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In complex spatial models, as used to predict the climate response
to greenhouse gas emissions, parameter variation within plausible
bounds has major effects on model behavior of interest. Here, we
present an unprecedentedly large ensemble of >57,000 climate
model runs in which 10 parameters, initial conditions, hardware,
and software used to run the model all have been varied. We relate
information about the model runs to large-scale model behavior
(equilibrium sensitivity of global mean temperature to a doubling
of carbon dioxide). We demonstrate that effects of parameter,
hardware, and software variation are detectable, complex, and
interacting. However, we find most of the effects of parameter
variation are caused by a small subset of parameters. Notably, the
entrainment coefficient in clouds is associated with 30% of the
variation seen in climate sensitivity, although both low and high
values can give high climate sensitivity. We demonstrate that the
effect of hardware and software is small relative to the effect of
parameter variation and, over the wide range of systems tested,
may be treated as equivalent to that caused by changes in initial
conditions. We discuss the significance of these results in relation
to the design and interpretation of climate modeling experiments
and large-scale modeling more generally.

classification and regression trees � climate change � distributed
computing � general circulation models � sensitivity analysis

S imulation with complex mechanistic spatial models is central to
science from the level of molecules (1) via biological systems (2,

3) to global climate (4). The objective typically is a mechanistically
based prediction of system-level behavior. However, both through
incomplete knowledge of the system simulated and the approxi-
mations required to make such models tractable, the ‘‘true’’ or
‘‘optimal’’ values of some model parameters necessarily will be
uncertain. A limiting factor in such simulations is the availability of
computational resources. Thus, combinations of plausible param-
eter values rarely are tested, leaving the dependence of conclusions
on the particular parameters chosen unknown.

Observations of the modeled system are vital for model verifi-
cation and analysis, e.g., turning model output into probabilistic
predictions of real-world system behavior (5–7). However, typically,
few observations are available relative to the complexity of the
model. There also may be little true replicate data available. For
instance, there can be only one observational time series for global
climate. Thus, if the same observations are used to fit parameter
values, there is a severe risk of overfitting, gaining limited verisi-
militude at the cost of the mechanistic insight and predictive ability
for which the model originally was designed.

To avoid fitting problems, parameter estimates must be refined
directly. In some biological systems, direct and simultaneous mea-
surement of large numbers of system parameters (e.g., protein
binding or catalytic constants) soon may be possible. In other
systems such as climate models, this approach is not an option.

Thus, it is vital to focus efforts in parameter refinement. Deciding
how to do this refinement presents challenges: (i) to determine
whether there is dependence of model behavior of interest on
parameter variation within plausible bounds, (ii) to determine
whether dependence applies to all uncertain parameters or only a
more tractable subset, and (iii) to quantify the nature of parameter
dependence. Because parameters interact in complex and unknown
ways, meeting these challenges entails considering a very large
parameter space.

In this article we address all three challenges for a state-of-the-art
general circulation model (GCM) of global climate. Without fitting
to observations, we analyze an ensemble of over 57,000 model runs
in which 10 parameters and initial conditions were systematically
varied. Although large studies traditionally have been carried out on
supercomputers, it currently only is possible to perform this many
simulations via a distributed computing approach. Before this
project, the largest published comparable ensemble was of 53 model
runs (8, 9). We have achieved such a large data set via the
climateprediction.net project (www.climateprediction.net) by using
idle processing capacity on personal computers volunteered by
members of the public. This approach entails variation in hardware
and software used to run the model, and serious concerns have been
raised that results might depend only on this variation. Processes of
rounding that vary between systems and lead to small differences
in simple calculations are a well known issue highlighted in projects
working with a similar distributed computing architecture (10).
Given the enormous numbers of such calculations in a GCM, such
miniscule effects of hardware/software may multiply to influence
overall model behavior. Because the GCM is highly nonlinear, even
small quantitative differences in model behavior of this sort in
principle could produce qualitatively different results. We address
this issue directly, treating hardware/software variation equivalently
to parameter variation.

