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Markov chain Monte Carlo sampling methods often suffer from
long correlation times. Consequently, these methods must be run
for many steps to generate an independent sample. In this paper,
a method is proposed to overcome this difficulty. The method
utilizes information from rapidly equilibrating coarse Markov
chains that sample marginal distributions of the full system. This is
accomplished through exchanges between the full chain and the
auxiliary coarse chains. Results of numerical tests on the bridge
sampling and filtering/smoothing problems for a stochastic differ-
ential equation are presented.

Markov chain Monte Carlo � renormalization � multi-grid � filtering �
parameter estimation

To understand the behavior of a physical system, it is often
necessary to generate samples from complicated high di-

mensional distributions. The usual tools for sampling from these
distributions are Markov chain Monte Carlo (MCMC) methods
by which one constructs a Markov chain whose trajectory
averages converge to averages with respect to the distribution of
interest. For some simple systems, it is possible to construct
Markov chains with independent values at each step. In general,
however, spatial correlations in the system of interest result in
long correlation times in the Markov chain and hence slow
convergence of the chain’s trajectory averages. Here, a method
is proposed to alleviate the difficulties caused by spatial corre-
lations in high dimensional systems. The method, parallel mar-
ginalization, is tested on two stochastic differential equation
conditional path sampling problems.

Parallel marginalization takes advantage of the shorter cor-
relation lengths present in marginal distributions of the target
density. Auxiliary Markov chains that sample approximate mar-
ginal distributions are evolved simultaneously with the Markov
chain that samples the distribution of interest. By swapping their
configurations, these auxiliary chains pass information between
themselves and with the chain sampling the original distribution.
As shown below, these swaps are made in a manner consistent
with both the original distributions and the approximate mar-
ginal distributions. The numerical examples indicate that im-
provement in efficiency of parallel marginalization over standard
MCMC techniques can be significant.

The design of efficient methods to approximate marginal
distributions was addressed by Chorin (1) and Stinis (2). The use
of Monte Carlo updates on coarse subsets of variables is not a
new concept (see ref. 3 and the references therein). The method
presented in ref. 3 does not use marginal distributions. However,
attempts have been made previously to use marginal distribu-
tions to accelerate the convergence of MCMC (see refs. 4 and
5). In contrast to parallel marginalization, the methods proposed
in refs. 4 and 5 do not preserve the distribution of the full system
and therefore are not guaranteed to converge. The parallel
construction used here is motivated by the parallel tempering
method (see ref. 6), and allows efficient comparison of the
auxiliary chains and the original chain. See refs. 6 and 7 for
expositions of standard MCMC methods.

Parallel marginalization for problems in Euclidean state
spaces is described in detail below. In the final sections, the

conditional path sampling problem is described and numerical
results are presented for the bridge sampling and smoothing/
filtering problems.

Parallel Marginalization
For the purposes of the discussion in this section, we assume that
appropriate approximate marginal distributions are available. As
discussed in a later section, they may be provided by coarse
models of the physical problem as in the examples below, or they
may be calculated via the methods in refs. 1 and 2.

Assume that the d0 dimensional system of interest has a
probability density, �0(x0), where x0 � �d0. Suppose further that,
by the Metropolis–Hastings or any other method (see ref. 6), we
can construct a Markov chain, Y0

n � �d0, which has �0 as its
stationary measure. That is, for two points x0, y0 � �d0

� T0�x03 y0��0�x0�dx0 � �0� y0�,

where T0(x03 y0) is the probability density of a move to {Y0
n�1 �

y0} given that {Y0
n � x0}. Here, n is the algorithmic step. Under

appropriate conditions (see ref. 6), averages over a trajectory of
{Y0

n} will converge to averages over �0, i.e. for an objective
function g(x0)

1
N �

n�0

N�1

g�Y 0
n� 3 E�g�X0�� .

The size of the error in the above limit decreases as the rate of
decay of the time autocorrelation

Corr�g�Y 0
n� , g�Y 0

0��

�
E��g�Y 0

n� � E�g�X0����g�Y 0
0� � E�g�X0����

Var�g�X0��

increases. In this formula, Y 0
0 is assumed to be drawn from �0.

