
Development of distinct control networks through
segregation and integration
Damien A. Fair*†, Nico U. F. Dosenbach‡, Jessica A. Church*, Alexander L. Cohen‡, Shefali Brahmbhatt§,
Francis M. Miezin*‡, Deanna M. Barch‡§¶, Marcus E. Raichle*†‡�, Steven E. Petersen*‡§�, and Bradley L. Schlaggar*†‡�**

Departments of *Neurology, ‡Radiology, §Psychology, ¶Anatomy and Neurobiology, �Pediatrics, and **Psychiatry, Washington University,
St. Louis, MO 63110

Contributed by Marcus E. Raichle, June 21, 2007 (sent for review May 29, 2007)

Human attentional control is unrivaled. We recently proposed that
adults depend on distinct frontoparietal and cinguloopercular
networks for adaptive online task control versus more stable set
control, respectively. During development, both experience-
dependent evoked activity and spontaneous waves of synchro-
nized cortical activity are thought to support the formation and
maintenance of neural networks. Such mechanisms may encourage
tighter ‘‘integration’’ of some regions into networks over time
while ‘‘segregating’’ other sets of regions into separate networks.
Here we use resting state functional connectivity MRI, which
measures correlations in spontaneous blood oxygenation level-
dependent signal fluctuations between brain regions to compare
previously identified control networks between children and
adults. We find that development of the proposed adult control
networks involves both segregation (i.e., decreased short-range
connections) and integration (i.e., increased long-range connec-
tions) of the brain regions that comprise them. Delay/disruption in
the developmental processes of segregation and integration may
play a role in disorders of control, such as autism, attention deficit
hyperactivity disorder, and Tourette’s syndrome.

attention � connectivity � functional MRI �
spontaneous activity development

The human capacity to maintain task goals, selectively attend
to relevant information, and avoid distraction is unrivaled.

These attentional control abilities are thought to be accom-
plished through the adoption of task sets (or ‘‘rules’’) that
flexibly configure moment-to-moment information processing in
response to task demands.

Previous models of control have come in several forms,
including theories based on centralized frontal control (1–3),
hierarchically organized processing (4), and those with multiple
functional networks (5–7). Dissociating among these models
remains a particularly difficult challenge. However, to para-
phrase Johnson and Pennington (8), full comprehension of how
the mature system works can be powerfully illuminated by
‘‘understanding how it is constructed in development’’ and ‘‘how
development can go awry.’’

The following report uses resting state functional connectivity
MRI (rs-fcMRI) to examine the development of two putative,
previously identified control networks (2, 6). We hope to gain
deeper insight into their adult functions by revealing how these
networks are constructed.

Using rs-fcMRI and graph theory analyses, Dosenbach et al.
(6) recently proposed that adult task control may be imple-
mented by distinct frontoparietal and cinguloopercular networks
(Fig. 1). The proposed cinguloopercular network consists of the
dorsal anterior cingulate/medial superior frontal cortex (dACC/
msFC), bilateral anterior insula/frontal operculum (aI/fO), an-
terior prefrontal cortex (aPFC), and thalamus (6). The fronto-
parietal network, which appears to include elements of the
dorsal attention network (9), consists of dorsolateral prefrontal
cortex (dlPFC), intraparietal sulcus (IPS), inferior parietal lob-
ule (IPL), precuneus, dorsal frontal (dF), and midcingulate (6)

[see supporting information (SI) Table 1 for a list of abbrevia-
tions]. Although the two control networks showed strong in-
tranetwork connectivity, internetwork connections, as measured
with rs-fcMRI, were minimal. These results were consistent with
earlier cross-studies analyses that combined fMRI activation
data from 10 different tasks. These analyses showed that regions
in the cinguloopercular and frontoparietal networks had varying
combinations of three different task-control signals: set initia-
tion (start cue), set maintenance (sustained across trials), and
error/adjustment (error related) (2, 6).

For example, the dACC/msFC and bilateral aI/fO regions of
the cinguloopercular network showed all three task-control
signals. The aPFC showed a similar profile but in fewer tasks.
The presence of multiple control signals, in particular set-
maintenance activity, in the cinguloopercular network suggested
that this network may implement stable task control across the
trials of a task (see Fig. 1) (6).

