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Abstract
Gamma aminobutyric acid (GABA) type A receptors play a key role in brain inhibitory
neurotransmission, and are ligand-activated chloride channels blocked by numerous convulsant
ligands. Here we summarize data on binding of picrotoxin, tetrazoles, β-lactams, bicyclophosphates,
butyrolactones and neurotoxic pesticides to GABA-A ionophore, and discuss functional and
structural overlapping of their binding sites. The paper reviews data on convulsants’ binding
sensitivity to different point mutations in ionophore-lining second transmembrane domains of
GABA-A subunits, and maps possible location of convulsants’ sites within the chloride ionophore.
We also discuss data on inhibition of glycine, glutamate, serotonin (5-HT3) and N-acetylcholine
receptors by GABA-A channel blockers, and examine the applicability of this model to other
homologous ionotropic receptors. Positioning various convulsant-binding sites within ionophore of
GABA-A receptors, this model enables a better understanding of complex architectonics of
ionotropic receptors, and may be used for developing new channel-modulating drugs.
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1. GABA and GABA-A receptor complex
Gamma-amino butyric acid (GABA) is the primary mediator of inhibitory transmission in the
mammalian central nervous system (Akaike et al., 1987;Korpi et al., 2002;Leung and Xue,
2003). It has complex interactions with other neurotransmitter systems and acts through
ionotropic A and metabotropic B type receptors (Martin and Dunn, 2002;Atack, 2003,2005).
Both receptors are a target for many endogenous and exogenous modulators that regulate
normal and pathological brain mechanisms - sleep, memory, epilepsy and emotions (Kalueff
and Nutt, 1997;Argyropoulos et al., 2000;Sandford et al., 2000;Nutt and Malizia, 2001;Vicini
and Ortinski, 2004; Cryan and Kaupmann, 2005).

GABA-A receptors are crucial for controlling brain excitability, and represent ligand-gated
ion channels composed of five subunits (belonging to eight families: α1–6, β1–3, γ1–3, δ, ε,
π, θ and ρ1–3) around the ionophore (Baumann et al., 2001,2002;Korpi et al., 2002;Rosahl,
2003;Vicini and Ortinski, 2004). Each subunit of GABA-A receptors consists of four
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transmembrane domains (TM1-4) (Perret et al., 1999;Engblom et al., 2002;Filippova et al.,
2004) modulating the receptor activity. Binding of GABA opens up a Cl− channel, leading to
neuronal inhibition (Wooltorton et al., 1997;Olsen et al., 2004). GABA-A receptors contain
binding sites for GABA agonists and antagonists, as well as numerous positive and negative
modulators (Olsen et al., 1990; Mathews et al., 1996; El-Etr et al., 1998;Argyropoulos et al.,
2000;Nutt and Malizia, 2001;Leung and Xue, 2003). Positive modulators of GABA-A
receptors barbiturates, benzodiazepines, steroids, ethanol and γ-butyrolactones (Holland et al.,
1995;Canney et al., 1998;Olsen et al., 2004;Atack, 2003, 2006; Rudolph and Mohler, 2006).
Neurosteroid antagonists, benzodiazepine inverse agonists and chloride channel blockers
negatively modulate the receptor (Maksay, 1996;Akaike et al., 1987;Sousa and Ticku,
1997;Wooltorton et al., 1997;Leung and Xue, 2003), Tables 1–3.

Ionophore-lining TM2 are responsible for GABA-A channel activation and desensitization,
ion selectivity and binding of various ionophore ligands (Buhr et al., 2001;Horenstein et al.,
2001;Jensen et al., 2002;Scheller and Forman, 2002;Filippova et al., 2004). Similar structure
is known for other ligand-gated ionotropic receptors – GABA receptors of invertebrates, N-
acetylcholine, glycine, glutamate, and serotonin (5-HT3) receptors (Ffrench-Constant et al.,
1993;Baumann et al., 2001;Jentsch et al., 2001;Bloomquist, 2003;Das and Dillon, 2003,
2005;Newell et al., 2004;Olsen et al., 2004).