Considering plausible values of six parameters and a smaller
number of model runs, Stainforth et al. (4) demonstrated that,
although accepted predictions of 2–5 K global warming in response
to a doubling in carbon dioxide (11) indeed were representative of
model results, equally plausible parameter values gave global
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warming of �8 K. In that study, the clustering of the climate change
predicted by many model versions with perturbed parameters
around the prediction from the unperturbed model hinted that
influence on the results may be distributed unevenly among un-
certain parameters. It thus is crucial to quantify the relative
importance and interactions of different uncertain parameters in
determining model behavior. Using a classification and regression
tree approach, we demonstrate that 80% of variation in climate
sensitivity to a doubling of carbon dioxide (CS) is associated with
variation in a small subset of parameters mostly concerned with
cloud dynamics. Initial conditions, hardware, and software all have
small but identifiable effects on model behavior. However, the
nature of hardware/software effects is very similar to that of initial
conditions effects.

Results
Associations with CS. The data set comprised 57,067 climate model
runs. These runs sample parameter space for 10 parameters [Table
1 and supporting information (SI) Table 2] with between two and
four levels of each, covering 12,487 parameter combinations (24%
of possible combinations) and a range of initial conditions. A total
of 43,692 runs (77%) were allocated an equilibrium sensitivity of
global mean temperature to a doubling of CO2 CS (see Methods).
Among the 13,375 failures, 295 had incomplete data; 1,897 failed to
fit a temperature change curve; 11,441 did have fits, but they did not
meet arbitrary criteria for acceptable error; and 530 failed to
progress far enough toward equilibrium in the modeled timescale.
Representative time series and fitted curves are shown in Fig. 1.

To determine relative contributions of explanatory variables
(Table 1), we fit a regression tree for CS (Fig. 2). This is a recursive
splitting technique in which the runs are split according to the value
of one of the explanatory variables so as to make the variation about
the means for the subsets of the data formed by the split as small
as possible, e.g., the standard deviation of CS for all runs is 1.7 K,
which is 45% of the mean CS [3.7 K, i.e., the runs have a coefficient
of variation (standard deviation as a percentage of the mean) (CV)
of 45%]. The first split in the tree divides runs into subsets with high
and low values of the entrainment coefficient, entcoef, respectively.
The resulting subsets each have smaller CVs, 30% and 43%. These

subsets then can be split again based on any explanatory variable
with multiple levels in the subset. These figures compare with an
average CV for unforced runs (i.e., runs with the same parameter
set but varying initial conditions) of 8.9%. An optimal tree (SI Table
3) contained 201 such splits based on parameter values and
hardware and software explanatory variables. This tree explained a
large majority of the variation in CS, 80% by cross-validation (see
SI Fig. 7). Fig. 2 shows a subset of this optimal tree that is enough
to explain most of the observed variation. A plot of CS observed in
the runs against that predicted by the optimal tree is shown in Fig. 3.

Summing over the optimal tree for each explanatory variable, the
proportion of variation explained is shown in Fig. 4. Three-quarters
of the total variation is explicable by just five variables, all of them
parameters to the original model. There is a measurable effect on
CS of hardware (processor, RAM size, and clock speed) and
software (client middleware system). These effects, however, are all
�1% of total variation and mostly �1% of the variation attribut-
able to the more influential parameters. For example, the first split,
described above, affects all of the runs and explains 29% of the
variation, whereas the most explanatory split based on RAM size
explains only 0.09% of the variation and divides only a small subset
of runs with a CV of 61% into smaller subsets with modestly
reduced CVs of 61% and 52%.

Reasons for Failure to Fit CS. Nearly 1/4 of runs failed to give results
from which an unambiguous CS could be calculated. Therefore, we
asked whether this failure was associated with particular parameter

Table 1. The explanatory variables used in this study

Explanatory
variable Meaning

entcoef Entrainment coefficient
ct Accretion constant
rhcrit Critical relative humidity
vf1 Ice fall speed through clouds
eacf Empirically adjusted cloud fraction
cw Threshold for precipitation
dtice Temperature range of ice albedo variation
ice Nonspherical ice
midware Client middleware
ice_size Ice particle size
alpham Albedo at melting point of ice
processor_name CPU classification
clock_classic Processor clock speed recorded under classic

middleware
ram_size Hardware RAM
clock_boinc_i Integer processor clock speed recorded under

BOINC middleware
clock_boinc_f Floating point processor clock speed recorded

under BOINC middleware
os_name Operating system
dtheta Perturbations to initial conditions on a given level

Further details are in SI Table 2.