By comparison, the cross-studies analyses showed that the
frontoparietal network was characterized by the presence of
start-cue (set initiation) signals in the dF, IPS, precuneus, and
midcingulate regions, as well as error-related signals in the IPL
and dlPFC regions. Importantly, only 1 of 11 regions in this
network (i.e., left IPL) showed sustained set-maintenance ac-
tivity. The presence of start-cue and error-related signals, but
lack of robust sustained activity, suggested that the frontopari-
etal network supports control initiation and adaptive, trial-
related control adjustments in response to feedback (6).

Consistent with complex adaptive systems models (10), these
observations suggested that the two control networks may
function in parallel, each exerting top-down control with differ-
ent properties and over different temporal scales (6, 10).

rs-fcMRI, the method used to define the two control net-
works, measures correlated low-frequency (usually �0.1 Hz)
blood oxygenation level-dependent (BOLD) signal f luctuations
between brain regions occurring at rest (11–13). These low-
frequency BOLD fluctuations are thought to relate to ‘‘sponta-
neous’’ neural activity (11, 14). By cross-correlating the BOLD
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signal time series between different regions, one can determine
which regions are ‘‘functionally connected.’’

Early studies of brain networks defined by temporal correla-
tions in spontaneous neural activity date back several years;
however, recent theoretical and experimental findings have
brought such network approaches into broader view (6, 12,
15–19). One reasonable hypothesis regarding the nature of
correlated spontaneous BOLD fluctuations is that they may, at
least in part, reflect a long-standing history of coactivation (20).
In this sense, coactivation of brain regions across many tasks can
lead to the Hebbian strengthening of the functional connections
between them (21).

In addition, some evidence suggests that, along with experience-
dependent evoked activity, spontaneous waves of synchronized
activity during pre- and postnatal development support the inte-
gration (i.e., strengthening interregional relationships) and segre-
gation (i.e., weakening interregional relationships) of neural
networks (15–18, 20, 22). Such mechanisms may be important for
gating information flow (15, 17), building internal representations
(15, 17, 20), and developing and maintaining mature network
relationships (17).

More than 10 years ago, Tononi and colleagues (23) empha-
sized ‘‘the functional segregation of different brain regions and
their integration in perception and behavior’’ as a fundamental
principle of brain organization in higher vertebrates. In this
scheme, functional segregation is measured by statistical inde-
pendence of components of a system, whereas integration is
measured by deviation from statistical independence. Plausibly,
temporally correlated spontaneous activity (i.e., rs-fcMRI)
could provide a metric for determining the presence or absence
of statistical independence. As such, the dual-networks control
structure observed in adults (6) may be observed by examining
synchronous activity over development.

A substantial literature from developmental psychology and
cognitive science documents age-related improvements in several
control processes, including inhibitory control, set switching, and
set maintenance (24–26). In particular, working memory, or the
ability to perform complex manipulations on stored items, contin-
ues to mature through childhood and into adolescence (26, 27).
These behavioral developments are accompanied by activity re-
lated to working-memory tasks in the dlPFC and other associated
regions that, although present in childhood, continue to increase

with age (27, 28). These data have led some to suggest that ‘‘. . . the
basic working-memory circuitry is in place by middle childhood, but
also that working-memory circuitry is strengthened during middle
childhood’’ (28). We therefore hypothesized that the functional
connections within the frontoparietal network, which includes the
dlPFC and posterior parietal regions, may already be present in
childhood, but the relative connection strengths within the network
will increase with age (28).

By age 6 (25, 26), children can perform many of the tasks
designed to study control (24, 25, 29–31). Yet when compared
with adults, children’s accuracy is often decreased because of
errors of perseveration (inability to switch set) and errors of
distraction (inability to maintain set) (24, 25). fMRI studies
suggest that improvement of set and rule maintenance over time,
as opposed to active working memory, is at least in part related
to activity changes in regions of the cinguloopercular network,
such as the aI/fO (also referred to as ventrolateral prefrontal
cortex), aPFC, and dACC/msFC (28, 29). Taken together, these
data imply that the functional connections in the cingulooper-
cular network, as with those in the frontoparietal network, may
undergo significant remodeling with age.

Using rs-fcMRI, we compared the network structure of putative
control systems between adults and typically developing children.
We sought to determine whether changes in the architecture of the
brain’s control networks over development would show evidence of
functional segregation and integration. At younger ages, will the
brain’s control regions show more widespread statistical depen-
dence that segregates into distinct control networks with age?
Conversely, will the intraconnectivity of regions in their respective
adult control networks increase across development leading to
greater within-network integration?