Picrotoxin and picrotoxinin, pentylenetetrazole (PTZ) and other tetrazoles, penicillin and other
β-lactam antibiotics, thio-butyrolactones, bicyclophosphates (such as t-
butylbicyclophosphorothionate TBPS), U-93631 and neurotoxic pesticides (NP) are traditional
ionophore-blocking convulsant ligands (Squires et al., 1984;Hamann et al., 1990;Holland et
al., 1991;Lindane, 1991;Twyman et al., 1992;Dillon et al., 1993,1995;Wang et al., 1995;Le
Corronc et al., 2002;Omrani et al., 2003;Sugimoto et al., 2003;Vale et al., 2003;Hansen et al.,
2004;Kaminski et al., 2004;Lindquist et al., 2004;Sinkkonen et al., 2005). All these agents
have cyclic structures, allowing to consider them as a common group of “cage
convulsants” (Olsen et al., 1980;Hamon et al., 1998;Maksay et al., 1998;Rossi et al.,
2001;Chen et al., 2006). Moreover, many of them share a substantial similarity in chemical
and conformational structures (Table 1;Maksay, 1996), and also block other non-GABAergic
ionotropic receptors (Table 3;Bloomquist, 2003;Vale et al., 2003).

Although mechanisms of action of non-ionophore modulators of GABA-A receptors have been
extensively studied, the effector part of the receptor – its ionophore – is much less understood.
It has long been thought that various convulsants inhibit ion influx by physically plugging
ionophore (rev.: Petter et al., 1999; Behrends, 2000) when bound in different positions to a
common “convulsant” binding pocket. Described in the literature as picrotoxin(in) site or
receptor (Holland et al., 1991;Ito and Ho, 1994;Nobrega et al., 1995;Bell-Horner et al.,
2000;Olsen et al., 2004;Das and Dillon, 2005), PTZ/TBPS site (Holland et al., 1990,
1993;Kalueff, 2002), convulsant, ionophore or channel site (Olsen et al., 1980,1990;Peris et
al., 1991;Maksay et al., 1996;Yagle et al., 2003), this convulsant-binding pocket of GABA-A
receptors is currently poorly understood.

Mounting data indicates that different convulsants bind to overlapping but not identical sites,
also showing multiple mechanisms of binding with different kinetics of association and
dissociation (Holland et al., 1991;Twyman et al., 1992;Hamon et al., 1998; Yoon et al., 1998;
Dibas and Dillon, 2000;Le Corronc et al., 2002;Mortensen et al., 2003;Sinkkonen et al.,
2005). Some convulsant ligands (picrotoxin, bicyclophosphates, butyrolactones, β-lactams)
seem to reach their binding sites in closed state of the channel, further confirming that simple
plugging of ionophore is not the actual single mechanism of their action (Table 1; also see:
Dibas et al., 2002;Hawthorne and Lynch, 2005 for discussion).
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While several groups have modeled different aspects of ionophore functioning (Maksay,
1996,2005;Baumann et al., 2002;Maksay et al., 2003;Chou, 2004;Chen et al., 2006;Muroi et
al., 2006) and ligand binding (Twyman et al., 1992;Canney et al., 1998;Zhorov and
Bregestovski, 2000;Shan et al., 2002;Vale et al., 2003;Horenstein et al., 2005), further studies
modeling ionophore organization and its sites are needed. If successful, such attempts may
increase our understanding of pathogenetic mechanisms of channelopathies (Felix, 2000) and
facilitate the development of novel selective ionophore-targeting drugs (Eldefrawi and
Eldefrawi, 1987;Bloomquist, 2003).

