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Abstract
Background: In the context of genomic association studies, for which a large number of statistical
tests are performed simultaneously, the local False Discovery Rate (lFDR), which quantifies the
evidence of a specific gene association with a clinical or biological variable of interest, is a relevant
criterion for taking into account the multiple testing problem. The lFDR not only allows an inference
to be made for each gene through its specific value, but also an estimate of Benjamini-Hochberg's
False Discovery Rate (FDR) for subsets of genes.

Results: In the framework of estimating procedures without any distributional assumption under
the alternative hypothesis, a new and efficient procedure for estimating the lFDR is described. The
results of a simulation study indicated good performances for the proposed estimator in
comparison to four published ones. The five different procedures were applied to real datasets.

Conclusion: A novel and efficient procedure for estimating lFDR was developed and evaluated.

Background
The use of current high-density microarrays for genomic
association studies leads to the simultaneous evaluation
of a huge number of statistical hypotheses. Thus, one of
the main problems faced by the investigator is the selec-
tion of genes (or gene products) worthy of further analysis
taking multiple testing into account.

Although the oldest extension of the classical type I error
rate is the family-wise error rate (FWER), which is defined
as the probability of falsely rejecting at least one null
hypothesis (e.g., the lack of relationship between gene-
expression changes and a phenotype), FWER-based proce-
dures are often too conservative, particularly when
numerous hypotheses are tested [1]. As an alternative and
less stringent error criterion, Benjamini and Hochberg

introduced, in their seminal paper [2], the False Discovery
Rate (FDR), which is defined as the expected proportion
of false discoveries among all discoveries. Here, a discov-
ery refers to a rejected null hypothesis.

Assuming that the test statistics are independent and iden-
tically distributed under the null hypothesis, Storey [3]
demonstrated that, for a fixed rejection region Γ, which is
considered to be the same for every test, the FDR is asymp-
totically equal to the following posterior probability:

FDR(Γ) = Pr(H = 0|T ∈ Γ) (1)

where H is the random variable such that H = 0 if the null
hypothesis, noted H0, is true; H = 1 if the alternative hypo-
thesis, noted H1, is true; and T is the test statistic consid-
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ered for all tested hypotheses. However, one drawback is
that the FDR criterion associated with a particular rejec-
tion region Γ refers to all the test statistics within the
region without distinguishing between those that are
close to the boundary and those that are not [4].

For this purpose, Efron [5] introduced a new error crite-
rion called the local False Discovery Rate (lFDR) which
can be interpreted as a variant of Benjamini-Hochberg's
FDR, that gives each tested null hypothesis its own meas-
ure of significance. While the FDR is defined for a whole
rejection region, the lFDR is defined for a particular value
of the test statistic. More formally:

lFDR(t) = Pr(H = 0|T = t). (2)

As discussed by Efron [6], the local nature of the lFDR is
an advantage for interpreting results from individual test
statistics. Moreover, the FDR is the conditional expecta-
tion of the lFDR given T ∈ Γ:

FDR(Γ) = E(lFDR(T)|T ∈ Γ). (3)

In this context, most of the published procedures for esti-
mating lFDR proceed from a two-component mixture
model approach, in which the marginal distribution of
the test statistic can be written:

f(t) = π0f0(t) + (1 - π0)f1(t). (4)

Here, f0 and f1 are the conditional density functions corre-
sponding to null and alternative hypotheses, respectively,
and π0 = Pr(H = 0). Using these notations, lFDR can be
expressed as:

A variety of estimators have been proposed that either
consider a full model-based approach (for a few [7-10]) or
estimate an upper bound of lFDR without any assump-
tion for f1. It is worth noting that, in this latter framework,
the probability π0 is not identifiable [11]. Thus, from
equation (5), only an upper bound estimate can be
obtained for lFDR.

Four procedures that do not require a distributional hypo-
thesis for f1 were introduced by Efron [6,12], Aubert et al.
[13], Scheid and Spang [14] and Broberg [15]. These
methods are based on the separate estimations of π0, f0
and f from the calculated p-values. For the last three pro-
cedures [13-15], the p-values are supposed to be uni-
formly distributed under the null hypothesis, while
Efron's approach estimates f0 from the observed data.

Herein, we describe a novel and efficient procedure for
estimating lFDR. While classical approaches are based on
the estimation of the marginal density f, we propose
directly estimating π0 and 1/f (equation 5) within the
same framework.

To situate our procedure among the four published, we
briefly recall below their individual principles.

Efron (2004) [12]
For this procedure, the p-values are transformed into z-val-
ues for which the theoretical distribution (under the null
hypothesis) is a standard normal distribution. To take
into account that f0 may be different from the theoretical
null distribution, the parameters are estimated from the
observed distribution of the z-values as summarized
below.