Fig. 1. Time series of temperature differences between control and doubled
CO2 phases for selected runs. Points are model outputs, and smooth lines are
fitted curves. The runs shown illustrate the range of observed CS: �, CS � 3.2
K (median); �, CS � 1.7 K (2.5% quantile); and �, CS � 9.5 K (97.5% quantile).
Also shown is a run (E) not qualitatively different from the others, for which
no curve could be fit.

Fig. 2. Regression tree for equilibrium CS as a function of parameter,
hardware, and software variation. The tree is read from top to bottom,
starting with all model runs. At each split in the tree, the model runs are
divided into two groups based on the statement given (either an inequality,
for continuous variables, or an equality, for discrete variables). If the state-
ment is true for any given model run, it passes to the left, if false, it passes to
the right. The average CS for the subset of the model runs reaching that point
is given below the split or tip. This tree is a subset of the optimal tree (fully
defined in SI Table 3) and explains 64% of the variation in CS, whereas the
optimal tree explains 80%. Hardware/software explanatory variables were
included in the creation of this tree and do appear in the optimal tree.
However, this subset only contains splits based on model parameters.
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values behaving in unexpected ways or particular hardware/
software giving spurious results. We used a similar tree-based
approach fitting success or failure to the same explanatory variables
as before (Table 1).

Unsurprisingly, the proportion of variation in fitting failure that
can be explained is much less than the proportion of variation
explicable for CS itself. Nonetheless, 33% of total variation in the
data can be explained by an optimal tree (SI Fig. 8 and SI Table 4).
Although RAM size and the processor used to run the model do have an effect on failure to produce a fit, the most important factors,

as for CS itself, are model parameters (Fig. 4).
Because there is a systematic element that depends on the

parameter set in our failure to fit a CS, there also may be systematic
loss of particular values of sensitivity. To test for systematic loss of
particular CS values, we considered an alternative estimate of CS,
the average temperature difference between control and doubled
CO2 phases for the last 8 of the 15 years considered. This measure
seriously underestimates high CS, as compared with nonlinear
fitting, but is a reasonable approximation at low values (SI Fig. 9).
We compared the frequency distribution of this measure for those
runs where we obtained a CS by nonlinear fitting with those where
we did not (Fig. 5). The distributions are very similar in shape for
sensitivities of �2.5 K and above with only a slight overrepresen-
tation of high sensitivities in those not fitted. However, there is a tail
of sensitivities �1 K that is missed almost entirely by the fitting
procedure. Overall, 985 runs (1.7%) show such a low sensitivity by
the difference measure, but only 6 of these (0.6%) have fitted CS
(compare with the fact that 78% have fits in the rest of the data set).
One example of a time series where no curve could be fit, but
showing a 1-K sensitivity by the alternative measure, is shown in Fig.
1. These ‘‘missing’’ low-sensitivity runs show a larger than expected
proportion (87% rather than 11%, P � 10�15, �2 test) of strong CO2

phase cooling in the Eastern tropical Pacific characteristic of a
known artifactual effect of mixed layer oceans (4). These missing
runs also drift more than expected in the control phase (85% rather
than 46%, P � 10�15, �2 test), which also may indicate unphysical
behavior. Almost all low-sensitivity runs that are missed by the
fitting procedure (93.5% of them) have at least one of these issues,
either drift or Eastern tropical Pacific cooling.

Role of Hardware and Software. A subset of the runs analyzed above
contained identical parameters and initial conditions. The number
of combinations of parameters and initial conditions that had at
least two and up to six runs giving a CS was 4,762 . Although many
such ‘‘duplicate’’ sets (1,062 of them) gave identical results, most did
not. For each parameter combination, we calculated the CV of the
CS. We then fit a regression tree for this quantity in a similar way
to earlier trees. An optimal tree (Fig. 6 and SI Table 5) explained

Fig. 5. Frequency distributions for CS as calculated by taking the difference
of average global mean temperature for the latter half of the control and
doubled CO2 phases. (A) For the 43,677 model runs where a fitted CS as used
for all other analyses was obtained. The relationship of these sensitivities to
the fitted sensitivities is shown in SI Fig. 9. (B) For the 13,313 model runs where
an adequate fitted sensitivity could not be obtained (26 outliers in B fall
outside the range graphed).

