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Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the
optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome.
Here we analyze the distribution of the 210 promoter motifs that bind the s70 subunit of RNAP in 42 bacterial genomes. We
show that selection on these motifs operates across the genome, maintaining an over-representation of 210 motifs in
regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In
some genomes, however, 210 sites are over-represented in the coding sequences; these sites could induce pauses effecting
regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-
representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of
translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important
selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes
of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be
important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic
expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of
transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection
against promoter motifs in nonfunctional regions also confirms previous results indicating that no sequence may evolve free of
selective constraints, at least in the relatively small and unstructured genomes of bacteria.
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INTRODUCTION
Increased efficiency of cellular functions may impose selective

pressures on many factors beyond the amino acid sequences of the

cell’s proteome. The capacity to produce the necessary proteins at

the right time and in the required amount is a system-wide cellular

property that requires integration of numerous signals and

processes. In bacteria, finely tuned gene expression is the main

recourse for immediate interaction with the environment, and

should be selected to proceed in a rapid, precise and cost-efficient

manner. The efficiency of bacterial translation is known to be

under measurable selective pressure; this is evidenced by the fact

that, in many bacteria, the most highly expressed genes utilize

restricted sets of codons that allow for fast and accurate translation

of mRNA, by virtue of their optimal interaction with the most

abundant tRNA species for a given amino acid [1–5]. In addition,

recent comparative analyses across numerous bacterial genomes

have revealed that the abundance and variety of the tRNA gene

sets encoded in a genome is highly correlated with the maximal

growth rate of the bacterial species. The genomes of fast-growing

bacteria contain large numbers of tRNA genes, with the diversity

of the encoded tRNA set being low and well adjusted to the codon

usage in that species. As a result, the codon usage bias in the highly

expressed genes of fast growers is extreme [5].

The selective pressures operating on the general efficiency of

transcription are less well understood. Although recent experi-

mental studies suggest that the efficiency of transcription may be

regulated at every stage of the process [6,7], the frequency of

transcription initiation is likely to remain the strongest determinant

of total transcriptional output, as evidenced by the complexity of

regulatory mechanisms operating at this step. In particular, rapid

and accurate localization and binding of correct transcription

promoter sites by the RNA polymerase (RNAP) holoenzyme may

be one of the critical steps limiting the overall efficiency of gene

expression, especially in bacteria, where genomic DNA is not

protected by nucleosome-like structures. Spurious binding could

result in draining of RNAP molecules away from real promoters,

in wasteful attempts to initiate transcription at unproductive sites,

or in the generation of unwanted transcripts [8]. However,

promoter recognition is likely to be compromised by the fact that

RNAP is capable of binding, and possibly initiating transcription,

at a multitude of DNA sequences.

Although promoters follow general rules in terms of their

nucleotide sequence, structure, length and position, many varia-

tions on the canonical promoter model allow for function. In the

case of s70 promoters, which regulate the majority of E. coli genes,

the canonical model is characterized by two hexamers, centered

around positions 235 and 210 from the +1 transcription initiation

site and separated by 15 to 21 bp, which are bound by distinct

regions of the s70 molecule. Comparisons of numerous promoter

sequences have defined TTGACA and TATAAT as the consensus

sequences for the 235 and 210 promoter motifs [9,10]. However,

transcription initiation does not proceed from promoters having
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strict consensus sequences, because the binding of the RNAP to

a perfect consensus promoter is so strong that it prevents the

necessary steps towards promoter clearance and elongation

initiation [11]. Rather, variations of the consensi are used which

have lower but more functional binding strengths. On average, E.

coli promoters preserve only 8 of the 12 canonical bases of the 235

and 210 hexamers [10,12].

Given the variety of sites recognized by RNAP, promoter-like

motifs are likely to appear across DNA sequences by neutral

mutation and random genetic drift. Computer simulations have

shown that this is indeed the case for eukaryotic transcription

factor binding sites, which can appear neutrally within micro-

evolutionary timescales [13]. Selection for efficient gene expres-

sion should therefore act to maintain low frequencies of potential

RNAP-binding sites in locations where they are not needed.

Several lines of evidence have emerged that suggest that selection

may indeed operate to control the genomic distribution of

DNA motifs capable of binding to s70. In a series of recent

computational analyses, it has been established that the densities

of promoter-like sequence motifs differ between regulatory and

nonregulatory regions of the genome for a majority of bacteria.