Results
Thirty-nine putative task-control regions identified in previous
cross-studies analyses (2) were analyzed for pairwise temporal
BOLD correlations in three different groups: children (7–9
years; mean 8.6), adolescents (10–15 years; mean 11.9), and
adults (20–31 years; mean 24.1). Pairwise correlations were
represented as graphs for each group. Region pairs were treated
as binary and were either connected or not connected. Previ-
ously, we evaluated the effects of a range of thresholds (r � 0.2,
0.175, 0.15, 0.125, and 0.1) in adults to ensure that our results
were not an artifact of a specific threshold (6). These thresholds
were based on a natural division observed in the interregional
r-value distribution of the adult population. The child sample
used here had an r-value distribution similar to that of the adult
sample (SI Fig. 5).

Thus, we compared children and adults with similar thresholds
by using two approaches. First, the 75 strongest connections (r
values) in each group (children, adolescents, and adults) were
chosen. This approach generated graphs for each group with the
exact same number of regions (nodes) and connections (verti-
ces), ensuring that any differences among graphs would be
because of specific changes in certain connections, not a greater
overall level of connectivity in any group. This number of
connections is similar to the number obtained at the r � 0.15
threshold used for adults by Dosenbach et al. (6). Second, to
carry out direct between-group comparisons, connections that
had an r � 0.1 in either children, adults, or both were analyzed.
Using this criterion, children and adults had a similar number of
total connections (children, 140; adults, 139). As implied else-
where, pairwise correlations with r � 0.1, even if statistically
significant, may not be biologically significant (32).

Child Graph Structure Deviates Significantly from Adult Architecture.
As previously described, the two control networks separated into
two distinct components in adults (Fig. 2A and SI Table 2). The
child control architecture showed three noteworthy differences

Fig. 1. Proposed dual networks for adult human task control. The dual-
networks model of control in adults was motivated by results from cross-
studies analyses of mixed blocked/event-related fMRI and rs-fcMRI data (2, 6).
Both control networks are proposed to interpret cues, implement top-down
control, and process bottom-up feedback, but use different mechanisms and
over different temporal scales. The frontoparietal network (yellow) is pro-
posed to act for rapid online control on a trial-by-trial basis (i.e., adaptive
control) and the cinguloopercular (black) for more sustained task sets (i.e.,
stable control).
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from the adult layout (Fig. 2C). First, although regions in the
frontoparietal network were connected in children, additional
connections between the aPFC and dlPFC regions were identi-
fied that bridged the frontoparietal and cinguloopercular net-
works (Fig. 2C). A second important finding was the close
relationship between the dACC/msFC and frontoparietal net-
works. The dACC/msFC region was not only disconnected from
the cinguloopercular network in children, but also incorporated
into the frontoparietal network through connections with the
dorsal frontal cortex (Fig. 2C). Third, although the frontal and
parietal cortices were connected in children through dorsal
frontal to IPS connections (Fig. 2C), over time, additional links
developed among the dlPFC, IPS, and IPL regions (Fig. 2 A).
These differences were found in both halves of a replication
analysis described in SI Fig. 6.

Adolescent Graph Structure Appears Intermediate to That of Children
and Adults. Data from a third group consisting of adolescent-age
subjects (10–15 years) were analyzed to determine whether the
graph structure would appear intermediate to the graphs shown
for younger children and adults. Indeed, the network graph for
the adolescent group was qualitatively ‘‘intermediate’’ to the
adult and child structures. In adolescents, as in adults, the
frontoparietal and cinguloopercular networks were segregated;
however, as in children, the adolescent dACC/msFC region still
remained incorporated into the frontoparietal network.

LOWESS Curves Describe Developmental Trajectory of Interregional
Connection Strength. To create a visual representation of the
development of specific functional connections, data of connec-
tion strength (r) versus age were fit with LOWESS curves (locally
weighted sum of squares), a local regression-smoothing proce-
dure (33). This method makes no assumptions about the form of

the bivariate relationship. Rather, it allows the form to be
discovered by using the actual data. This approach is useful for
identifying data patterns that may otherwise be overlooked by
using curve-fitting procedures that assume specific shapes.

The LOWESS curves provide a complementary view of the
development of interregional connections. As correlation strength
between the dACC/msFC and dF cortices decreased with age,
correlation strength increased between the dACC/msFC and aI/fO
regions (Fig. 2D, see also SI Fig. 7). The aPFC region also decreased
its connection strength with the dlPFC over time (Fig. 2D). The
aPFC region was already strongly connected to the aI/fO in
children, and the strength of this connection was maintained into
adulthood (Fig. 2D). The LOWESS curves for all regions (along
with original data points) are shown in SI Fig. 8.