Since channel ligands are thought to bind to heterogeneous binding sites within ionophore, the
important question is the positioning of these binding sites within the ionophore and relative
to each other. Point mutagenesis data may give an important information on which TM2
residues may be critical for binding of different ligands. For example, a common critical residue
for two convulsants implies overlapping of their binding sites, whereas different critical
residues for these ligands suggests their distinct binding sites. As recent extensive data provides
important insights into functional properties of ionophore receptors (Ffrench-Constant et al.,
1993;Gurley et al., 1995;Perret et al., 1999), we will systematically evaluate the available
literature on pharmacology and mutagenesis of GABA-A and other homologous ionotropic
receptors, in order to develop a model of ionophore binding sites for different classes of GABA-
active ligands.

2. Ionophore sites and their ligands
Table 1 summarizes known physiological and pharmacological properties of traditional
GABA-A ionophore blockers. Table 2 shows point mutagenesis data for major GABA-A
chemoconvulsants, outlining critical residues for each class of ionophore ligands. Table 3
describes the ability of ionophore blockers to inhibit other ionotropic (glycine, glutamate,
serotonin 5-HT3 and N-acetylcholine) receptors. Fig. 1 shows a model of GABA-A ionophore,
developed based on data in Tables 1–3.

Picrotoxin site
As picrotoxin effectively inhibits chloride influx in GABA-A (Newland and Cull-Candy,
1992) and other ionotropic receptors (Table 3), it represents a universal “reference” channel
blocker (Das et al., 2003;Olsen, 2006) with whom other ligands may be compared (Table 1).
While the exact location of picrotoxin binding to ionophore is still unknown (Huang et al.,
2001), its sensitivity to mutations in residues 2/3 and 6 of TM2 suggests that the site contains
residues 2–6 (Table 2;Buhr et al., 2001). In line with this, Zhorov and Bregestovski (2000)
suggested that picrotoxin penetrates deep inside the ionophore pore, binding with its
hydrophobic moiety to residue 2 of TM2 (close to the pore) and forming hydrogen bounds with
residue 6 in the middle of TM2. Importantly, while amino acid composition of residue 2 is
variable in different ionotropic receptors, the composition of residue 6 is highly conservative,
implying that it is crucial for picrotoxin binding to ionophore, and most likely representing the
epicenter of its binding pocket (Fig. 1).

While residue 15 is critical for picrotoxin binding to glycine receptors, its mutation in GABA-
A receptors inhibited (but not abolished) use-dependent ionophore block by picrotoxin,
suggesting that this residue may be important for interplay between GABA and picrotoxin
binding sites (Dibas et al., 2002). Other studies implicate residues 9 and 15 in the regulation
of channel properties, such as desensitization, stabilization of open states and gating (Findlay
et al., 2001;Scheller and Forman, 2002). Taken together, this indirectly supports the possibility
of a second “modulatory” (allosteric) binding site of picrotoxin including residues 15–19. In
line with this, residue 17 is important for picrotoxin modulation of GABA-A receptors
(Horenstein et al., 2001). The hypothesis of an additional allosteric picrotoxin site (Fig. 1) is
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also indirectly supported by recent data (Mortensen et al., 2003) showing that potency of
picrotoxin binding is highly dependent on the level of spontaneous activity of GABA-A
receptors.

PTZ (tetrazole) site
Although early studies hypothesized PTZ binding to benzodiazepine site of GABA-A
receptors, similarity to picrotoxin (in terms or molecular structure, use-dependent voltage-
independent action and displacement of TBPS) prompted its activity at ionophore “convulsant”
site (Table 1; Dibas and Dillon, 2000). Some butyrolactones and PTZ share stereo-structural
similarity and synergetically affected TBPS binding (Maksay et al., 1994). This, and the ability
of selected butyrolactones to inhibit binding of other cage convulsants – picrotoxin, PTZ or
bicyclophosphates (rev.: Dibas and Dillon, 2000;Huang et al., 2001), supports the idea that all
these binding sites overlap. Finally, similar sensitivity of picrotoxin and PTZ binding to some
mutations in TM2 further confirms this notion (Dibas and Dillon, 2000).