The density f is non-parametrically estimated using a gen-
eral Poisson linear model, in which log(f(z)) is modeled
as a natural spline function with seven degrees of free-
dom. Then, the null distribution parameters are estimated

as follows. The expectation is taken as arg max( (z)) and

the variance is deduced by quadratically approximating

log( (z)) for central z-values (for which f1(z) is supposed

to be null). The proportion π0 is then estimated by the

ratio of the means  calculated from these cen-

tral z-values. The lFDR is finally estimated by

. It should be noted that in addi-

tion to the normality assumption for the z-values under
the null hypothesis, the procedure is also based on the
assumptions that central z-values mainly consist of true

null hypotheses and that the proportion (1 - π0) of modi-

fied genes is small. In particular, Efron recommends using

this procedure for π0 > 90%.

Aubert et al. (2004) [13]
Assuming that the p-values are uniformly distributed
under the null hypothesis (f0 = 1), the procedure is based
on the separate estimations of π0 and f .

Ordering the p-values (p(1) ≤...≤ p(m)), as Aubert et al. [13]
did, a natural estimator of f is:

where  is the empirical cumulative distribution func-
tion of the p-values. The resulting estimator for this lFDR
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is then . However, as

noted by Aubert et al. [13], the variance of this estimator
is large. A more stable estimator, related to the moving
average methodology and corresponding to a generaliza-
tion of the estimator 6, was given by the authors [13]. To

estimate the probability π0, Aubert et al. [13] proposed

using an existing procedure, like those proposed by Storey
and Tibshirani [16] or Hochberg and Benjamini [17].

Scheid and Spang (2004) [14]
As for the procedure proposed by Aubert et al., the p-val-
ues are supposed to be uniformly distributed under the
null hypothesis. Thus, this procedure is based on the sep-
arate estimations of π0 and f . The marginal distribution f
is estimated by dividing the interval [0, 1] into 100 equi-
distant bins from which a corresponding histogram is
derived. A smoothing spline with seven degrees of free-
dom is then used to estimate f.

The probability π0 is estimated by a stochastic downhill
algorithm (summarized below) with the intention of
finding the largest subset of genes that could follow a uni-
form distribution. A penalized Kolmogoroff-Smirnoff
score related to the uniform distribution is calculated for
the whole gene set:

where m is the total number of genes, J is the set of genes
under consideration (first, the whole set of genes), FJ is the

empirical cumulative distribution for the set J, and λ is a
tuning parameter adaptively chosen (for details on the

choice of, λ see [14]). Then, iteratively, genes are excluded
so that the Kolmogoroff-Smirnoff score decreases. In prac-
tice, the procedure stops when the score is not reduced in
2m iterations. The score penalty takes into account the
sample size m and avoids overfitting. At the end of the

procedure, π0 is estimated by the proportion of the

remaining genes. Then, lFDR is estimated by

.

Broberg (2005) [15]
The procedure proposed by Broberg to estimate lFDR is
also based on the assumption that the p-values are uni-
formly distributed under the null hypothesis. Then, as for
the two previous methods, the procedure is based on the
separate estimations of π0 and f . The marginal density f of
the p-values is estimated by a Poisson regression, similar

to the procedure proposed by Efron. To enforce monot-
ony, Broberg proposed using the Pooling Adjacent Viola-
tors algorithm (see [15] for details).

The probability π0 is then estimated by minp∈[0,1] (p).

Then, lFDR is estimated by .

Limitations of these estimators
Through different estimations of π0, f0 and f, these four
procedures attempt to estimate an upper bound of lFDR.
However, each of these methods has its own drawback.
Efron's procedure [6,12] is restricted to situations in
which π0 > 90%. The method of Aubert et al. [13] yields an
estimator with a large variance. Sheid and Spang's proce-
dure [14] is based on an iterative algorithm and requires
extensive computational time (for large datasets). Finally,
Broberg's approach [15] sometimes substantially underes-
timates lFDR. Our procedure, developed in details under
Methods, is based on a polynomial regression under
monotony and convexity constraints of the inverse func-
tion of the empirical cumulative distribution. Thus, an
estimated upper bound of lFDR with small variability can
be expected, regardless of the true value of π0.

Results
Here, we compared, through simulations, our method to
the four procedures described above. The five procedures
are then applied to real datasets.