The density of promoter-like sequences is high within regulatory

regions, in contrast to coding regions and regions located

between convergently-transcribed genes, where functional pro-

moters are not required [14–16]. However, comparisons among

genomic regions can’t determine whether s70 binding sites are

over-represented in regulatory regions and/or under-represented

in nonregulatory regions beyond their expected values. To

address this issue, actual motif counts need to be compared to

the expected occurrences of the motifs given the base com-

position of each type of region. Hahn, Stajich and Wray [8]

conducted such an analysis for the consensus promoter sequences

TTGACA and TATAAT, showing that the numbers of these

words are below the expectations in both coding and noncoding

regions of numerous bacterial genomes. This implies that natural

selection acts to remove spurious occurrences of the consensus

s70-binding motifs.

Given that s70 recognizes many sequences beyond its

canonical consensi, we were interested in determining the

collective behavior of motifs capable of s70-binding, and in

understanding the role of natural selection in shaping their

genomic distribution. In order to investigate the specific selective

pressures acting on the distribution of these motifs, we decided to

study and compare their densities in different genomic regions for

bacteria having different lifestyles, growth rates and levels of

optimization of the translational process. Such a broad compar-

ison is warranted because several factors indicate that all bacteria

contain promoter motifs similar to those found in E. coli,

particularly for the 210 region. RNAP is evolutionarily

conserved across bacteria, and, in particular, the orthologues of

s70 can be clearly aligned and contain highly similar motifs for

the recognition and binding of promoter sequences [17]. Recent

computational analyses have shown that when genomes of

bacterial species belonging to different phyla are searched with

E. coli position frequency matrices, collections of promoter-like

motifs are detected which are similar to those of E. coli in several

respects, including consensus sequence and average score [15,16].

Experimental evidence from several bacteria belonging to

different phyla also indicates that the 210 box is conserved

and displays the same consensus, although the 235 region may

be more variable and can’t be defined for all genes [18–21].

Accordingly, the 210 motif has been shown to be the most

essential component of the promoter in E. coli, whereas the 235

motif can be replaced by other combinations of elements

upstream of the 210 [22–24]. Therefore, we focused our

analyses on the 210 motifs present in the genomes of numerous

bacterial species belonging to distant phylogenetic groups.

RESULTS

Over- and under-representation of 210 motifs in

different genomic regions of E. coli
We first analyzed the distribution of 210 motifs capable of s70-

binding in the genome of E. coli. To this aim, we defined a list of

185 unique 210 hexamers (Table S1) derived from 584

experimentally detected s70 E. coli promoters reported in

RegulonDB [25]. We obtained the total number of occurrences

of these hexamers for three distinct categories of genomic

sequence: regulatory, coding and nonfunctional. In order to

establish whether these sites are under or overrepresented in each

sequence category, we compared the observed counts to the

expected occurrences of the hexamers given the base composition

of each type of region (see Methods).

Figure 1 compares the observed hexamer counts in E. coli with

the values obtained for sets of 1000 shuffled sequences for each

sequence category, as well as for a control set of randomly

generated DNA sequence. The control shows that there were no

procedural biases, as the observed value from the original random

sequence lies within the curve for shuffled random DNA. The

regulatory and nonregulatory sequences behave in an opposite

manner. In regulatory regions, the observed total hexamer count is

beyond any value obtained in the population of shuffled

sequences, whereas the observed count in coding and non-

functional DNA is below any of the simulated values. We therefore

conclude that the hexamers corresponding to the 210 s70-binding

motif are significantly over-represented in regulatory regions and

under-represented in nonregulatory regions.

This implies that, in E.coli, natural selection is favoring a high

density of s70-binding sites in regulatory regions, while keeping

their frequencies low in other types of sequences. The under-

representation of potential s70-binding sites in nonregulatory

regions is likely to be related to selection against spurious RNAP-

binding to achieve higher transcriptional efficiency. The

functional and evolutionary causes that might be responsible for

maintaining high densities of promoter-like signals in regulatory

regions have been previously described [14–16]. Some of the s70-

binding sites in regulatory regions could be part of distinct

functional promoters that direct transcriptional initiation under

different environmental conditions. Alternatively, these sites may

not serve as locations of transcription initiation, but rather may

affect the function of the real start site in different ways. For

instance, these sites could bind RNAP to maintain a local

abundance of RNAP molecules close to the transcription start

site. They could also play a more specific regulatory role, by

affecting the interactions of the functional promoter with regu-

latory proteins, or by causing the transcription complex to pause

after initiation during the early steps of elongation. Finally, several

modes of natural selection could operate over regulatory regions

that would result in a rapid turnover of functional binding sites

and maintenance of numerous cryptic signals, such as compensa-

tory selection, stabilizing selection or selection for robustness to

mutation.

In order to achieve some understanding of the relative

importance of selection for and against potential s70-binding sites

in different bacteria, we have analyzed the distribution of 210 s70

motifs in different regions of 41 additional bacterial genomes

(Table 1 and Fig. 2).