However, there are several distinctions between picrotoxin and PTZ actions, including different
affinity and dynamics of association with ionophore and Cl- current inhibition (Huang et al.,
2001). Another dissimilarity is the lack of complex (competitive + non-competitive) effects in
PTZ (Table 1), and insensitivity of PTZ binding to ablation of α-subunits (abolishing binding
of picrotoxin and NP) (Huang et al., 2001). Finally, PTZ binding is insensitive to point
mutations in residue 2, suggesting the location of this residue outside of the PTZ site (Huang
et al., 2001), as indicated in Fig. 1.

TBPS (bicyclophosphate) site
TBPS is a non-competitive ionophore blocker, traditionally thought to act via classical
picrotoxin/convulsant site, although with different kinetics (Peris et al., 1991;Ito and Ho,
1994;Nobrega et al., 1995;Maksay et al., 1996;Luddens et al., 1998;Jursky et al.,
2000;Sinkkonen et al., 2001,2005). Since mutations in residue 2 are critical for TBPS binding
to ionophore, it is possible to assume that its binding site includes this residue (Jursky et al.,
2000). TM2 residues 1, 2 and 3 of β-subunits of GABA-A receptors were important to form
TBPS binding site in chimeric receptors, implying that these residues form the TBPS binding
pocket (Jursky et al., 2000) (Fig. 1).

Butyrolactone site
Earlier reports on competitive inhibition of TBPS binding by convulsant butyrolactones
suggested that they bind to a common TBPS/picrotoxin “convulsant” ionophore site (Holland
et al., 1991,1995; Mathews et al., 1996; Canney et al., 1998; Gonzales et al., 2003). This is
also in line with similar chemical structures of these ligands (e.g., picrotoxin molecule contains
a butyrolactone ring) (Williams et al., 1997). Likewise, butyrolactones share similar
physiological and pharmacological mechanisms of action with PTZ (Maksay et al., 1994), and
are able to allosterically modulate TBPS binding (Holland et al., 1990,1991,1993).
Collectively, this implies that picrotoxin, PTZ, TBPS and butyrolactones may bind to
overlapping ionophore binding sites (Fig. 1).

Although butyrolactone binding site is not yet identified (Gonzales et al., 2003), the sensitivity
of butyrolactone binding to point mutations in residue 6 (Huang et al., 2001) indicates its
location within a common binding area for these convulsants. Since mutations affecting
picrotoxin binding also affect that of butyrolactones (Huang et al., 2001), it is indeed likely
that binding sites for picrotoxin and butyrolactones significantly overlap (Fig. 1). In contrast,
other studies have demonstrated anticonvulsant effects of some butyrolactones, suggesting
either antagonism of the picrotoxin receptor, or a second positive (modulatory) “lactone” site
(Holland et al., 1991,1993,1995;Williams et al., 1997; Gonzales et al., 2003).
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Penicillin and lactam site(s)
Despite early studies (implying action via benzodiazepine site; Shiraishi et al., 1993), later data
demonstrated binding of penicillin and other β-lactams to an ionophore site, with a physical
blockage of GABA-A channel (Twyman et al., 1992;Fujimoto et al., 1995;Lindquist et al.,
2004) and complex multiphasic kinetics (Katayama et al., 2002). Structural similarity and
interference with psychopharmacological effects of picrotoxin and PTZ (Kalueff, 2002)
confirms that penicillin, like other ionophore ligands, acts via a common convulsant binding
site. Sensitivity of penicillin binding to mutations in TM2 residue 6 (Table 2) indicates that it
may be a common site for picrotoxin, PTZ and penicillin (Fig. 1).

However, the fact that such mutation completely abolished picrotoxin binding, but only
reduced penicillin binding (Sugimoto et al., 2002), suggests that residue 6 may be on a border
of penicillin binding pocket, as suggested in Fig. 1. Insensitivity of penicillin (but not
picrotoxin) binding to a point mutation in residue 9 indicates that this residue is not a critical
element of penicillin binding site, and is most likely located outside the penicillin site (Tierney
et al., 1996;Lindquist et al., 2004). Given partial effects of residue 6 mutations on penicillin
binding, this indirectly suggests that penicillin binding site may be located below residue 6 of
TM2 (Fig. 1).