Fig. 3. Observed climate sensitivities for all 43,710 model runs where it was
calculable plotted against those predicted by the optimal regression tree on the
basis of their parameter, hardware, and software values (Fig. 2 and SI Table 3).

Fig. 4. Influence of variables in the trees. Each bar measures the percentage
of the total variation explained by all splits based on that variable in one of the
optimal trees. For each variable, there are four bars: 1, black, tree of the
magnitude of CS (Fig. 2); 2, dark gray, tree of failure to fit an adequate CS (SI
Fig. 8); 3, light gray, tree of variation attributable to hardware/software
among otherwise identical runs (Fig. 6); and 4, white, tree of variation among
runs with identical parameters but different initial conditions (SI Fig. 10).
Residual variation (unexplained by any of the parameters) is not shown but,
estimated by cross-validation, is 18%, 67%, 73%, and 66%, respectively. Only
parameters with at least 0.1% influence in at least one tree are shown.
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24% of variation by cross-validation; the relative effects of the
explanatory variables are shown in Fig. 4.

The only hardware/software feature included in the duplicate
divergence tree (Fig. 6) is client middleware, the software used to
implement the model on different computer systems. Low levels of
duplicate divergence are associated with ‘‘classic’’ middleware (the
in-house software initially used) and high levels with a mix of
middlewares or BOINC middleware [developed for the
SETI@home project (12) and subsequently used]. The five other
explanatory variables in the tree are model parameters, precisely
the same as the top five explanatory variables in the tree for failure
to fit a sensitivity (Fig. 4 and SI Fig. 8).

We have characterized CS variation caused by differing hard-
ware/software, but it remains unclear how it should be accounted
for when analyzing model output. A simple solution would be to
treat variation introduced by different hardware/software as equiv-
alent to variation caused by different initial conditions. This ap-
proach would be valid only if the variation in CS from these sources
is indistinguishable. The hypothesis that hardware/software affects
CS indistinguishably from different initial conditions generates
expectations:

1. Deliberate sampling of initial conditions should cover CS re-
sponses better than incidental variation attributable to hard-
ware/software. Thus, CS variation caused by different initial
conditions should be an upper bound on variation attributable
to hardware/software for any particular parameter set.

2. Variation in CS from the two sources, hardware/software dif-
ferences and initial conditions differences, should behave
similarly.

Testing these expectations requires comparison of CS variation
analyses for the two sources: hardware/software versus initial
conditions. We already have an analysis of CS variation attributable
to hardware/software (Fig. 6). Therefore, an equivalent analysis of
CS variation attributable to initial conditions is required. We took
the 8,196 parameter sets with at least two sets of initial conditions
and calculated CS variation (CV) for each. We then fitted a
regression tree in the same way as for Fig. 6 above. The optimal tree
(SI Fig. 10 and SI Table 6) explains 32% of the total variation by
cross-validation. To test the expectations, we compared predictions
of this initial conditions tree to those of the hardware/software tree
(Fig. 6) for the 4,709 models used to build both trees. Both trees are
capable of predicting variation over a wide range, from CV � 5%
to CV � 40%. Expectation 1 predicts that CS variation in the initial
conditions tree will be an upper bound for CS variation in the
hardware/software tree. In 92% of models, the predicted CV is
higher across initial conditions than across hardware/software
differences, consistent with expectation 1. Expectation 2 predicts
that the two trees will be similar. The earliest splits based on