Spurious Promoter Motifs
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Over- and under-representation of 210 s70 motifs in

different bacterial genomes
Given that the motif responsible for binding the 210 promoter

region is highly conserved in all bacterial s70 orthologues, we used

the collection of 185 210 hexamers defined in E. coli for analyses

of all bacterial species. For each genome, we defined regulatory,

coding and nonfunctional regions as previously done for E. coli and

we obtained the sum of the number of occurrences of each

hexamer in every region (Tables S2, S3 and S4). Shuffled

sequences were generated for every sequence category in every

genome analyzed, in order to produce independent genome-

specific distributions of expected hexamer counts.

Figure 3 shows the overall pattern obtained across bacterial

genomes. Regulatory regions present a significant over-represen-

tation of 210 s70 motifs in a majority of bacteria, whereas the

same sites are significantly under-represented in a majority of the

nonfunctional and coding regions. Figure 4 shows the deviations

in the observed counts of 210 s70 motifs measured in numbers

of standard deviations from the expected mean (NSD), for the

three types of genomic regions (see also Tables S2, S3 and S4).

Species are ordered according to ascending NSD values for the

nonfunctional regions. Because there is no reason to expect any

selection for 210 s70 motifs in nonfunctional regions, these NSD

values may be interpreted as the baseline strength of selection

against spurious binding in a given genome. Overall, the NSD in

the three regions covary across genomes (regulatory vs. non-

functional: r = 0.44 p,0.005; coding vs. nonfunctional: r = 0.52

p,0.001 and coding vs. regulatory r = 0.38 p,0.02). Moreover, in

nearly all cases, the nonfunctional regions and the regulatory

regions present distinguishable patterns of abundance of 210 sites.

In the left area of the graph in Figure 4, genomes show the

hallmark of selection against spurious sites (under-representation)

in nonfunctional regions, whereas regulatory regions do not

deviate from expectation or display an over-representation of 210

motifs. In contrast, in the right area of the graph, nonfunctional

regions do not deviate from expectation, but most genomes display

selection for 210 site over-representation in the regulatory

regions. Thus, as a result of selection for 210 sites in the

regulatory regions, selection against them in the nonfunctional

regions, or the combination of both processes, the localization of

RNAP molecules should be biased towards regulatory regions in

all genomes. This indicates that the optimization of transcriptional

efficiency via the distribution of potential 210 binding sites is an

Figure 1. Comparison of observed and expected 210 motif frequencies in different genomic regions of E. coli. Distributions were obtained by
counting and summing the occurrences of 185 210 hexamers in sets of 1000 shuffled sequences. This procedure was performed independently for
(A) randomly generated, (B) nonfunctional, (C) regulatory, and (D) coding sequences. In each panel, the blue lines represent 6 2 Standard Deviations
(SD) from the mean value in the population of shuffled sequences and the red line represents the observed count in the unshuffled E. coli sequence.
doi:10.1371/journal.pone.0000745.g001
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important selective constraint across bacteria. Remarkably,

although under-representation of potential s70 binding sites is

the most common pattern in coding regions (24/42), there also

exist several genomes with significant over-representations (9/42),

indicating selection of these sites and suggesting some functional

effect on the transcription process.

Selection against spurious s70 sites in

nonfunctional regions correlates with translational

efficiency
Next, we explored possible factors influencing the observed

patterns of distribution of 210 s70 sites in different genomes.

Table 1. Bacterial species analyzed and their general features.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species Accession tRNA Genes Growth Rate Genome Size (Mb)