Notably, other β-lactams, such as cephalosporines and penems, are known as competitive
voltage-independent inhibitors of GABA-A ionophore, strikingly dissimilar to non-
competitive voltage-dependent action of penicillin (Fujimoto et al., 1995;Sugimoto et al.,
2002,2003). Collectively, this implies different mechanisms of action (and binding sites) of
penicillin and other lactams (Sugimoto et al., 2003). Since mounting data shows heterogeneity
of penicillin and other β-lactam binding sites, it is possible to assume distinct binding sites for
penicillin and other β-lactams. Insensitivity of β-lactam binding to mutated residue 6 (Sugimoto
et al., 2002) suggests that this additional “lactam” binding site is not within penicillin binding
pocket (see model in Fig. 1).

Neurotoxic pesticides
NP, such as lindane, α-endosulphan and dieldrin, share structural similarity (and compete for
the binding site) with picrotoxin, inhibit TBPS binding, induce seizures and block Cl-currents
through ionophore (Lindane, 1991;Ffrench-Constant et al., 1993;Edwards and Lees, 1997;Le
Corronc et al., 2002;Kaminski et al., 2004). Together, this implies similar mechanisms of their
action, also see (Chen et al., 2006) for discussion. However, some differences of insect GABA
receptors in sensitivity to picrotoxin and NP blockage (Le Corronc et al., 2002), and of rat and
fish GABA-A receptors to TBPS and lindane (Thompson et al., 1990), suggest that binding
sites of these ligands are overlapping but not identical. Sensitivity of some NP-mediated effects
to point mutation in residue 2 (Edwards and Lees, 1997) (Table 2) suggests the location of NP
site(s) close to this residue (Fig. 1), rather than to residue 6. Positioning bicyclophosphate site
close to NP binding site in this model is also in line with numerous above-mentioned data on
overlapping pharmacological mechanisms of their action.

3. Non-GABA-A receptors
A substantial homology in molecular structures of different ionophore receptors (Eldefrawi
and Eldefrawi, 1987;Vassilatis et al., 1997; Yoon et al., 1998; Bloomquist, 2003;Erkkila et al.,
2004) implies similar actions of their ionophore ligands (Table 3); also see (Thompson et al.,
1999;Horenstein et al., 2001;Jensen et al., 2002;Chen et al., 2006) for discussion. Can the
model suggested for GABA-A receptor ionophore (Fig. 1) be generally applied to other
ionophore channels? While mounting neurogenetic data generally supports this notion, it also
reveals some interesting receptor-specific differences.
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For example, residues 2, 6, 15 and 19 of TM2-domain of glycine receptor β-subunits are critical
determinants for picrotoxin binding, whereas residue 6 is important for picrotoxin binding to
glutamate and serotonin 5-HT3 receptors, although reducing but not abolishing picrotoxin
sensitivity in the latter (Lynch et al., 1995;Shan et al., 2001;Dibas et al., 2002;Das and Dillon,
2005). Residue 6 of TM2 is critical for picrotoxin and NP binding by insect GABA receptors
(Ffrench-Constant et al., 1993;Jursky et al., 2000). Unlike GABA-A and glycine receptors,
residue 2 is not required for picrotoxin binding to 5-HT3 receptors, reflecting different
functions of this residue in different receptors (see, however, an additional modulatory role of
residue 7 in Das and Dillon, 2005). Interestingly, while picrotoxin binding to glycine receptors
is use- and voltage-independent (Lynch et al., 1995), it was use-dependent for N-acetylcholine
(Erkkila et al., 2004) and glutamate (Etter et al., 1999) receptors, suggesting that amino acids
in position 15 (different in these receptors) may modulate use-dependent character of
picrotoxin binding (Dibas et al., 2002).