Simulated data
To compare our new estimator to the four previously pub-
lished procedures, we performed a simulation study. Data
were generated to mimic a two-class comparison study
with normalized log-ratio measurements for m genes (i =
1,...,m) obtained from 20 experiments corresponding to
two conditions (j = 1, 2), each with 10 replicated samples
(k = 1,...,10), which corresponds to classical sample sizes
for differential gene-expression studies. Two total num-
bers of genes were considered: one small (m = 500) and
one larger (m = 5, 000). In each case, all values were inde-
pendently sampled from a normal distribution, Xi,j,k ~
N(μij, 1). For the first condition (j = 1), all data were sim-
ulated with μi1 = 0. For the second condition (j = 2), a pro-
portion π0 of genes was simulated with μi2 = 0
(unmodified genes), while modified genes were simu-
lated using three different configurations: (a) μi2 = 1 for
the first half, μi2 = 2 for the second half; (b) μi2 = 0.5 for
the first half, μi2 = 1 for the second half; and (c) μi2 = 0.5
for the first third, μi2 = 1 for the second third and μi2 = 2
for the last third.

In this way, we tried to mimic realistic situations with dif-
ferent patterns. Here, the distribution of modified genes is
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a simple mixture of two components with small expres-
sion differences (configuration (a)) and large expression
differences (configuration (b)), or a more complex mix-
ture with three components (configuration (c)).

Four different π0 values were considered. Because Efron's
procedure was developed for situations with π0 values
greater than 0.90, we used π0 = 0.9 and π0 = 0.98. We also
considered two lower values of π0 that correspond to real-
istic situations not considered by Efron (π0 = 0.8 and π0 =
0.6). In total, 2 × 3 × 4 = 24 different cases were consid-
ered.

To evaluate the behavior of the five procedures in the con-
text of dependent data, we also generated datasets with so-
called clumpy dependence (that is, datasets for which the
measurements on the genes are dependent in small
groups, with each group being independent of the others).

We applied the protocol described in [18] and [19] as fol-
lows: First, an independent dataset matrix (xijk) was gener-

ated, as described above. Then, for each group of 100
genes, a random vector A = {ajk}, where j = 1, 2 and k =

1,..., 10 was generated from a standard normal distribu-
tion. The data matrix (yijk) was then built so that:

 with ρ = 0.5. Thus, in each

group, the genes have the same correlation, that is to say

for i1 ≠ i2, . To render the results com-

parable with those obtained in the independent setting,

the expectations μij used for generating the matrix (xijk)

were divided by  so that the expectations of the

random variables Yijk correspond to those described in

configurations (a), (b) and (c) for independent data. We

also considered other ρ values that gave similar results
(data not shown).

In each case, the p-values, calculated under the null hypo-
thesis H0 : μi1 = μi2, were obtained from the Student's sta-
tistic. Then, we estimated lFDR from our procedure,
referred to as polfdr, and the four procedures presented in
the background section, referred to as locfdr (Efron),
LocalFDR (Aubert et al.), twilight (Scheid and Spang),
pava.fdr (Broberg). Although these procedures were not
designed to estimate the probability π0 independently of
lFDR, we also compared the estimators of π0 obtained
from the five procedures.

For each case, 1,000 datasets were simulated. To compare
the different estimators, we considered three different cri-
teria that are described below.

Criterion 1
Since the main contribution of lFDR is that it gives each
tested hypothesis its own measure of significance, a small
bias for any value within the whole interval [0, 1] can be
preferable to a smaller bias limited to a subset of values
within the interval. For this purpose and to assess the
amplitude of the bias for the five procedures, we consid-
ered the infinity norm of the integrated error over the
interval [0, 1] defined as follows:

and estimated by:

where i = 1,...,m are the m p-values corresponding to

the kth dataset (among the 1,000 simulated datasets for

each case). Here, the theoretical values lFDR( ) are cal-

culated from a numerical approximation of the non-cen-
tered Student's distribution [20].

The estimated values of b1 for independent data are
reported in the Table 1. Although these values were always
less than or equal to 0.17 for the polfdr procedure, the
highest b1 values for the LocalFDR, pava.fdr, twilight and
locfdr procedures were 0.20, 0.21, 0.43 and 0.87, respec-
tively. These results also showed that the locfdr method
tended to substantially overestimate lDFR. For example,
Figure 1 shows the expected lFDR as a function of p for
each estimator with m = 500, π0 = 0.8 and configuration
(c) (the figures corresponding to all the other cases are
provided in additional files). For these figures, the hori-
zontal scale was log-transformed to better demonstrate
the differences between the methods for small p-values.
For dependent datasets, the bias of the five estimators
increased. While the bias of our estimator was always less
than or equal to 0.17, the highest bias values for the meth-
ods pava.fdr, LocalFDR, twilight, locfdr were 0.20, 0.23, 0.41
and 0.87, respectively (see additional files, Table 10).