Ureaplasma urealyticum NC_002162 30 I 0.75

Buchnera aphidicola NC_004545 32 S 0.62

Borrelia burgdorferi NC_001318 33 S 1.52

Rickettsia conorii NC_003103 33 S 1.27

Wigglesworthia glossinidia NC_004344 34 S 0.7

Helicobacter pylori NC_000915 36 I 1.67

Mycoplasma genitalium NC_000908 36 S 0.58

Chlamydia muridarum NC_002620 37 S 1.08

Mycoplasma pneumoniae NC_000912 37 S 0.82

Chlamydophila pneumoniae NC_002179 38 S 1.23

Aquifex aeolicus NC_000918 44 S 1.59

Campylobacter jejuni NC_002163 44 I 1.64

Synechocystis NC_000911 44 S 3.95

Mycobacterium leprae NC_002677 45 S 3.27

Treponema pallidum NC_000919 45 S 1.14

Thermotoga maritima NC_000853 46 I 1.86

Fusobacterium nucleatum NC_003454 47 S 2.17

Xylella fastidiosa NC_002488 50 S 2.73

Bradyrhizobium japonicum NC_004463 51 S 9.11

Caulobacter crescentus NC_002696 51 I 4.02

Agrobacterium tumefaciens NC_003062 53 I 5.67

Brucella melitensis NC_003317 54 I 3.29

Mesorhizobium loti NC_002678 54 I 7.6

Sinorhizobium meliloti NC_003047 56 I 6.69

Haemophilus influenzae NC_000907 57 F 1.83

Pasteurella multocida NC_002663 57 I 2.26

Ralstonia solanacearum NC_003295 57 S 5.81

Streptococcus pneumoniae NC_003098 58 F 2.04

Neisseria meningitidis NC_003112 59 I 2.27

Corynebacterium glutamicum NC_003450 60 ? 3.31

Staphylococcus aureus NC_002758 60 F 2.9

Lactobacillus lactis NC_002662 61 I 2.37

Pseudomonas aeruginosa NC_002516 64 I 6.26

Listeria innocua NC_003212 66 F 3.09

Clostridium acetobutylicum NC_003030 73 F 4.13

Photorhabdus luminescens NC_005126 85 F 5.69

Bacillus subtilis NC_000964 86 F 4.21

Salmonella typhimurium LT2 NC_003197 86 F 4.95

Escherichia coli K12 NC_000913 86 F 4.64

Nostoc sp. NC_003272 89 S 7.21

Clostridium perfringens NC_003366 96 F 3.09

Vibrio cholerae NC_002505 98 F 4.03

Growth rates correspond to optimal generation times as follows: slow (S).3 h; intermediate 3 h#(I)$40 min, and fast (F),40 min. Estimates of the optimal generation
times were obtained from [5].
doi:10.1371/journal.pone.0000745.t001..
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The 42 bacterial species analyzed belong to many different phyla

and have substantially different lifestyles reflected in their overall

cellular and genomic features. In particular, the species considered

show a large range of variation in growth rate as well as in the level

of optimization of the translational process, as evidenced in the

number of encoded tRNA genes (Table 1) and the degree of

adaptive bias in codon usage [5].

Given that the bacterial cell is not highly compartmentalized,

the two components of gene expression, transcription and

translation, are tightly coupled, with ribosomes actively synthesiz-

ing polypetides from the 59 ends of mRNAs while the 39 ends have

yet to be completed [26,27]. The speed of gene expression should

therefore depend on the speeds of both transcription and

translation, and conditions, such as high growth rate, that select

Figure 2. Phylogeny of the 42 bacterial species analyzed. Phylogeny based on a set of 51 genes present in single copy in most bacterial genomes.
Concatenated multiple sequence alignments were used as input for the bayesian tree reconstruction program MrBayes [50]. The tree topology and
branch lengths shown correspond to the most likely tree obtained in two independent runs of MrBayes spanning 250,000 generations each. All
clades were recovered with 100% posterior probability. The tree is rooted on the branch leading to the hyperthermophiles Aquifex aeolicus and
Thermotoga maritima.
doi:10.1371/journal.pone.0000745.g002
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for an increased rate of gene expression should affect each of the

two processes. Consequently, if s70-binding site avoidance in

nonregulatory regions is selected for in order to increase the speed

of transcription, the degree of under-representation of these sites in

a genome should respond to selection for high growth rate and

vary in a manner that correlates with translational optimization.

The number of tRNA genes encoded in a bacterial genome is

a good measure of the degree of optimization for translational

speed. Given that the rate-limiting step during protein synthesis is

the diffusion of charged tRNAs to the A site of the ribosome,

where peptide bond formation is accomplished [28], a high

concentration of tRNA molecules in the cell will allow for

Figure 3. Patterns of over- and under-representation of 210 motifs across species. For every species, observed and expected 210 motif
frequencies in the three different genomic regions were compared as in Figure 1. Over- and under-representation were considered significant when
the observed frequency was beyond 62 SD from the mean value for shuffled sequences.
doi:10.1371/journal.pone.0000745.g003

Figure 4. Deviations in the observed counts of 210 motifs in different genomic regions. NSD values measure the deviation in the observed counts
of 210 motifs in numbers of standard deviations from the expected mean in the corresponding genome, and were obtained by comparing observed
counts to distributions of motif frequencies in shuffled sequences. Species are ordered according to ascending NSD values for the nonfunctional
regions. NSD values in the white band are not significantly different from expectation. The red line separates species with under-representation of
210 sites in nonfunctional regions (left) from those without (right).
doi:10.1371/journal.pone.0000745.g004
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translation to occur more rapidly. Indeed, tRNA abundance varies

widely across bacteria and has been shown to evolve rapidly and

correlate strongly with maximal growth rate and adaptive codon

usage [5,29]. This indicates that this parameter effectively tracks

the needs of bacteria for translational speed and efficiency.