It is well known that judicious elimination of variables by
renormalization can reduce long range spatial correlations (for
example, see refs. 8 and 9). The variables are removed by
averaging out their effects on the full distribution. If the original
density is �(x̂, x̂) and we wish to remove the x̃ variables, the
distribution of the remaining x̂ variables is given by the marginal
density (see refs. 1 and 6)

�� �x̂� � � ��x̂, x̃�dx̃. [1]
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The full distribution can be factored as

��x̂, x̃� � �� �x̂���x̃�x̂�,

where �(x̃�x̂) is the conditional density of x̃ given x̂. Because they
exhibit shorter correlation lengths, the marginal distributions are
useful in the acceleration of MCMC methods.

With this in mind, we consider a collection of lower dimen-
sional Markov chains Yi

n � �di, which have stationary distribu-
tions �i(xi) where d0 � � � � � di. For each i � L, let Ti be the
transition probability density of Yi

n, i.e. Ti(xi 3 yi) is the
probability density of {Y i

n�1 � yi} given that {Y i
n � xi}. The {�i}

are approximate marginal distributions. For example, divide the
xi variables into two subsets, x̂i � �di�1 and x̃i � �di�di�1, so that
xi � (x̂i, x̃i). The x̃i variables represent the variables of xi that are
removed by marginalization, i.e.,

�i�1�x̂i� ���i�x̂i, x̃i�dx̃i.

After arranging these chains in parallel, we have the larger
process

Y n � �Y 0
n, . . . , Y L

n � � �d0 � · · · � �dL.

The probability density of a move to {Yn�1 � y} given that {Yn �
x} for x, y � �d0 	 � � � 	 �dL is given by

T�x3 y� � �
i�0

L

Ti�xi3 yi�.

Because

� �T�x3 y� �
i�0

L

�i�xi��dx0 . . . dxL � �
i�0

L

�i� yi�,

the stationary distribution of Yn is

��x0, . . . , xL� � �0�x0� . . . �L�xL�.

The next step in the construction is to allow interactions
between the chains {Y i

n} and to thereby pass information from
the rapidly equilibrating chains on the lower dimensional spaces
(large i) down to the chain on the original space (i � 0). This is
accomplished by swap moves. In a swap move between levels i
and i � 1, we take a di�1 dimensional subset, x̂i, of the xi variables
and exchange them with the xi�1 variables. The remaining di �
di�1 x̃i variables are resampled from the conditional distribution
�i (x̃i�xi�1). For the full chain, this swap takes the form of a move
from {Yn � x} to {Yn�1 � y} where

x � �. . . , x̂i, x̃i, xi�1, . . .�

and

y � �. . . , xi�1, ỹi, x̂i, . . .�.

The ellipses represent components of Yn that remain unchanged
in the transition and ỹi is drawn from �i (x̃i�xi�1).

If these swaps are undertaken unconditionally, the resulting
chain will equilibrate rapidly, but will not, in general, preserve
the product distribution 
. To remedy this, we introduce the
swap acceptance probability

Ai � min	 1,
�� i�xi�1�� i�1� x̂ i�

�� i� x̂ i�� i�1�xi�1�

 . [3]

In this formula, �� i is the function on �di�1 resulting from
marginalization of �i as in Eq. 1. Given that {Yn � x}, the
probability density of {Yn�1 � y}, after the proposal and either
acceptance with probability Ai or rejection with probability 1 �
Ai, of a swap move, is given by

Si�x 3 y� � �1 � Ai��� y�x�

� Ai�i�ỹi�xi�1����ŷi,yi�1���xi�1, x̂i�� �
j��i, i�1�

��yj�xj�

for x, y � d0 	 � � � 	 �dL. � is the Dirac delta function.
We have the following lemma.

Lemma 1. The transition probabilities Si satisfy the detailed balance
condition for the measure 
, i.e.,

��x�Si�x3 y� � �� y�Si� y3 x�

where x, y � �d0 	 � � � 	 �dL.
The detailed balance condition stipulates that the probability

of observing a transition x 3 y is equal to that of observing a
transition y3 x and guarantees that the resulting Markov chain
preserves the distribution . Therefore, under general condi-
tions, averages over a trajectory of {Yn} will converge to
averages over . Because

�0�x0� � � ��x0, . . . , xL�dx1 . . . dxL,

we can calculate averages over �0 by taking averages over the
trajectories of the first d0 components of Yn.

‘‘Exact’’ Approximation of Acceptance Probability
Note that formula 3 for Ai requires the evaluation of �̃i at the
points x̂i, xi�1 � �di�1. Although the approximation of �̃i by
functions on �di�1 is in general a very difficult problem, its
evaluation at a single point is often not terribly demanding. In
fact, in many cases, including the examples in this paper, the x̂i
variables can be chosen so that the remaining x̃i variables are
conditionally independent given x̂i.