Criterion 2
As noted under Background, the five methods were
designed to estimate an lFDR upper bound. However, a
negative bias can occur in some cases, leading to more
false positive results than expected. In this context, we
propose investigating with the five procedures the mini-
mal negative bias, denoted b2, over the interval [0, 1]:

y a xijk jk ijk= + −ρ ρ1
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Expected lFDR as a function of log(p) for each estimator with m = 500, π0 = 0.8 and configuration (c)Figure 1
Expected lFDR as a function of log(p) for each estimator with 
m = 500, π0 = 0.8 and configuration (c).

Table 1: Estimated values of b1 for the five estimators in each indep

Case m π0 Configuration pol

1 500 0.6 (a) 0.0
2 (b) 0.1
3 (c) 0.1
4 0.8 (a) 0.0
5 (b) 0.0
6 (c) 0.0
7 0.9 (a) 0.0
8 (b) 0.0
9 (c) 0.0
10 0.98 (a) 0.0
11 (b) 0.0
12 (c) 0.0
13 5,000 0.6 (a) 0.0
14 (b) 0.1
15 (c) 0.1
16 0.8 (a) 0.0
17 (b) 0.0
18 (c) 0.0
19 0.9 (a) 0.0
20 (b) 0.0
21 (c) 0.0
22 0.98 (a) 0.0
23 (b) 0.0
24 (c) 0.0
and estimated by:

Results for independent datasets (Table 2) indicated that
all the estimators have non-negligible minimal negative
biases. However, while b2 was always less than or equal to

0.08 for our method, the maximal b2 values were 0.11,

0.18, 0.21 and 0.43 for the estimators locfdr, LocalFDR,
pava.fdr and twilight, respectively. More precisely, while
our estimator slightly underestimated lFDR in some cases,

when π0 was close to 1, the twilight method tended to

underestimate lFDR for small p-values (see Figure 1) and
the pava.fdr method tended to substantially underesti-
mate lFDR for all p-values (for example, see Figure 2). The
pava.fdr method underestimation can be attributed to the

upper bound of π0, which is estimated by min[ (p(i))],

because E{min[ (p(i))]} ≤ min[E (p(i))}]. Thus, even

b E lFDR p lFDR p
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f̂

f̂ f̂

endent simulated case.

fdr twilight LocalFDR pava.fdr Locfdr

32 0.047 0.067 0.133 0.869
70 0.149 0.195 0.160 0.836
18 0.123 0.155 0.096 0.843
62 0.131 0.041 0.116 0.695
71 0.097 0.105 0.061 0.599
51 0.156 0.079 0.057 0.555
71 0.268 0.041 0.115 0.312
54 0.116 0.052 0.047 0.376
50 0.315 0.049 0.095 0.265
73 0.387 0.163 0.139 0.113
51 0.105 0.029 0.135 0.098
61 0.260 0.120 0.157 0.109
35 0.038 0.026 0.212 0.869
71 0.167 0.165 0.167 0.839
18 0.129 0.117 0.065 0.843
56 0.129 0.013 0.092 0.441
71 0.110 0.073 0.068 0.502
51 0.156 0.053 0.039 0.406
83 0.268 0.039 0.056 0.183
33 0.123 0.036 0.032 0.297
57 0.316 0.043 0.029 0.184
35 0.427 0.183 0.035 0.052
46 0.071 0.035 0.027 0.081
34 0.293 0.141 0.035 0.047
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Expected lFDR as a function of log(p) for each estimator with m = 5000, π0 = 0.6 and configuration (a)Figure 2
Expected lFDR as a function of log(p) for each estimator with 
m = 5000, π0 = 0.6 and configuration (a).

Table 2: Estimated values of b2 for the five estimators in each indep

Case m π0 Configuration pol

1 500 0.6 (a) 0.0
2 (b) 0.0
3 (c) 0.0
4 0.8 (a) 0.0
5 (b) 0.0
6 (c) 0.0
7 0.9 (a) 0.0
8 (b) 0.0
9 (c) 0.0
10 0.98 (a) 0.0
11 (b) 0.0
12 (c) 0.0
13 5,000 0.6 (a) 0.0
14 (b) 0.0
15 (c) 0.0
16 0.8 (a) 0.0
17 (b) 0.0
18 (c) 0.0
19 0.9 (a) 0.0
20 (b) 0.0
21 (c) 0.0
22 0.98 (a) 0.0
23 (b) 0.0
24 (c) 0.0
though this method can sometimes lead to a low bias
(because its negative bias compensates for the gap
between the upper bound and the true value), this estima-
tor can generate high negative bias (see Figure 2). These
results also indicated that even though the locfdr method
tended to overestimate lFDR for the majority of p-values,
it also tended to underestimate lFDR for p-values close to
1.