The abundance of tRNA genes varies greatly across the

bacterial genomes employed in this analysis, ranging from 30 in

Ureaplasma urealyticum to 98 in Vibrio cholerae, with an overall average

of 55 tRNAs per genome (Table 1 and Fig. 5). The color-coding in

Figure 5 distinguishes species according to their maximal growth

rate to stress the association between this trait and the number of

tRNA genes. Most of the slowest and fastest growers display

binding site under-representation in nonfunctional regions

(NSD,22, below the red line) and are distributed across the

range of tRNA values in accordance with their varying growth

rates [5]. There is a distinct cluster at the extreme of low tRNA

abundance (,40) containing the smallest genomes (#1.5 Mb),

which correspond to species that have independently evolved by

genome reduction in several bacterial phyla and generally have

very slow growth rates [30]. In contrast, most of the intermediate

growers, with minimal generation times between one and three

hours [5], present a clustered distribution deviating moderately

from the average tRNA gene number but display no site under-

representation in nonfunctional regions (NSD.22, above the

red line).

Even though s70 site under-representation is more frequently

detected in slow growers than in intermediate growers, when all

species analyzed are considered the degree of deviation in

nonfunctional DNA correlates negatively with the number of

tRNA genes in the genome (r = 0.38 and p,0.02, dotted line in

Fig. 5). This is consistent with the notion that both characters are

affected by selection for high rates of gene expression, although the

relative placement of slow and intermediate growers indicates that

this selective pressure is not the only factor at play. As selection

against s70 sites in the nonfunctional DNA appears to be mostly

absent from species with intermediate growth rates, we also

analyzed separately the subset of slow and fast growers where this

selection is actually detected (NSD,22, below the red line).

When only such genomes are included, the correlation between

the degree of deviation in nonfunctional DNA and the number of

tRNA genes increases (r = 0.63 and p,0.001, solid line in Fig. 5).

In order to ensure that the obtained correlations are not due to

phylogenetic relatedness, we employed a method that takes into

account the topology and branch lengths of the phylogenetic tree

relating the analyzed species (Fig. 2). This methodology imple-

ments a generalized least squares (GLS) model and likelihood ratio

tests to resolve whether correlation between two characters is

dependent on the underlying phylogeny [31,32]. The correlation

among NSD and tRNA genes is recovered when phylogeny is

considered (p,0.05 for all species and p,0.0005 for those with

NSD,22).

DISCUSSION
Overall, the results of our analyses indicate that selection operates

on almost all bacterial genomes to shape patterns of distribution of

s70-binding sites that distinguish regulatory and nonfunctional

DNA. The distinct behavior of these regions may be due to

three different situations: 1) selection for under-representation in

nonfunctional regions, 2) selection for over-representation in

regulatory regions, or 3) the joint effects of both processes.

Selection for under-representation of s70 sites is also detected in

the coding regions of 24 of the 42 genomes analyzed. However, in

contrast to the general trend, the coding regions of some genomes

(9/42) do not avoid potential s70 binding sites, but rather display

an over-representation similar to that seen in regulatory DNA.

This indicates that some form of natural selection is favoring the

presence of s70 sites in coding regions beyond random expecta-

tions. Although it is impossible to rule out that some selective

pressure at the protein level may influence the occurrence of given

nucleotide motifs in coding DNA, the fact that we took into

account trinucleotide frequencies in generating our baseline

expectations implies that only biases at the level of amino acid

pairs or triplets could possibly influence our site counts. Therefore,

it seems probable that selection for some other function,

presumably related to transcription, is favoring the observed

over-representation of 210 s70 sites in coding DNA.

Of the possible explanations for s70 site over-representation

advanced for regulatory regions [14–16], only one seems to be

equally applicable to coding DNA. It is very unlikely that s70-

binding sites in coding regions could function as promoters or

Figure 5. NSD of 210 motif counts in nonfunctional DNA correlate negatively with the number of tRNA genes in the genome. NSD values are
defined as in the text and Figure 4. The red line represents 22 SD from the mean expected value of 210 motif counts in the nonfunctional DNA of
the corresponding genome. The green line indicates the average number of tRNA genes in the genomes analyzed (55). The color-coding
distinguishes species according to their maximal growth rate (see Table 1); no growth rate estimate was available for Corynebacterium glutamicum
(not colored). Black dotted line: regression including all analyzed genomes (r = 0.38 and p,0.02). Black solid line: regression for the subset of
genomes with NSD,22 in nonfunctional DNA (r = 0.63 and p,0.001).
doi:10.1371/journal.pone.0000745.g005
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regulate transcription by interaction with the transcription start

site. However, these sites could affect the rate of transcription

elongation by causing the elongation complex to pause at different

points as it advances through a transcriptional unit, as has been

demonstrated to occur in the earliest phase of elongation after

promoter clearance [33,34]. Recent experimental evidence indeed

suggests that motifs with affinity for s70 may influence the activity

of the transcription elongation complex along the extent of

a transcriptional unit [6,7] . This could have a fine-tuning

regulatory role, by modulating the speed of elongation and/or by

providing pausing times at specific sites to allow for interaction

with additional regulatory molecules.