Despite these mitigating factors, the requirement that we
evaluate �� i before we accept any swap is a little onerous.
Fortunately, and somewhat surprisingly, this requirement is not
necessary. In fact, standard strategies for approximating the
point values of the marginals yield Markov chains that them-
selves preserve the target measure. Thus, even a poor estimate
of the ratio appearing in Eq. 3 can give rise to a method that is
exact in the sense that the resulting Markov chain will asymp-
totically sample the target measure.

To illustrate this point, we consider the following example of
a swap move. Assume that the current position of the chain is
{Yn � x} where

x � �. . . , x̂i, x̃i, xi�1, . . .�.

The following steps will result in either {Yn�1 � x} or {Yn�1 �
y} where

y � �. . . , xi�1, ỹi, x̂i, . . .�

and ỹi � �di�di�1.

1. Let v0 � x̃i and let vj � �di�di�1 for j � 1, . . . , M � 1 be
independent samples from pi(��x̂i), where pi(��x̂i) is a reference
density conditioned by x̂i. For example, pi(��x̂i) could be a
Gaussian approximation of �i(x̃i�x̂i). How pi is chosen depends
on the problem at hand (see numerical examples below). In
general, pi(��x̂i) should be easily evaluated and independently
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sampled, and it should ‘‘cover’’ �i(��x̂i) in the sense that areas
of �di where �i(��x̂i) is not negligible should be contained in
areas where pi(��x̂i) is not negligible.

2. Let uj � �di�di�1 for j � 0, . . . , M � 1 be independent random
variables sampled from pi(��xi�1) (recall that we are consid-
ering a swap of x̂i and xi�1, which live in the same space). Note,
that the {uj} variables depend on xi�1, whereas the {vj}
variables depend on x̂i.

3. Define the weights

wv
j �

�i�x̂i, v j�

pi�vj�x̂i�
and wu

j �
� i�xi�1, uj�

pi�uj�xi�1�
.

The choice of pi made above affects the variance of these
weights, and therefore the variance of the acceptance prob-
ability below.

4. Choose ỹi from among the {uj} according to the multinomial
distribution with probabilities

P� ỹi � uj� �
wu

j

�l�0
M�1 wu

l .

Note that ỹi is an approximate sample from �i(��xi�1).
5. Set

Y n�1 � �. . . , xi�1, ỹi, x̂i, . . .�

with probability

Ai
M � min	 1,

� i�1� x̂ i�� j�0
M�1 w u

j

� i�1�xi�1�� j�0
M�1 w u

j 
 [4]

and

Y n�1 � Y n � �. . . , x̂i, x̃i, xx�1, . . .�

with probability 1 � Ai
M.

The transition probability density for the above swap move
from x 3 y for x, y � �d0 	 � � � 	 �dL is given by

Si
M�x 3 y� � �1 � R���y�x� � R��� ŷi,yi�1���xi�1, x̂i�� �

j��i,i�1�

��yj�xj�
,

where

R � M� pi�u0�xi�1�
wu

0

�j�0
M�1 wu

j Ai
M � �

j�1

M�1

pi�v j�xi�pi�uj�xi�1�dvjdu j

and � is again the Dirac delta function. In other words, Si
M

dictates that the Markov chain accepts the swap with probability
R and rejects it with probability 1 � R.

Although the preceding swap move corresponds to a method
for approximating the ratio

�� i�xi�1�

�� i�x̂i�

appearing in the formula for Ai above, it also has some similar-
ities with the multiple-try Metropolis method presented in ref.
10, which uses multiple suggestion samples to improve accep-
tance rates of standard MCMC methods. The following lemma
is suggested by results in ref. 10.

Lemma 2. The transition probabilities Si
M satisfy the detailed balance

condition for the measure .

As before, the detailed balance condition guarantees that aver-
ages over trajectories of the first d0 dimensions of Yn will
converge to averages over �0.

The Ai
M contain an approximation to the ratio of marginals in 3

�j�0
M�1 wu

j

�j�0
M�1 wv

j �

1
M �j�0

M�1 �i�xi�1, uj�

pi�uj�xi�1�

1
M �j�0

M�1 �i�x̂i, vj�

pi�vj�x̂i�

a.s.
M3 �

3

Epi� � i�xi�1, X̃ i�

pi�X̃ i�xi�1�
� �X̂ i � xi�1�

Epi� � i� x̂ i, X̃ i�

pi�X̃ i� x̂ i�
� �X̂ i � x̂ i� �

�� i�xi�1�

�� i� x̂ i�
,

where Epi
denotes expectation with respect to the density pi.