Criterion 3
To evaluate the accuracy of the five procedures at all
points simultaneously, we estimated the root mean inte-
grated square error (RMISE) of the five estimators which
is defined by:

and estimated by:

As shown in Table 3, these results indicated that, except
for the pava.fdr method (which can substantially underes-
timate lFDR, as shown above), our method gave the low-
est RMISE in 15/24 cases. For the 6 cases with π0 close to

RMISE E lFDR p lFDR p dp= −( )⎡
⎣⎢
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m
k 11
1 000,

(13)

endent simulated case.

fdr twilight LocalFDR pava.fdr locfdr

15 0.047 0.000 0.133 0.000
00 0.016 0.000 0.000 0.000
00 0.039 0.000 0.010 0.000
57 0.131 0.000 0.116 0.000
00 0.071 0.000 0.024 0.000
11 0.156 0.000 0.057 0.000
71 0.268 0.041 0.115 0.046
05 0.116 0.013 0.047 0.031
40 0.315 0.049 0.095 0.050
73 0.387 0.163 0.139 0.113
51 0.105 0.029 0.135 0.098
61 0.260 0.120 0.157 0.109
11 0.019 0.000 0.212 0.000
00 0.018 0.000 0.000 0.000
00 0.041 0.000 0.000 0.000
56 0.129 0.005 0.092 0.000
00 0.079 0.000 0.000 0.000
16 0.156 0.000 0.003 0.000
83 0.268 0.039 0.056 0.001
00 0.123 0.021 0.000 0.000
57 0.316 0.043 0.029 0.000
27 0.427 0.183 0.035 0.023
10 0.071 0.035 0.027 0.017
18 0.293 0.141 0.035 0.021
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one (π0 = 0.98), the locfdr method yielded the lowest
RMISE. For the last 3 cases, the difference between our
method's RMISE and the lowest value (obtained with the
twilight estimator) did not exceed 0.4% (case 7). Moreo-
ver, these results also indicated that the LocalFDR estima-
tor, despite a small bias in all cases had a higher RMISE
than our estimator due to its wide variance.

For dependent data, the RMISE of the five estimators
increased and the differences were smaller. Our method
yielded the lowest RMISE for 7/24 cases (see the Table 12
in additional files).

However, because in practice, some investigators might
want to select only genes with low lFDR, we also reported
the results obtained with the 3 criteria over the interval [0,
0.2] (See additional files). They showed that our method
maintained good performances compared to the four oth-
ers. Other thresholds for the p-values were considered
(10% and 40%) and gave similar results (data not
shown).

To compare the performance of the different estimators of
the parameter π0 obtained with the different methods, we
evaluated their expectations and their root mean square
errors.

Table 4 gives the means of the five estimators of the
parameter π0 over the 1,000 simulated independent data-
sets (results for dependent datasets are provided in addi-
tional files, Tables 13–14). The average bias over the 24
simulated datasets was the smallest for our new method
(0.1%) with a maximal positive bias of 12% (for m = 5,
000, π0 = 60% and configuration (b)) and a maximal neg-
ative bias of 4% (for m = 500, π0 = 98% and configuration
(c)). It is worth noting that the method with the highest
positive bias was locfdr (29%), while the one with the
highest negative bias was pava.fdr (13%).

The estimated root mean square errors for each estimator
of the parameter π0 are given in Table 5. Note that the root
mean square errors of our estimator were less than or
equal to 0.126 for the 24 simulated datasets, while it
could reach 0.130, 0.132, 0.145 and 0.292 for locfdr,
LocalFDR, twilight and pava.fdr methods, respectively.

Concerning computing time, our procedure was rapid,
while the twilight method was cumbersome and impracti-
cably long for large numbers of tested hypotheses. For
example, the means of computing times on a personal
computer (over 20 simulated datasets) for m = 5, 000, π0
= 0.6 and configuration (c) were 50s, 2s, 1s, 1s and 1s for
the methods twilight, LocalFDR, polfdr, pava.fdr and locfdr,

Table 3: Estimated RMISE for the five estimators in each independent simulated case.