The different types of selective pressures that can affect the

presence of s70 binding sites across the genome seem to be

operating at different extents in different bacteria. Moreover, these

patterns of selection are not independent of those affecting gene

expression at the translational level, and their relationships to

different bacterial lifestyles suggest that they may actually

correspond to distinct biological needs. We will now summarize

the patterns of selection on transcriptional and translational

efficiency in different groups of bacteria and how they might relate

to the general biology of the species in which they’re found.

Selection against spurious binding is expected to be strongest in

species that grow at the fastest rates and therefore require the

highest speed and efficiency during transcription and translation.

The genomes of fast-growing species bear the expected hallmarks

of selective pressure for fast growth at the translational level, such

as elevated numbers of tRNA genes (average 78; Table 1 and

Fig. 5) and high adaptive biases in codon usage [5]. Here we show

that 9 of the 11 analyzed genomes from species with minimum

generation times under 40 minutes undergo selection against

spurious sites in the nonfunctional DNA, to a degree which

correlates well with their abundance of tRNA genes (Figs. 4 and 5).

In fact, most fast-growing species respond to selection on 210 sites

across all genomic regions, as these sites are also under-

represented in the coding DNA and over-represented in the

regulatory regions. Thus, selection against spurious binding is

pervasive across the non-regulatory DNA of these genomes, but is

often overturned in regulatory DNA, indicating that an excess of

210 sites at these regions can confer some advantageous

function(s) related to gene expression even at high growth rate.

However, it is interesting that the regulatory regions of the two

fastest growers, with minimum generation times of 12 minutes -

Vibrio cholerae and Clostridium perfringens- [5], do not deviate from the

expected abundances of 210 sites, suggesting that the potential

advantages conferred by over-representation of these sites are lost

at the extreme of rapid growth.

Most of the analyzed genomes having minimum generation

times between 40 minutes and 3 hours do not display any

evidence of selection against spurious binding, suggesting that

high efficiency during transcription is not critical at intermediate

growth rates. Also absent from these genomes are the hallmarks of

selection for efficiency at the translational level, as these species

have moderate numbers of tRNA genes (average 52) and

a moderate degree of adaptive bias in codon usage [5]. These

observations suggest that selection on the general efficiency of gene

expression is relaxed in species growing at intermediate rates. In

contrast, most of these genomes show an over-representation of

210 sites in both the regulatory DNA and the coding regions

(Tables S2, S3, S4 and Fig. 4). This suggests that bacteria growing

at moderate speed do benefit from the potential advantages

conferred by an excess of such sites at these regions, presumably

through functional effects related to gene expression. In particular,

these are the only species where over-representations of 210 sites

are detected in the coding regions, suggesting that regulation of

transcription elongation by s70-induced pausing might be most

effective at moderate rates of growth. The presence of 210 sites in

coding regions could potentially diminish the efficiency of

transcription initiation through competition with RNAP-binding

sites in the upstream regulatory regions, which could be

disadvantageous at very fast growth rates. But even the strongest

over-representation of 210 sites in the coding regions can be

compatible with a moderate rate of growth, as Brucella melitensis, for

instance, has a minimal generation time of 2 h [5] in spite of

exceeding its expected value of 210 sites in coding regions by

nearly 15 NSD. In this context, it is important to notice that 210

sites may strongly exceed their expected value in the coding

regions of a genome and still occur in numbers substantially lower

than those detected in the regulatory DNA. This is due to the fact

that GC content is higher in coding regions, which results in lower

baseline expectations for the AT-rich 210 sites.

The slowest growers among the species analyzed are bacteria

that can only survive in close association with a eukaryotic host.