When 0 � Epi
[wv

j �{X̂i � x̂i}] � �, the convergence above follows
from the strong law of large numbers and the fact that

Epi� � i�X̂ i�X̃ i�

pi�X̃ i�X̂ i�
� �X̂ i � x̂ i� � � � i� x̂ i, x̃ i�

pi� x̃ i� x̂ i�
pi� x̃ i� x̂ i�dx̃ i

� � � i� x̂ i, x̃ i�dx̃ i � �� i� x̂ i� .

For small values of M in 4, calculation of the swap acceptance
probabilities is very cheap. However, higher values of M may
improve the acceptance rates. For example, if the {�i}i�0 are
exact marginals of �0, then Ai � 1, whereas Ai

M � 1. Results
similar to Lemma 2 hold when more general approximations
replace the one given above; for example, when the {uj} and {vj}
are generated by a Metropolis–Hastings rule. In practice, one
has to balance the speed of evaluating Ai

M for small M with the
possible higher acceptance rates for M large.

It is easy to see that a Markov chain, which evolves only by
swap moves, cannot sample all configurations. These swap moves
must therefore be used in conjunction with a transition rule that
can reach any region of space, such as T from expression 2. More
precisely, T should be -irreducible and aperiodic (see ref. 11).
The the transition rule for parallel marginalization is

P�x 3 y� � �1 � ��T�x 3 y� � ��T�x 3 z�S�z 3 y�dz,

where

S�x 3 y� � �
k�0

L�1 1
L

Si
M�x 3 y�

and � � [0, 1) is the probability that a swap move occurs. P
dictates that, with probability �, the chain attempts a swap move
between levels I and I � 1, where I is a random variable chosen
uniformly from {0, . . . , L � 1}. Next, each level of the chain
evolves independently according to the {Ti}. With probability
1 � �, the chain does not attempt a swap move, but does evolve
each level. The next result follows trivially from Lemma 2 and
guarantees the invariance of  under evolution by P.

Theorem 1. The transition probability P satisfies the detailed balance
condition for the measure 
, i.e.,

��x�P�x3 y� � �� y�P� y3 x�

where x, y � �d0 	 � � � 	 �dN.
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Thus, by combining standard MCMC steps on each component
governed by the transition probability T, with swap steps be-
tween the components governed by S, an MCMC method results
that not only uses information from rapidly equilibrating lower
dimensional chains, but is also convergent.

Numerical Example 1: Bridge Path Sampling
In the bridge path sampling problem, we wish to approximate
conditional expectations of the form

E�g�Zs� ��Z0 � z�� , �ZT � z��� ,

where s � (0, T) and {Zt} is the real valued processes given by
the solution of the stochastic differential equation

dZt � f�Zt�dt � 	�Zt�dW t. [5]

g, f, and 	 are real valued functions of �. Of course, we can also
consider functions g of more than one time. This problem arises,
for example, in financial volatility estimation. Because, in gen-
eral, we cannot sample paths of 5, we must first approximate {Zt}
by a discrete process for which the path density is readily
available. Let t0 � 0, t1 � T/K, . . . , tK � T be a mesh on which
we wish to calculate path averages. One such approximate
process is given by the linearly implicit Euler scheme (a balanced
implicit method, see ref. 12),

Xtk�1 � Xtk � f�Xtk��

� �Xtk�1 � Xtk�f��Xtk�� � 	�Xtk���
k, [6]

X0 � Z0 XtK � ZT.

The {
 k} are independent Gaussian random variables with mean
0 and variance 1, and � � T/K. K is assumed to be a power of
2. The choice of this scheme over the Euler scheme (see ref. 13)
is due to its favorable stability properties, as explained later.
Without the condition XtK � ZT above, generating samples of
(X0, . . . , XtK) is a relatively straightforward endeavor. One sim-
ply generates a sample of Z0, then evolves the system with this
initial condition. However, the presence of information about
{Zt}t�0 complicates the task. In general, a sampling method that
requires only knowlege of a function proportional to conditional
density of (Xt1, . . . , XtK�1) must be applied. The approximate
path density associated with discretization 6 is

�0�x0
t1, . . . , x0

tK�1�x0
0, x0

tK� � exp � ��
k�0

K�1

V� x0
tk, x0

tk�1, �� � [7]

where

V�x, y, �� �
��1 � �f ��x���y � x� � �f�x��2

2	 2�x��
.

