
to be higher in the PLA-PGA-alginate constructs [12],
once again confirming the well-suited applicability of such
biodegradable polymers to the repair of cartilage defects.

Another biomimetic approach is to develop nanoscopic
biodegradable scaffolds as cell delivery vehicles that have
structural and morphological properties similar to those of
native extracellular matrix, thereby mimicking the cells’
natural environment while providing structural stability
[13]. Li et al. have demonstrated the ability of electrospun
poly-ε-caprolactone-based nanofibrous scaffolds to
support the chondrocytic phenotype of fetal bovine chon-
drocytes [14] and the chondrogenic induction and mainte-
nance of TGF-β1 treated MSCs (unpublished data).
Remarkably, this poly-ε-caprolactone-based nanofibrous
scaffold also appears to support the adipogenic and
osteogenic induction of human MSCs (unpublished data),
suggesting its potential application for multiphasic tissue
engineering, such as craniofacial remodeling and other
therapeutic procedures of skeletal regeneration.

To be considered for tissue engineering applications, the
architecture of the scaffold should ideally mimic that of the
native tissue to be repaired; additionally, this implantable
scaffold should be suited to facilitate infiltration, attach-
ment, proliferation, and differentiation of the desired, indi-
vidual cell type. Recent efforts have been devoted to
designing non-uniform, heterogeneous scaffolds for clini-
cal applications that require multiphasic tissue engineer-
ing, such as for the repair of osteochondral lesions. For
example, utilizing bovine articular chondrocytes seeded
onto a PGA mesh scaffold and sutured to a PLGA-poly-
ethylene glycol foam loaded with bovine periosteal cells,
Schaefer et al. observed well-developed cartilaginous and
bone-like tissues, which maintained their individual pheno-
types during the composite culture and formed a well-
defined cartilage-bone interface [15]. Taking a different
design approach to fabricate a construct which mimics
the relevant features of the tissue to be repaired, Sher-
wood et al. have used the TheriForm™ three-dimensional
printing process to develop a unique, heterogeneous scaf-
fold with variable material composition, porosity, and
mechanical properties to suit its design for the repair of
osteochondral lesions [16], while also allowing for versatil-
ity in overall shape. Chondrocytes preferentially attached
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to the “cartilage-like” portion of the scaffold and formed
cartilage in vitro, while the cloverleaf “bone-like” portion
maintained a tensile strength comparable to that of native
trabecular bone. Interestingly, for procedures such as
repair of osteochondral lesions, such a complex construct
would have the advantage of promoting ingrowth of native
bone tissue, while optimizing the transition zone to prevent
delamination of tissues at the cartilage-bone interface.
Clinical feasibility awaits in vivo studies to assess repair of
osteochondral lesions.

The promise of mesenchymal progenitor or
stem cells
Although the use of chondrocytes for applications of carti-
lage tissue engineering is prevalent, concerns associated
with donor site morbidity, cell dedifferentiation, and the
limited life span of these cells have brought the usage of
MPCs or MSCs to the forefront of such applications [17].
MPCs can be found resident within a host of muscu-
loskeletal and connective tissues, and the multipotential
nature of MPCs makes them theoretically ideal candidates
for repair of cartilage defects, especially those that also
involve subchondral bone. Gao et al. [18] tested this
hypothesis by attempting repair of osteochondral defects
using a two-phase composite material to mimic natural
tissue geometry that is composed of injectable calcium
phosphate (ICP) and a hyaluronan derivative loaded with
MPCs. At 12 weeks postimplantation, the grafted com-
posite displayed distinct zones of repair tissue, including
columnar arrays of chondrocyte-like cells, which inte-
grated with surrounding native cartilage and the new bone
tissue that formed within the ICP. Interestingly, however,
Solchaga et al. [19] reported that a fibronectin-coated,
hyaluronan-based sponge was able to organize and facili-
tate the reparative response following implantation within
an osteochondral defect, even without preloading the
scaffold with autologous bone marrow as a source of
MPCs [19], suggesting an enhancement of the natural
repair response by scaffold alone. The combination of
scaffold preloaded with bone marrow was not found to
significantly benefit the long-term repair process, but did,
however, allow for a more homogeneous filling of the scaf-
fold, ultimately promoting integration of the newly formed
cartilage repair tissue with the host tissue.

Recent efforts have also been directed towards the in
vitro prefabrication of MPC-based cartilage and osteo-
chondral constructs prior to implantation. Using a novel
one-step procedure, Noth et al. [20] have successfully
developed an in vitro engineered cartilage construct by
press-coating MPCs onto a PLA scaffold. Following a 3-
week period of culture in chondrogenic conditions, the
construct displayed a hyaline cartilage-like morphology,
with organized and spatially distinct zones positive for col-
lagen type II and link protein. Using human trabecular
bone-derived MPCs [21, 22] and a PLA scaffold, our labo-

ratory has recently constructed a single-unit osteochon-
dral plug consisting of a collagen type II-positive, but colla-
gen type I-negative, hyaline cartilage-like layer adherent to,
and overlying, a dense, mineralized bone-like component,
and separated by a well-demarcated interface similar to
that of native tissue (submitted for publication). During the
course of long-term co-culture, the chondrogenic and
osteogenic cells continued to differentiate and maintain
their specific phenotypes. The use of only two starting
materials, autologous MPCs and a PLA scaffold, provide
the added benefits of minimizing handling, while maximiz-
ing biocompatibility for repair of osteochondral defects.

Conclusion and future direction
While it is recognized that functional, biologically engi-
neered tissue substitutes represent a highly promising alter-
native solution to current methods of cartilage repair, key
challenges remain to be addressed. For example, implanta-
tion of a cell-scaffold into a hostile, tissue-degradative envi-
ronment, such as for treatment of a focal osteoarthritis
lesion, would seem imprudent given the potentially rapid
breakdown of matrix components that would ensue. A
potentially attractive solution would be a combined gene
therapy and tissue engineering approach. For example,
Kafienah et al. [23] implanted cells transduced with tissue
inhibitor of metalloproteinases-1 to protect the cells from
the degradative effects of matrix metalloproteinases
induced by cytokines, such as IL-1 and tumor necrosis
factor-α. Future research should thus be aimed at investi-
gating and evaluating tissue-engineering approaches to car-
tilage repair in disease-compromised animal models to gain
a better understanding of clinically feasible designs. The
results of such studies should have direct therapeutic appli-
cations, and should also provide a model system for the
study of normal and pathological cartilage tissues.
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