Most are animal symbionts or parasites whose lifestyle is

completely host-restricted. As a consequence, these bacteria exist

in small and subdivided populations prone to genetic drift, and are

known to be subject to a process of genome reduction and

degradation, commonly undergoing rapid sequence evolution with

an AT biased mutational pressure [30,35]. As expected, these

reduced genomes (#1.5 Mb; Table 1) bear no evidence of

selection on translational efficiency, as they have low tRNA gene

numbers (average 36) and display no adaptive biases in codon

usage [5,36,37]. But, remarkably, these host-restricted species

display significant under-representations of 210 sites in the

nonregulatory regions of the genome, both coding and non-

functional. This suggests that minimizing spurious binding is

advantageous in these species even if there is no selective pressure

for rapid growth. An alternative selective pressure for increasing

efficiency during transcription may be energetic economy. Given

that genome degradation results in general problems of protein

stability and functionality [35,38,39], host-restricted species may

be under strong selective pressure to perform basic cellular

functions with limited numbers of active molecules. The avoidance

of spurious binding could represent considerable energetic savings

by allowing transcription to proceed with minimal numbers of

RNAP molecules per cell. In contrast to nonregulatory regions, the

abundances of 210 sites in the regulatory regions of most reduced

genomes conform to expectation, with moderate deviations only in

Wigglesworthia glossinidia (2.09 NSD) and the spirochaetes Treponema

pallidum (2.78 NSD) and Borrelia burgdorferii (2.89 NSD). This

suggests that selective pressures for site over-representation are of

little effect in host-restricted bacteria. Recent evidence indicates

that several other aspects of gene regulation are partially degraded

in reduced genomes. Losses of certain promoter sequences,

specialized s factors and regulatory proteins have been docu-

mented [39–41]. In addition, the collections of predicted 210 and

235 promoter motifs in these genomes deviate from those of most

other bacteria, in that they have lower average scores and G to T

changes in the consensus sequences [15,16]. Such a pattern of

moderate degradation of regulatory functions in host-restricted

bacteria is most likely due to the accumulation of deleterious

mutations by genetic drift, which also causes other moderately

maladaptive consequences, including accumulation of deleterious

amino acid substitutions and loss of adaptive codon biases

[36,42,43].

Because the population structure of host-restricted bacteria only

allows them to respond to natural selection when it’s relatively

strong (in relation to bacterial population size), the fact that these
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species are mostly responding to selection against spurious binding

and not to selection for 210 site over-representation in regulatory

regions allows us to gauge the relative strength of these two

selective forces. The different response to selection suggests that

the deleterious fitness effects of spurious binding are much larger

than the potential benefits of finely tuned regulation of gene

expression via over-representation of 210 sites, at least in host-

associated bacteria. By an analogous reasoning, the low numbers

of tRNA genes and the absence of adaptive codon biases in these

species suggest that avoidance of RNAP spurious binding is

a stronger constraint than optimization of speed and accuracy

during translation.

Conclusions
Unlike the highly localized selective pressures on amino acid

sequence, selection to optimize gene expression can affect all

portions of the genome, including sequences not directly involved

in regulatory processes. The implications for genome sequence

evolution are large, as this distributed selective process signifies

that no sequence may be free of selective constraints, at least in the

relatively small and unstructured genomes of bacteria [8]. In

addition, our study suggests that different genomic traits can

respond to specific selective pressures in an integrated manner.

Understanding the coevolution among the different molecules,

pathways, subsystems and processes of the cell will be of central

importance as we enter a new era of synthetically designed

genomes for biotechnology and medicine. In the same way that

evolutionary studies of individual molecules have provided many

insights into organismal adaptation, the analysis of whole genomes

in a broad comparative framework has the potential to uncover

such coevolutionary patterns.

METHODS

Obtaining a list of 210 s70 sites
Current information on all aspects of gene regulation in E.coli K12

is summarized in RegulonDB [25]. At the time we started these

analyses, Regulon DB contained 584 experimentally detected s70

promoters. The hexamers predicted to be the most likely 210

motifs in each of these 584 promoters were obtained using the

program WCONSENSUS [44] and algorithms developed by

Huerta and Collado-Vides [14]. This set of hexamers contained

185 different words that were used as 210 s70 sites in all

subsequent analyses (Table S1).

Subdividing genomes into different regions
Completely sequenced bacterial genomes were downloaded from

GenBank [45], and only chromosomal DNA was considered.

Transcription units were defined within each genome according to

a method which takes into account distributions of intergenic

distances, and genomic DNA was then parsed into three

categories: coding, regulatory, and nonfunctional [46]. Regulatory

DNA was defined to be 250 bases upstream of the +1 start site of

an operon or single transcription unit. 90% of the promoters in E.

coli are known to occur within this range. Nonfunctional DNA was

defined as sequence located between adjacent genes transcribed in

convergent directions, which is not expected to contain promoter

elements. Noncoding DNA located beyond 250 bp from +1 or

between genes belonging to the same transcriptional unit was not

included in the analysis, as the possibility that transcription might

start within these sequences can not be excluded. Open reading

frames over 1kb were included in the coding DNA category. For

every genome, three sequence concatenations were produced by

adjoining all the sequences in a DNA category. An ‘‘N’’ was

inserted between concatenated sequences to avoid introducing

artificial motifs at each concatenation point.