Case m π0 Configuration polfdr twilight LocalFDR pava.fdr locfdr

1 500 0.6 (a) 0.071 0.093 0.194 0.136 0.208
2 (b) 0.157 0.155 0.235 0.121 0.340
3 (c) 0.118 0.122 0.221 0.090 0.279
4 0.8 (a) 0.067 0.085 0.187 0.122 0.144
5 (b) 0.095 0.094 0.201 0.087 0.193
6 (c) 0.083 0.089 0.194 0.091 0.157
7 0.9 (a) 0.089 0.085 0.180 0.112 0.076
8 (b) 0.080 0.081 0.178 0.090 0.110
9 (c) 0.075 0.088 0.183 0.106 0.078
10 0.98 (a) 0.093 0.106 0.172 0.089 0.043
11 (b) 0.078 0.100 0.170 0.077 0.045
12 (c) 0.081 0.098 0.170 0.079 0.044
13 5,000 0.6 (a) 0.036 0.040 0.061 0.191 0.234
14 (b) 0.149 0.153 0.152 0.133 0.343
15 (c) 0.101 0.113 0.117 0.037 0.278
16 0.8 (a) 0.029 0.047 0.060 0.088 0.119
17 (b) 0.069 0.077 0.087 0.056 0.185
18 (c) 0.052 0.071 0.074 0.032 0.143
19 0.9 (a) 0.048 0.056 0.060 0.054 0.056
20 (b) 0.041 0.050 0.065 0.037 0.099
21 (c) 0.039 0.063 0.063 0.035 0.064
22 0.98 (a) 0.042 0.069 0.062 0.027 0.021
23 (b) 0.035 0.031 0.056 0.023 0.029
24 (c) 0.039 0.052 0.060 0.025 0.023
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respectively. For a larger number tested hypotheses m =
50, 000 (not considered in the simulation study), the
means of computing times were 7,261s, 162s, 108s, 2s
and 1s, respectively.

Real data
Our method, together with twilight, LocalFDR, locfdr and
pava.fdr, was applied to two datasets from genomic breast-
cancer studies (Hedenfalk et al. [21] and Wang et al. [22]).

Data from Hedenfalk et al. [21]
Hedenfalk et al. [21] investigated the gene-expression
changes between hereditary (BRCA1, BRCA2) and non-
hereditary breast cancers. The initial dataset consists of
3,226 genes with expression log-ratios corresponding to
the fluorescent intensities from a tumor sample divided
by those from a common reference sample. Like Aubert et
al. [13], we focused on the comparison of BRCA1 and
BRCA2, and used the same p-values which were calculated
for each gene from a two-sample t-test.

Figure 3 shows the estimated lFDR as a function of the p-
values for the five estimators. The five procedures yielded
different results. For example, the estimated lFDR for 3
different genes are reported in Table 6. These results show
clear differences between the five methods. In particular,
the locfdr method gave 1 for the three genes, which can be
explained by a π0 value smaller than 0.9. Indeed, the esti-
mated π0 values were, respectively, 0.67, 0.67, 0.66, 0.66

and 1 for the polfdr, twilight, LocalFDR, pava.fdr and locfdr
methods. Concerning the four remaining procedures, the
highest differences for the three genes were respectively
3%, 7% and 5%.

Data from Wang et al. [22]
Wang et al. [22] wanted to provide quantitative gene-
expression combinations to predict disease outcomes for
patients with lymph-node negative breast cancers. Over
22,000 expression measurements were obtained from
Affymetrix oligonucleotide microarray U133A GeneChips
for 286 samples. The expression values calculated by the
Affymetrix GeneChip analysis software MAS5 are availa-
ble on the GEO website [23] with clinical data. For nor-
malisation, the quantile method [24] was applied on log-
transformed data.

Here, we focused on identifying gene-expression changes
that distinguish patients who experienced a tumour
relapse within 5 years, from patients who continued to be
disease-free after a period of at least 5 years. The p-values
were calculated for each gene from a two-sample t-test and
the five methods were applied.

Figure 4 shows the estimated lFDR as a function of the p-
values for the 5 estimators. As noted above,FDR can be
estimated from lFDR using equation (3) via the mean of
the estimated lFDR over the rejection region Γ. When
selecting all genes so that the estimated FDR is less than

Table 4: Mean of all estimates of π0 for the five estimators in each independent simulated case.

Case m π0 Configuration polfdr Twilight LocalFDR pava.fdr locfdr

1 500 0.6 (a) 0.604 0.613 0.523 0.852 0.604
2 (b) 0.707 0.718 0.665 0.890 0.716
3 (c) 0.656 0.677 0.604 0.839 0.669
4 0.8 (a) 0.787 0.806 0.721 0.849 0.791
5 (b) 0.841 0.860 0.792 0.915 0.849
6 (c) 0.812 0.839 0.767 0.890 0.828
7 0.9 (a) 0.863 0.897 0.824 0.918 0.886
8 (b) 0.903 0.915 0.876 0.954 0.912
9 (c) 0.888 0.907 0.842 0.934 0.899
10 0.98 (a) 0.940 0.947 0.938 0.983 0.943
11 (b) 0.953 0.949 0.949 0.989 0.937
12 (c) 0.951 0.954 0.948 0.988 0.947
13 5,000 0.6 (a) 0.614 0.613 0.469 0.851 0.616
14 (b) 0.720 0.718 0.707 0.888 0.725
15 (c) 0.670 0.676 0.604 0.838 0.680
16 0.8 (a) 0.801 0.806 0.729 0.848 0.805
17 (b) 0.853 0.859 0.842 0.916 0.861
18 (c) 0.833 0.841 0.803 0.888 0.841
19 0.9 (a) 0.877 0.903 0.857 0.918 0.900
20 (b) 0.920 0.929 0.914 0.954 0.929
21 (c) 0.901 0.918 0.883 0.934 0.915
22 0.98 (a) 0.968 0.974 0.971 0.982 0.975
23 (b) 0.974 0.980 0.979 0.989 0.980
24 (c) 0.972 0.978 0.975 0.986 0.978
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Estimated lFDR as a function of log(p) for each estimator for the Hedenfalk et al. datasetFigure 3
Estimated lFDR as a function of log(p) for each estimator for 
the Hedenfalk et al. dataset.