parameters are indeed similar in the two trees (on the accretion
constant, ct, higher values giving lower variation; then, for low ct, on
the entrainment coefficient, entcoef, higher values giving lower
variation). Where the two trees first diverge, splitting on different
parameters, in three of four cases the top three alternative splits
considered (competing with the chosen split) include the parameter
actually chosen by the other tree (data not shown). The overall
contribution of each parameter also is very similar between the two
trees (Fig. 4, rank correlation coefficient between parameter con-
tributions for each tree � 0.90, n � 8, P � 0.0021). Another way that
the trees might be similar is in their predictions. Predictions by the
two trees are weakly but significantly correlated (rank correlation �
0.10, n � 4,709, P � 0.0001). A more stringent similarity test asks
whether real variation not captured by the trees is associated. This
variation is found in the residuals for the tree predictions. There is
a small but highly significant positive association between the
residuals from the two trees (rank correlation � 0.11, n � 4,660,
P � 0.0001). From these tests, we conclude that both our expec-
tations are met: hardware/software introduce random differences
that are similar in nature but typically smaller than deliberate initial
condition perturbations. This finding is consistent with the hypoth-
esis that hardware and software affect CS in ways indistinguishable
from variation in initial conditions.

Discussion
Modeled sensitivity of equilibrium global mean temperature to a
doubling of carbon dioxide (CS) shows strong dependence on
model parameters whose values are uncertain (4). We demonstrate
that of 10 parameters chosen for their relevance to this issue, the
relative dependence of CS on them is highly uneven. Over half of
the variation associates with just three parameters (Fig. 4). We
cannot say how relevant constraining these parameters would be to
other model behaviors of interest. However, for questions directly
related to CS, notably prediction of CO2-mediated anthropogenic
climate change at a global level, these results imply efforts would
best be directed not toward constraining the model by observations
in general, or even constraining realistic values of parameters in
general, but toward constraining the values of these few parameters
in particular.

Such findings greatly simplify model refinement. However, that
the range of parameters involved is simple does not mean these
parameters’ effects are simple. The most influential parameter here
is entcoef, defining the rate convective clouds mix with surrounding
air. Strong entcoef effects on CS have been observed before (9). The
first most explanatory split is into runs with high and low entcoef:
high values typically give low CS and vice versa. Consistent with this
split, the highest predicted CSs (�9 K) are all for low entcoef runs,
associated with high rhcrit and ct and low vf1 (Fig. 2 and SI Table
3), a combination indicative of reduced cloud formation. However,
the association of entcoef and CS is not true absolutely: entcoef
interacts in complex ways to give highly varied results. The assump-
tion that parameter variation effects combine linearly, as required
for extrapolation from smaller ensembles (8, 13), does not hold.
Thus, in contrast to the typical relation between CS and entcoef, the
lowest predicted sensitivities (1.6 K in Fig. 3) are for low entcoef
runs. The latter differ from other low entcoef runs in that they have
high rhcrit, low ct, and high eacf and cw values (Fig. 2 and SI Table
3), i.e., the only consistent difference between the highest and
lowest CS runs is ct, another cloud parameter. Thus, although a
better estimate of entcoef would best improve modeled predictions
of CS, we cannot define any straightforward relationship between
constrained entcoef values and the magnitude of predicted CS. For
example, if high entcoef best represents reality, this does not imply
low real-world CS. In that case, focused studies would be required
because, even in the current large ensemble, only 25 successful runs
with high entcoef have the combinations of other parameters
predicted to give CS �8 K.

Fig. 6. Regression tree for percentage CV in CS among model runs with
identical parameters and starting conditions. The tree is read from top to
bottom in the same way as Fig. 2, starting with the 4,712 parameter and
starting condition sets where a CV could be calculated. Full details are given
in SI Table 5.
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Simulation output is inevitably detailed and highly multivariate.
To make it useful requires simplification and assumptions to derive
humanly interpretable measures of interest. We have calculated CS
as a quantity of interest by using a nonlinear fitting approach. This
fitting assumes that there is an equilibrium difference in global
mean temperature to be fit, and it is approached via an arbitrarily
good approximation to an assumed form of curve. For the large
majority of runs these assumptions hold. However, we find those
runs where they do not hold are a nonrandom subset with respect
to CS. Specifically, a small tail of runs with low sensitivity cannot be
assigned a CS (Fig. 5). In these cases, e.g., as shown in Fig. 1 where
temperatures in the control and doubled carbon dioxide phases
diverge very little, the signal-to-noise ratio is high, making adequate
fits less likely (an effect that might be ameliorated by a longer run).
If there is no divergence at all or a linear divergence, one of the two
parameters in the fit is undefined, so there will be no fit (an effect
that would not be altered by longer runs). Here, by using more than
one estimate of CS, we have demonstrated the effects of our
assumptions. The ‘‘lost’’ low-sensitivity runs are not likely to affect
estimates of real-world CS, both because they tend to agree poorly
with observations (6, 7) and because we that find most display
known nonphysical effects. However, these findings highlight the
care needed in parameter scanning modeling studies such as this to
ensure important results from plausible parameter sets are not
misinterpreted or excluded simply through their failure to fit prior
assumptions.