Direct Comparisons Between Children and Adults. Direct compari-
sons of all possible connections between adults and children (see
Methods) were performed to test the statistical reliability of the
between-group differences observed with graph theory methods
(P � 0.05, multiple comparison corrected; see Methods). As men-
tioned previously, these results for both the children and adult
groups were verified with a replication analysis (see SI Fig. 6 and
SI Text). The disengagement of the dACC/msFC region from the
frontoparietal network with age was reliable in that the dACC/
msFC–dorsal frontal cortex connection was significantly stronger in
children than adults (Fig. 3). Likewise, connections between the
dACC/msFC region and other parts of the cinguloopercular net-
work (i.e., aI/fO) gained with age were significantly stronger in
adults than children (Fig. 3). The direct comparisons also validated
the developmental segregation of the aPFC from the dlPFC
(Fig. 3).

Some of the functional connections between frontal and
parietal regions, present in both groups, differed significantly in

Fig. 2. Graphs formed from putative task-control regions in children, adolescents, and adults. ROI locations are drawn to correspond to topographic brain
locations. Right-sided ROIs are displayed on the right and anterior ROIs at the top of each graph. (A) rs-fcMRI revealed two separate control networks in adults
as previously described (6). (B) The top 75 connections in adolescents revealed a similar two-component system as seen in adults; however, the dACC/msFC region
was incorporated into the frontoparietal network. (C) The top 75 connections in children revealed a significant deviation from the adult architecture. The two
networks were connected by a bridge connection (aPFC–dlPFC). The dACC/msFC region was incorporated into the frontoparietal network. Children lacked
connections from the dlPFC to IPS and IPL. (D) Fit LOWESS curves of connection strength (r) versus age. As connection strength between the dACC/msFC region
and the dF cortex decreased with age, correlation strength increased between the dACC/msFC and aI/fO regions. The aPFC region also decreased its connection
strength with the dlPFC region with age but was already strongly connected to the aI/fO region in children. The strength of the aI/fO–aPFC connection was
maintained into adulthood.
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strength between children and adults. The connection between
left dlPFC and left IPS (see Fig. 3) was already present in
children but significantly increased in strength with age. The left
dorsal frontal–left IPS connection also grew stronger (see SI Fig.
6). Other connections between frontal and parietal regions were
present in both groups but not statistically different.

One of the most intriguing findings here was the overall
increase in connection strength between regions that were
spatially remote (i.e., long-range) and the concomitant decrease
in connection strength for regions close in space (i.e., short-
range) (Figs. 3 and 4). Some of the increases in long-range
connectivity were particularly interesting. Regions in both con-
trol networks (e.g., dlPFC, IPL, aPFC, and aI/fO) developed
stronger connections with the cerebellum (Fig. 3). Another
notable long-range connection that developed with age was
between the posterior cingulate and ventral medial prefrontal
cortex (vmPFC) (Fig. 3), important elements of the brain’s
default system (also see SI Text) (17). This result is quantified in
Fig. 4.

Discussion
Recent evidence (6) suggests that adult control is implemented
through two possibly parallel task-control networks. In this

scheme, the frontoparietal network implements adaptive control
on a trial-by-trial timescale, and the cinguloopercular network
implements set-maintenance functions (6) at the task level.

Based on prior research (25–28, 34), we expected that both the
frontoparietal and cinguloopercular networks would undergo re-
modeling with age. As predicted, the graph methods showed a
frontoparietal network that continued to strengthen its frontal–
parietal connections with age (Figs. 2 and 3). In addition, the
cinguloopercular network was partially incomplete with many of
the adult connections still missing (Fig. 2). A more nuanced
characterization of the developmental dynamics of the two net-
works is presented in the following discussion.

Segregation/Integration Lead to Mature Dual-Network Control Archi-
tecture. The control network structure of children significantly
deviated from the adult organization in two fundamental ways
(Fig. 2C). First, in children, the two networks were connected by
the aPFC and dlPFC regions. Second, the dACC/msFC region
was closely connected to the frontoparietal network. With age,
there was segregation of both the aPFC and dACC/msFC regions
from the frontoparietal network and integration of the dACC/
msFC region into the cinguloopercular network (Fig. 2C).