Table 5: Mean square error of all estimates of π0 for the five estima

Case M π0 Configuration pol

1 500 0.6 (a) 0.0
2 (b) 0.1
3 (c) 0.0
4 0.8 (a) 0.0
5 (b) 0.0
6 (c) 0.0
7 0.9 (a) 0.0
8 (b) 0.0
9 (c) 0.0
10 0.98 (a) 0.0
11 (b) 0.0
12 (c) 0.0
13 5,000 0.6 (a) 0.0
14 (b) 0.1
15 (c) 0.0
16 0.8 (a) 0.0
17 (b) 0.0
18 (c) 0.0
19 0.9 (a) 0.0
20 (b) 0.0
21 (c) 0.0
22 0.98 (a) 0.0
23 (b) 0.0
24 (c) 0.0
5%, our method selected 325 genes while the pava.fdr and
LocalFDR methods selected 367 and 229 genes, respec-
tively, and the twilight locfdr methods did not select any
gene. It is worth noting that these strong differences have
substantial consequences on the following analyses. The
estimated π0 values were, respectively, 0.711, 0.720,
0.714, 0.723 and 0.914 for the polfdr, pava.fdr, LocalFDR,
twilight and locfdr methods.

Discussion
In the simulations, for independent datasets, the results
indicated good performances for our procedure compared
to the four previously published methods. Indeed, while
the infinity norm b1 was small in every simulated case
with our procedure, it could be large for twilight and locfdr
procedures. Moreover, despite the fact that the five estima-
tors were designed with conservative biases, the twilight
procedure could generate substantial negative bias for
small p-values, the locfdr procedure underestimated the
lFDR for p-values close to 1, and pava.fdr tended to under-
estimate lFDR for all p-values. In addition, and compared
to LocalFDR, our method gave smaller RMISE in all cases.
When considering only the lowest p-values, the simula-
tion results showed the same trend. In summary, our new
estimator exhibited more stable behavior than the four
others.

For dependent datasets, simulation results led to similar
conclusions. Indeed, correlations between genes do not

tors in each independentsimulated case.

fdr twilight LocalFDR pava.fdr locfdr

48 0.084 0.089 0.255 0.052
26 0.145 0.088 0.292 0.130
86 0.116 0.054 0.241 0.089
52 0.090 0.096 0.057 0.056
78 0.109 0.064 0.120 0.080
65 0.099 0.067 0.096 0.065
74 0.080 0.093 0.039 0.053
63 0.080 0.075 0.065 0.062
60 0.084 0.088 0.050 0.056
77 0.076 0.069 0.040 0.064
67 0.072 0.053 0.041 0.071
64 0.066 0.056 0.041 0.060
23 0.029 0.132 0.251 0.024
24 0.121 0.109 0.288 0.127
75 0.081 0.015 0.238 0.083
17 0.032 0.073 0.049 0.021
61 0.066 0.046 0.116 0.065
43 0.050 0.014 0.089 0.047
39 0.031 0.045 0.021 0.019
34 0.042 0.027 0.055 0.035
29 0.036 0.023 0.036 0.024
25 0.025 0.013 0.012 0.018
24 0.023 0.009 0.015 0.018
23 0.024 0.011 0.014 0.018
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affect the marginal distribution of the p-values but
increase the variability of the different methods and the
bias of the estimators of π0.

It is worth noting that a major assumption underlying our
procedure, like twilight, LocalFDR and pava.fdr, relies on
the distribution of the p-values under the null hypothesis.
Because the uniformity assumption is sometimes not ten-
able [12], Efron's procedure estimates the null distribu-
tion parameters from the observed marginal distribution.
However, a limitation of that approach is the need for
additional assumptions concerning the proportion of true
null hypotheses. Another way to address the problem of
the null distribution is how the p-values are calculated,
notably using sampling methods (for a few [25-27]).