Despite increases in supercomputing power, distributed and grid
approaches are increasingly necessary to tackle ever more complex
modeling studies. One result is a variety of hardware and even
software being used to run the model. Such differences have
systematic effects on calculations, a recognized issue (10) some-
times tackled as a subset of sabotage, that also pose risks here (14).
Here, we have quantified these effects on a model result of interest
relative to the effects of parameter variation. Sometimes the CS
predicted by the model did vary with whether the model was run on
an Intel Pentium 4 or an AMD Athlon processor. However, there
is no clear association, for example, that Intel chips give higher CS.
Similarly, RAM size has an effect, but different model versions
respond differently, in four of the six cases of splits based on RAM
size, the smaller RAM size gives the higher sensitivity, but in two
cases the reverse is true. It may be that RAM size is acting as a
surrogate for other differing aspects of hardware. We have not
covered all possible hardware and software variants, notably we
have not used a 64-bit architecture. However, in the large variety of
permutations that are covered in this data set, systematic hardware/
software effects are reassuringly small relative to the effects of
model parameters. Of the seven splits based on particular proces-
sors, at most 564 runs are affected (1.3% of the total), and together
all 7 splits only account for 0.3% of the variation, whereas even the
fifth most explanatory model parameter (eacf) gives 28 splits
affecting up to �14,000 runs (33% of the total) each and accounting
for �20 times as much variation as the processors (SI Table 4).

Important effects of hardware/software, however, may be less
systematic. We identified a single software effect as important here.
Runs with identical parameters and starting conditions average a
CV in CS of only 1.6% when run exclusively under the original
(classic) climateprediction.net client middleware. However, when
run under a mixture of middlewares, or the more widely used
BOINC client middleware (http://boinc.berkeley.edu), that average
can rise to 40% depending on parameter values. The causes of this
difference are unclear. We speculate that it may be caused by
different ‘‘controller’’ code that appeared more sensitive to small
computational errors in the classic middleware. This sensitivity
resulted in more crashes and thus failure to submit results for the
classic middleware. BOINC was more likely to let the model run to
completion despite computational problems. There also was a
change of compiler for the underlying code between the two
middlewares that could have had an effect. Whatever the cause, it

is clear client middleware is much more important than other
hardware/software and, unlike other hardware/software, can be
controlled by the experimenter.

The computing power of distributed systems offers an approach
to explore large tracts of plausible parameter space for a complex
model. Alternative and potentially complementary approaches for
climate models have focused on speeding up models by simplifica-
tions (reduced temporal or spatial resolution, dimensionality, phys-
ics, or dynamics) relative to state-of-the-art GCMs such as that used
here. For instance, FAMOUS is based on a similar model
(HadCM3) but with reduced temporal and spatial resolution so it
runs �10 times quicker. This speed made it possible to tune
parameter values by using a conventional supercomputer (13).
However, the challenge of uncertain or undefined parameters
remains great. Even in this study, we only have been able to
investigate 10 model parameters. Expert choice decided the pa-
rameters to investigate and the range of levels they should take.
With models as complex as these, such reliance on human skill may
miss parameters that affect the results through nonobvious mech-
anisms. Even for parameters we considered, the number of levels
used may be insufficient to define adequately their complex influ-
ences (e.g., the variety of high and low climate sensitivities associ-
ated with particular levels of entcoef discussed above). Both of these
observations suggest that investigating more parameters in more
detail would be desirable and perhaps necessary to tune the model
adequately. However, the vast numbers of model runs involved in
comprehensively scanning combinations of parameters would ex-
ceed the resources of any distributed computing setup or speeded
up model on a conventional system. To add to the challenge, recent
work suggests it is unreasonable to hope for a generally optimized
climate model, the model parameters need tuning to the specific
question being asked (5). Ultimately such questions undoubtedly
extend beyond the timescale of decades used here to computation-
ally extensive questions involving paleoclimate. It also will be
important to compare different models. Findings for one model
may not be transferable to another, or even to different versions of
the same model, for example, with altered resolution. If these
modeling challenges are to be met computationally, it will require
not only improvements in model speed and access to computing
power but also improved methods of exploring the complex pa-
rameter space. The latter requires a carefully designed experimen-
tal (15) and computing (16) strategy. It also may entail adaptive
techniques, adjusting the model versions run in response to results
received, which poses particular challenges in a distributed com-
puting context where it is uncertain when or whether any particular
run will be returned. Adaptive techniques include evolutionary
computation and refined combinations of approaches, including
recursive splitting of parameter space as used in this study (17).
Similar methods have been applied successfully in many fields,
including identification of optimal model versions given uncertain
parameters in computationally simpler, but nonetheless nonlinear
and complex, economic climate models (18).