Fig. 3. Increased long-range and decreased short-range connectivity with age. Direct comparisons of all possible connections between adults and children were
performed to test the statistical reliability of between-group differences. Both left- and right-hemisphere regions are placed on a transparent brain to aid with
visualization. Red and blue lines highlight significant between-group differences for connections with an r � 0.1 in either children or adults (i.e., absolute
difference). Light blue and pink lines highlight connections present in both children and adults (r � 0.1) that differed significantly in connection strength between
groups (relative difference; P � 0.05). (A) The segregation of the dACC/msFC region from the frontoparietal network (Fig. 2) was statistically significant, as was
the disconnection of the aPFC from the dlPFC region (P � 0.05). Most of the connections that ‘‘grew down’’ with age constituted short-range connections.
Connections that ‘‘grew up’’ with age are faded to highlight this observation. (B) Connections between the dACC/msFC region and the cinguloopercular network
that grew stronger with age were statistically significant (P � 0.05). The connections of left dlPFC to left IPS and left frontal to left IPS were already present in
children but significantly increased in strength with age. Most of the connections that ‘‘grew up’’ with age constituted long-range connections. Connections that
‘‘grew down’’ with age are faded to highlight this observation. Selected LOWESS curves are presented in A and B.
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These developmental dynamics may represent a learning
mechanism whereby precursors to adult task sets are originally
derived from more available signals generated by regions of the
more rapidly adaptive control network (i.e., frontoparietal). In
this sense, the performance of tasks with novel components
would rely more heavily on rapidly adaptive control generated by
the frontoparietal network. With greater age, and therefore
greater experience, stored task sets may be retrieved and stably
maintained throughout the task epoch by the cinguloopercular
network.

Consistent with this idea, Weisman et al. (35) showed that, for
a Stroop-like task, which contains novel components even for
adults, control activity in the dlPFC and parietal cortex de-
creases with learning, whereas control-related activity in the
cingulate increases with learning. Other investigators have made
similar observations (36). In adults, difficult novel paradigms
such as Stroop or dual-task situations may drive a resynchroni-
zation between the frontoparietal and cinguloopercular net-
works, as is seen in childhood, which may disappear again with
practice. Future work in adults using effective connectivity,
which measures the direct influence of one region on another
using a predefined model, and/or fcMRI during completely
novel tasks, may unveil such novelty-induced changes in task-
control strategies.

Long-Range Functional Connections Increase and Short-Range Con-
nections Decrease with Age. One of the most compelling findings
was the strong tendency toward reduction in short-range con-
nections with age and the concomitant addition of long-range
connections (Figs. 3 and 4). This observation fits well with
suggestions that perceptual and cognitive development involves
the simultaneous segregation and integration of information-
processing streams (28, 37–40).

By �9 months of age, long-range anatomical connectivity is
adult-like (41), indicating that the developmental changes pre-
sented here cannot be accounted for by neuroanatomical
changes alone. Increasing long-range functional connectivity
with age may reflect increased myelination, which continues into
young adulthood (42). Increased efficiency of signal propagation
after the addition of the myelin sheath may be important for
efficient information transfer and, hence, the functional inte-
gration between distant regions (28, 38). In principle, such
processes over time could allow for stronger spontaneous cor-

relations seen with rs-fcMRI. Conversely, the protracted period
of selective pruning of synapses between specific brain regions,
which occurs from early infancy and well into the second decade
of life (43, 44), may contribute to the significant reduction in
short-range functional connectivity (also see SI Text and SI
Fig. 7).

Although developmental phenomena such as myelination and
synaptic pruning may influence our current results, they likely do
not account for all of the observed rs-fcMRI differences between
children and adults (28). Other processes, such as coordinated
evoked and spontaneous activity, may directly contribute to the
creation of the adult functional architecture. For example, in a
recent publication, Honey et al. (18) simulated spontaneous
neuronal firing (millisecond timescale) for a network of nodes
only constrained by the known anatomical connections of ma-
caque neocortex. Complex spatial and temporal patterns of
synchronous activity developed over time in the absence of
external input and without changes in synaptic strengths (18).
These findings suggest that a process of ‘‘integration through
synchronization’’ may partially underlie the development of the
control networks described here (16).

Cerebellar Connections to Control Networks Grow Stronger with Age.
Recent neuropsychological findings suggest that children are
worse at monitoring performance feedback signals than adults
(24). Other work has indicated that the cerebellum is important
for generating error codes (45). The relatively late appearance
of long-range functional connections between the cerebellum
and the brain’s control networks may contribute to children’s
inferior ability to monitor performance feedback (30).

Conclusions
The brain is a complex network whose structure simultaneously
satisfies two major challenges of neural information processing:
the segregation of specialized information and functional inte-
gration (23). The study of temporally correlated neural activity
revealed that segregation (i.e., decreased short-range connec-
tions) and integration (i.e., increased long-range connections)
can be observed across development. These global developmen-
tal processes support the maturation of a dual-network control
system (6).