At this point, we wish to apply the parallel marginalization
sampling procedure to the density �0. However, as indicated
above, a prerequisite for the use of parallel marginalization is the
ability to estimate marginal densities. In some important prob-
lems, homogeneities in the underlying system yield simplifica-
tions in the calculation of these densities by the methods in refs.
1 and 2. These calculations can be carried out before implemen-
tation of parallel marginalization, or they can be integrated into
the sampling procedure.

In some cases, the numerical estimation of the {�i}i�0 can be
completely avoided. The examples presented here are two such
cases. Let Si � {0, 2i, 3(2i), 4(2i), . . . , K}. Decompose Si as Ŝi �
S̃i where

Ŝi � �0, 2�2i�, 4�2i�, 6�2i�, . . . , K�

and

S̃i � �2i, 3�2i�, 5�2i�, 7�2i�, . . . , K � 2i�.

In the notation of the previous sections, xi � (x̂i, x̃i), where x̂i �
{xi

tk}k�Ŝi�{0,K} and x̃i � {xi
tk}k�S̃i

. In words, the hat and tilde
variables represent alternating time slices of the path. For all i,
fix xi

0 � z� and xi
tK � z�. We choose the approximate marginal

densities

�i��xi
tk�k�Si��0, K��xi

0, xi
tK� � qi��xi

tk�k�Si
�,

where for each i, qi is defined by successive coarsenings of 6.
That is,

qi��xi
tk�k�Si

� � exp � � �
k�0

K/2i�1

V�xi
t2ik, xi

t2i�k�1�, 2 i��� .

Because �i will be sampled using a Metropolis–Hastings method
with x0 and xtK fixed, knowlege of the normalization constants

Zi�xi
0, xi

tK� � � qi �
k�Si��0, K�

dxi
tk

is unnecessary.
Note from 7 that, conditioned on the values of xtk�1 and xtk�1,

the variance of xtk is of order �. Thus, any perturbation of xtk that
leaves xtj fixed for j � k and is compatible with joint distribution
7 must be of the order ��. This finding suggests that distribu-
tions defined by coarser discretizations of 7 will allow larger
perturbations, and consequently will be easier to sample. How-
ever, it is important to choose a discretization that remains stable
for large values of �. For example, although the linearly implicit
Euler method performs well in the experiments below, similar
tests using the Euler method were less successful due to limita-
tions on the largest allowable values of �.

In this numerical example, bridge paths are sampled between
time 0 and time 10 for a diffusion in a double-well potential

f�x� � �4x�x2 � 1� and 	�x� � 1.

The left and right end points are chosen as z� � z� � 0. � � 2�10.
Y i

n � �10/(2i�)�1 is the ith level of the parallel marginalization
Markov chain at algorithmic time n. There are 10 chains (L �
9 in expression 2). The observed swap acceptance rates are
reported in Table 1. Let Y mid

n � � denote the midpoint of the
path defined by Y 0

n (i.e., an approximate sample of the path at
time 5). In Fig. 1, the autocorrelation of Y mid

n

Corr�Y mid
n , Y mid

0 �

is compared to that of a standard Metropolis–Hastings rule. In
Fig. 1, the time scale of the autocorrelation for the Metropolis–

Table 1. Swap acceptance rates for bridge sampling and
filtering/smoothing problems

Levels* 0/1 1/2 2/3 3/4 4/5 5/6 6/7 7/8 8/9

BS† 0.86 0.83 0.75 0.69 0.54 0.45 0.30 0.22 0.26
FS‡ 0.86 0.83 0.74 0.65 0.46 0.23 0.04 NA NA

NA, not applicable.
*Swaps between levels i and i � 1.
†Bridge sampling problem.
‡Filtering/smoothing problem.
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Hastings method has been scaled by a factor of 1/10 to more than
account for the extra computational time required per iteration
of parallel marginalization. The relaxation time of the parallel
chain is clearly reduced. In these numerical examples, the
algorithm in the previous section is applied with a slight simpli-
fication. First generate M independent Gaussian random paths
{� j(tk)}k�S̃i

with independent components � j(tk) of mean 0 and
variance 2i�1�. For each j and k � S̃i, let

uj�tk� � � j�tk� � 0.5�x i�1
tk�1 � x i�1

tk�1�.