There are other examples of receptor-specific differences in ionophore binding of convulsant
ligands. For instance, in addition to GABA-A receptors, NP also inhibit glycine receptors
(Table 3), supporting common mechanism of their action at ion channels (Vale et al., 2003).
While NP lindane was equally effective in blocking both receptors, endosulphan and dieldrin
were more active at GABA-A channels (Vale et al., 2003); also see GABA-A-selectivity for
another related compound BIDN (Hamon et al., 1998). Likewise, TBPS binds to GABA-A
receptors but shows much weaker binding to invertebrate GABA receptors (Yagle et al.,
2003). Collectively, these findings further confirm the notion that different ionophore ligands
may have complex interactions with ionophores at different receptors (Das and Dillon,
2003;Hosie et al., 2006).

4. Concluding remarks
Mounting data evidences that ionophore binding sites of GABA-A and other ionotropic
receptors demonstrate sufficient homology and show heterogeneous overlapping binding sites
for different convulsant ligands (Fig. 1). Ligand-binding area of ionophore can be considered
as a “big picrotoxin binding pocket”, representing a conservative basis for clustering sites of
other channel ligands. The ability of some mutant channels to be picrotoxin-resistant and yet
sensitive to other similar ligands (e.g., data for penicillin in Tierney et al., 1996) suggests a
relative autonomy of ionophore blockage by different ligands. Moreover, many classes of
convulsant drugs discussed here have been suggested to have dual mechanisms of ionophore
action, including both inhibitory and stimulatory effects (e.g., Williams et al., 1997
(butyrolactones); Dibas and Dillon, 2000 (PTZ); Kalueff, 2002 (penicillin)). In line with this,
Lynch et al. (1995) have shown that a single mutation in glycine receptor may convert
picrotoxin from antagonist into allosteric potentiator. Given similarity of various ionophore
receptors, it is possible to expect that similar phenomenon may exist for other receptors,
including GABA-A.

Finally, it is possible to assume that GABA-A ionophore binding sites may have complex 3D
architectonics, determining the accessibility for, and interactions with, various channel
convulsants. Clearly, an in-depth analysis of 3D structures of GABA-A receptor channels may
improve the present ionophore model (Fig. 1) and help clarify the impact of individual TM2
point mutations on binding of different channel ligands. Moreover, in addition to ligand
binding, the effects on channel functions may be related transduction mechanisms (Miyazawa
et al., 2003;Unwin, 2005). Recent homology 3D models of receptor channels (Miyazawa et
al., 2003;Maksay, 2005;Reeves et al., 2005), based on the electron microscopic structures of
the nicotinic receptor channel (Unwin, 1995,2003,2005), may be a useful approach to further
modeling of GABA-A receptor ionophore.

Kalueff Page 6

Neurochem Int. Author manuscript; available in PMC 2008 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In conclusion, although the model of ionophore suggested here (Fig. 1) needs further
sophistication and elaboration, it paves the way to reconstructing ionophore binding pockets
in GABA-A and other receptors, based on data from neurogenetics and neurochemistry.
Understanding how different binding sites may be located relative to each other would help to
design new selective ligands that will target several overlapping sites or bind simultaneously
to several distinct neighboring sites. Based on modulation of “ionophore” binding sites, this
may lead to creation of novel classes of selective GABA-ergic channel-active neurotropic drugs
(also see Lynch et al., 1995;Dawson et al., 2000).
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Figure 1. Proposed model of convulsant-binding sites of GABA-A receptor ionophore
TM2 residues are conventionally numbered 1′–20′ from the N-terminal bottom to the C-
terminal extracellular end of the helix (see Olsen, 2006 fore details). P – picrotoxin(in), BPH
– bicyclophosphates, BL – butyrolactones, PTZ – pentylenetetrazole, PC – penicillin, LA –
other lactam antibiotics, NP – neurotoxic pesticides, P1 – “main” picrotoxin binding site, P2
– hypothetical second “allosteric” picrotoxin site.
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