The results presented here lend credence to the idea that the
function of a system is not fully described by the activity of its
individual components, but also depends on the nature of the
dynamic links among them (15–18). Work in several laboratories
has revealed that developmental disorders may not only be tied
to dysfunction of a set of brain areas, but also to the way these
regions are connected functionally and anatomically (16, 46). For
example, an overabundance of short-range connections and
insufficient long-range connections are now thought to contrib-
ute to autism spectrum disorders (46, 47). Other work has shown
that the disruption of synchronous neural activity is related to
cognitive deficits in schizophrenic patients (16). These results
suggest that a delay or interruption of the developmental
processes described in this article may underlie such conditions
and other putative developmental disorders of control, including
attention deficit hyperactivity disorder and Tourette’s syndrome.

Methods
Data Acquisition. fMRI data were acquired on a Siemens 1.5 Tesla
MAGNETOM Vision system (Erlangen, Germany) and pro-
cessed as previously described (48). See SI Table 3 and SI Text
for details.

rs-fcMRI Preprocessing. Preprocessing for fc analyses was carried
out as previously described (12, 13). See SI Text for details.

Fig. 4. Euclidean distance as a function of �r. The Euclidean distance
(millimeters) of all connections that differed significantly between children
and adults is plotted against the change in correlation strength (�r) across
development. Connections that increased in strength with age are displayed
in blue, and those connections that decreased with age are displayed in red.
The mean r and Euclidean distance for each group are also plotted (black
circles). A t test (P � 0.0001) confirmed the qualitative finding (Fig. 3) that
connections between spatially distant regions are more likely to ‘‘grow up’’
with age, whereas connections between closely adjacent regions tend to
‘‘grow down’’ with age.
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Extraction of Regionwise Resting State Time Series. Resting state
(fixation) data from 210 subjects (66 ages 7–9; 53 ages 10–15; 91
ages 19–31; 74 ages 32�) (6) were included in the analyses. For
each subject, at least 555 sec (9.25 min) of resting state BOLD
data were collected. For each of the 39 regions of interest
(ROIs), a resting state time series was extracted separately for
each individual. ROIs were originally derived from cross-studies
fMRI analyses of task-control signals in adults (2, 6). Hence, the
roles of putative brain regions that contribute to task control in
children and adolescents but not in adults should be addressed
by the inclusion of such regions in future research.

For 10 adult subjects, resting fixation was continuous. For the
remaining 200 subjects, by using a recently validated method
(13), resting periods were extracted from different interleaved
experimental designs that also contained task periods.

Computation of Mean Regionwise Correlation Matrix for Graph. The
resting state BOLD time series were correlated region by region
for each subject across the full length of the resting time series,
creating 210 square correlation matrices (39 � 39).

Because of the potential effects of head movement on rs-
fcMRI data, even after movement correction,†† the child, ado-
lescent, and adult groups were matched for movement to limit its
effects. From a sample of 210 subjects, 139 movement-matched
subjects (49 children ages 7–9 years, 43 adolescents ages 10–15
years, and 47 adults 21–31 years) were used for the graph
visualization and subsequent direct comparisons. Within-run
subject motion was �1 mm rms for all matched groups and not

significantly different among groups (rms: children, 0.637 mm;
adolescents, 0.636 mm; adults, 0.633 mm).

For graph analyses, the correlation coefficients (r) across
matched subjects were combined by using the Schmidt–Hunter
method for meta-analyses of r values (6).

Direct Comparisons Between Children and Adults. We performed
two-sample two-tailed t tests (assuming unequal variance; P �
0.05) on all potential connections represented in the 39 � 39
correlation matrices (741 possible connections) between move-
ment-matched children and adults. Fischer’s Z transformation
was applied to the correlation coefficients to improve normality
for the random effects analyses. To account for multiple com-
parisons, the Benjamini and Hochberg False Discovery Rate
(49) was applied. Connections that were significantly different
between groups, but r � 0.1 in both groups, were not displayed.

Application of LOWESS Smoothing. Data on connection strength
versus age were fit with LOWESS curves by using the full
complement of subjects (210 subjects) (33). LOWESS smoothing
is a weighted least-squares fit. Each smoothed value is deter-
mined by the neighboring data points defined within a span, with
the data point being smoothed carrying the most weight. Smooth
lines were computed by using a tension of 50.
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