If in step 4, ỹi � uj*, then in step 1 we set v0 � x̃i and for each
k � S̃i

�vj�tk��j�0 � �� j�tk� � 0.5�x̂i
tk�1 � x̂i

tk�1��j�j*.

All other steps remain the same. This change yields a slightly
faster though less generally applicable swap step that also
preserves the density . Note that this modification implies that
the reference density pi is given by

pi�x̃i�x̂i� � exp� �
k�S̃i

�
� x̃ i

tk � 0.5� x̂ i
tk�1 � x̂ i

tk�1��2

2 i� � .

For this problem, the choice of M in 4, the number of samples
of {uj} and {vj}, seems to have little effect on the swap
acceptance rates. In the numerical experiment M � i � 1 for
swaps between levels i and i � 1.

Numerical Example 2: Nonlinear Smoothing/Filtering
In the nonlinear smoothing and filtering problem, we wish to
approximate conditional expectations of the form

E�g�Zs� ��Hj � hj�0
J � ,

where s � (0, T) and the real valued processes {Zt} and {Hj} are
given by the system

dZt � f�Zt�dt � 	�Zt�dW�t,

Hj � r�Zj
S� �  j,

Z0 � �, Xn � i.i.d. �.

g, f, 	, and r are real valued functions of �. The {Xj} are real
valued independent random variable drawn from the density �

and are independent of the Brownian motion {Wt}. {sj} � {tj},
and 0 � s0 � s1 � � � � � sJ � T. The process Zt is a hidden signal,
and the {Hj} are noisy observations.

Again, the system must first be discretized. The linearly
implicit Euler scheme gives

Xtk�1 � Xtk � f�Xtk�� � �Xtk�1 � Xtk�f��Xtk�� � 	�Xtk���
k,Hj

� r�Xsj� � XjX0 � Z0Xn � i.i.d. �.

The {
k} are independent Gaussian random variables with mean
0 and variance 1, and � � T/K. The {
k} are independent of the
{Xj}. K is again assumed to be a power of 2.

The approximate path measure for this problem is

�0�x0
t0, . . . , x0

tK�h0, . . . , hT� � exp���
k�0

K�1

V�x0
tk, x0

tk�1, ���

� ��x0
t0� �

n�0

J

��x0
sj � r�hsj�� .

The approximate marginals are chosen as

�i��xi
tk�k�Si

�h0, . . . , hT� � qi��xi
tk�k�Si

���xi
t0��

n�0

J

��xi
sj � r�hsj��,

where V, qi, and Si are as defined in the previous section.
In this example, samples of the smoothed path are generated

between time 0 and time 10 for the same diffusion in a
double-well potential. The densities � and � are chosen as

� � N�0, 0.01� and ��x� � exp���x2 � 1�2� .

The observation times are s0 � 0, s1 � 1, . . . , s10 � 10 with Hj �
�1 for j � 0, . . . , 5 and Hj � 1 for j � 6, . . . , 10. � � 2�10. There
are eight chains (L � 7 in expression 2). The observed swap
acceptance rates are reported in Table 1. Again, Y mid

n � �
denotes the midpoint of the path defined by Y 0

n (i.e., an
approximate sample of the path at time 5). In Fig. 2, the
autocorrelation of Y mid

n is compared to that of a standard
Metropolis–Hastings rule. Fig. 2 has been adjusted as in the
previous example. The relaxation time of the parallel chain is
again clearly reduced. The algorithm is modified as in the
previous example. For this problem, acceptable swap rates
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Fig. 1. Autocorrection of parallel marginalization and standard Metropolis
methods for bridge sampling problem.
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Fig. 2. Autocorrection of parallel marginalization and standard Metropolis
methods for filtering and smoothing problem.
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require a higher choice of M in 4 than needed in the bridge
sampling problem. In this numerical experiment M � 2i for swaps
between levels i and i � 1.

Conclusion
A MCMC method has been proposed and applied to two
conditional path sampling problems for stochastic differential
equations. Numerical results indicate that this method, parallel
marginalization, can have a dramatically reduced equilibration
time when compared to standard MCMC methods.

Note that parallel marginalization should not be viewed as a
stand-alone method. Other acceleration techniques, such as
hybrid Monte Carlo, can and should be implemented at each

level within the parallel marginalization framework. As indi-
cated by the smoothing problem, the acceptance probabilities at
coarser levels can become small. The remedy for this is the
development of more accurate approximate marginal distribu-
tions by, for example, the methods in refs. 1 and 2.
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