Conclusion
Herein, we proposed a novel, simple and efficient proce-
dure for estimating the lFDR. Estimating its value is essen-
tial for genomic studies, as it quantifies gene-specific
evidence for being associated with the clinical or biologi-

cal variable of interest. Moreover, it enables calculation of
the FDR.

As seen from the simulation results, our new estimator
performed well in comparison to locfdr, twilight, LocalFDR
and pava.fdr. As discussed above, our method yielded a
positive bias for lFDR that reflects the conservative estima-
tion of the probability π0. However, this limitation is
compensated for by the fact that no assumption is
required for f1.

Finally, we think that extending our approach to multidi-
mensional settings could be useful, as recently discussed
by Ploner et al. [28], but will require additional investiga-
tions.

The R function polfdr that implements the procedure is
available on the polfdr website [30].

Methods
As for the procedures proposed by Aubert et al., Scheid
and Spang and Broberg, we make the assumption that,
under the null hypothesis, the p-values are uniformly dis-
tributed. However, instead of estimating the density f
(and then taking the reciprocal of the estimate), we
directly estimate the reciprocal of f.

1/f estimation
Let's consider ϕ = F-1(p), the inverse cumulative distribu-
tion function of the p-values. Then, ∀p ∈ [0, 1], ϕ(F(p)) =
p and 1/f is the first derivative of the function ϕ. Indeed,
since ϕ � F is the identity function:

Moreover:

Thus:

d F p

dp

ϕ( ( ))
.= 1 (14)

d F p

dp

dF p

dp

d F p

dF p
f p

d F p

dF p

ϕ ϕ ϕ( ( )) ( ) ( ( ))

( )
( )

( ( ))

( )
.= × = ×

(15)

1
f p

d F p

dF p( )

( ( ))

( )
= ϕ

(16)

Estimated lFDR as a function of log(p) for each estimator for the Wang et al. datasetFigure 4
Estimated lFDR as a function of log(p) for each estimator for 
the Wang et al. dataset.

Table 6: lFDR estimations for three genes in Hedenfalk et al. data.

p-value Rank polfdr twilight LocalFDR pava.fdr locfdr

0.00041 36 0.05 0.03 0.02 0.03 1
0.01294 297 0.16 0.13 0.18 0.20 1
0.30534 1604 0.73 0.75 0.77 0.78 1
Page 10 of 12
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:229 http://www.biomedcentral.com/1471-2105/8/229
Equation 16, illustrated in the Figure 5, is linked to the
geometrical relationship between the FDR and lFDR, as
noted by Efron [6].

Because the lFDR (and thus 1/f) is non-negative, the func-
tion ϕ is non-decreasing. Moreover, assuming that lFDR is
non-decreasing with p (that is to say that, the closer a p-
value is to one, the greater the probability that the null
hypothesis is true), the function ϕ is convex. Then, we pro-
pose using a convex 10-degree polynomial for ϕ.

Therefore, we consider the following linear formulation
to represent the relationship between the p-values and the
empirical cumulative distribution function:

where p = t(p(1),...,p(m)) is the column vector of observed

p-values, ,  is the vector of

the empirical cumulative distribution function of the p-
values, A = t(a0,...,ad) is the column vector of the polyno-

mial's coefficients, d is the degree of the polynomial, and
E, the error term, is a random vector for which the expec-
tation is 0.

The estimator of the polynomial regression coeffcients'
vector A can be obtained by solving the following least-
square minimization problem with constraints:

where

We impose the constraints CA ≥ 0 on our minimization

problem due to the convexity and monotony of ϕ, which

can be written: ∀i ∈ {1,...,m},

 and

. Quadratic pro-

gramming is used to calculate the solution ([29]). Finally,

an estimate of 1/f(p) = ϕ'(p) is deduced from the estimated
regression coefficients.

π0 estimation
Classical approaches attempted to estimate π0 from f(1),
which is the lowest upper bound of π0 based on the mix-
ture model (4). Indeed, if no assumption is made for f1, π0
is not identifiable and f(1) is the lowest upper bound
based on the equation (4). Here, we propose using the
same model to estimate π0 that is used to estimate 1/f.
Therefore, we consider the reciprocal of the function ϕ.
However, due to higher bias and variance at the bounda-
ries of the domain, estimating π0 from a value close (but
not equal) to 1 is more appropriate. In order to obtain a
less sensitive estimator with respect to ϕ', it is reasonable
to estimate π0 at the point where ϕ" is at its minimum:

In practice, we propose setting a = 0.5. Note that the esti-
mation of π0 is not sensitive to the choice of a and other
values can be considered.
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Graph of the null cumulative distribution versus the marginal cumulative distributionFigure 5
Graph of the null cumulative distribution versus the marginal 
cumulative distribution.
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