Generating shuffled sequence
To obtain the neutral expectations for hexamer frequencies, we

generated shuffled DNA with the same background biases as the

original genomic sequences. To this aim we employed a strategy

based on a limited eularian walk [47], which produced shuffled

sequences that preserved the trinucleotide frequencies present in

the original DNA. An algorithm written in Perl was produced to

implement this approach and employed to independently shuffle

the concatenations of regulatory, nonfunctional and coding

sequences. Shuffling was restricted to 1Mb samples of the total

concatenation when actual length exceeded this value (Tables S2,

S3 and S4). We generated sets of 1000 shuffled sequences for each

sequence category in every one of the genomes analyzed. As

a procedural control, we also generated and shuffled a pseudo-

random sequence totaling 1 Mb.

Counting hexamers and establishing over- or under-

representation
In order to establish whether 210 s70 sites are under- or over-

represented in each sequence category, we compared their

observed counts to their expected occurrences given the base

composition of each type of region. Neutral expectations were

determined separately for each sequence category, by counting the

occurrences of the 210 s70 hexamers in sets of 1000 shuffled

sequences. The number of occurrences of each of the 185

hexamers was independently counted within a given sequence

using a sliding window approach, and the counts for each word

were summed to obtain the total number of 210 s70 sites. For

every genome and sequence category, we obtained the mean and

standard deviation of the total hexamer counts in the sets of 1000

shuffled sequences, and the observed hexamer counts were

compared to these values. Over- and under-representation were

considered significant when the observed counts lied beyond 2

Standard Deviations (SD) from the mean. One megabase of

random sequence with no nucleotide biases was produced with

Perl’s random number generator and used as a control where the

detected hexamer counts in the original sequence should closely

approximate the frequencies obtained in the shuffled set.

Phylogenetically-based correlation analyses
In order to detect possible covariation between different genomic

properties, we performed correlation analyses employing com-

parative methodologies that take into account the phylogenetic

relationships among the analyzed bacterial species. Species

phylogeny was based on a Bayesian analysis of a set of 51 genes

present in single copy in most bacterial genomes. This core of

genes is best suited for deep phylogenetic reconstruction because

it evolves under high and similar selective pressures across all

organisms and maximally avoids gene loss, duplication, hori-

zontal transfer and accelerations of evolutionary rate. Concate-

nated multiple sequence alignments were constructed using the

MUSCLE 3.52 program [48,49], and were used as input for the

bayesian tree reconstruction program MrBayes [50]. MrBayes

was run twice independently, using the JTT amino acid

substitution matrix [51] and 4 gamma rate categories to model

among-site rate variation. Each run included four Markov chains,

three heated and one cold, starting from random trees and

proceeding for 250,000 generations. The tree topology and

branch lengths of the most likely tree obtained were used as input

for CONTINUOUS, a computer program that implements the
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generalized least squares (GLS) model for across-species analysis

of comparative data [31,32].

SUPPORTING INFORMATION

Table S1 List of 185 unique 210 hexamers derived from 584

experimentally detected s70 E. coli promoters.

Found at: doi:10.1371/journal.pone.0000745.s001 (0.04 MB

DOC)

Table S2 Observed vs. expected counts of 210 motifs in

regulatory regions. Total Sequence Length is the total number of

base pairs analyzed for the corresponding type of region in each

genome. NSD is the number of standard deviations that separate

the observed motif count from the expected mean in that genome,

NSD = (Obs-Mean)/SD.

Found at: doi:10.1371/journal.pone.0000745.s002 (0.05 MB

DOC)

Table S3 Observed vs. expected counts of 210 motifs in

nonfunctional regions. Total Sequence Length is the total number

of base pairs analyzed for the corresponding type of region in each

genome. NSD is the number of standard deviations that separate

the observed motif count from the expected mean in that genome,

NSD = (Obs-Mean)/SD.

Found at: doi:10.1371/journal.pone.0000745.s003 (0.07 MB

DOC)

Table S4 Observed vs. expected counts of 210 motifs in coding

regions. Total Sequence Length is the total number of base pairs

analyzed for the corresponding type of region in each genome.

NSD is the number of standard deviations that separate the

observed motif count from the expected mean in that genome,

NSD = (Obs-Mean)/SD.

Found at: doi:10.1371/journal.pone.0000745.s004 (0.06 MB

DOC)
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