In conclusion, by considering an unprecedentedly large ensemble
of climate model runs, we have a series of findings relevant not only
to the implementation, interpretation, and improvement of models
predicting climate change but also to studies using large and
complex models more generally. Our findings reinforce the fact that
variation of parameters within plausible bounds may have a sub-
stantial systematic effect on large-scale model behavior. However,
we find only a small subset of parameters to be associated with most
of the variation in a specific behavior (CS). Those associations are
complex and interacting but the small number of parameters
involved provides a focus for future model refinement. In addition,
we have identified how the very process of making model results
interpretable affects the findings. The effect of the precise hard-
ware/software implementation of the model typically was small and
indistinguishable from perturbations introduced by different initial
conditions.

Knight et al. PNAS � July 24, 2007 � vol. 104 � no. 30 � 12263

G
EO

PH
YS

IC
S

http://www.pnas.org/cgi/content/full/0608144104/DC1


Methods
Model and Distributed Computing. The climateprediction.net project
is the first multithousand member ensemble of climate simulations
using a state-of-the-art GCM. Members of the public worldwide
download an executable version of the Met Office Unified Model.
This model comprises the HadAM3 atmosphere (19) at standard
resolution (3.75° longitude by 2.5° latitude, 19 vertical levels) with
increased numerical stability, coupled to a mixed-layer ocean with
heat transport prescribed by using a heat-flux convergence field
varying with position and season but not with year.

Participants are allocated a particular set of parameter pertur-
bations and initial conditions enabling them to run one 45-year
simulation. For each simulation, the heat-flux convergence field is
calculated in the first 15 years simulated, where sea surface tem-
peratures (SSTs) are fixed. In the subsequent 30 years simulated,
the SSTs vary according to the atmosphere-ocean heat flux. In the
middle 15 years, the control phase, CO2 is held constant at
preindustrial levels (282 ppm). It is doubled for the last 15-year
period.

Data Set. The first 57,067 simulations returned to climateprediction.
net servers were considered. Each simulation was classified accord-
ing to parameter set, initial conditions, hardware, and software used
to run the model. These 18 explanatory variables are listed in Table
1 and SI Table 2.

Analysis. Simulated CS is taken as the predicted equilibrium dif-
ference between global mean temperature in the doubled CO2 and
control phases. This quantity was calculated via a self-starting
nonlinear regression fit using a Gauss–Newton algorithm, to the
difference in the annual global mean temperatures between the
doubled CO2 and control phases. The curve fit had the form �T �
S(1 � exp(�Ft/SC)) derived from an energy balance model where
�T is difference in global mean temperature, S is CS, t is time, C
is the effective heat capacity of the model, and F is the radiative
forcing caused by a doubling of CO2, taken to be 3.74 W�m�2. Fits
that failed to converge after many iterations (1,000), gave a residual
SE �0.2 K, or failed to reach half their predicted equilibrium
temperature in the period of the fit were rejected. Runs with a full
set of data were deemed to have failed only on the basis of our
failure to produce an adequate fit by these criteria, not on the bases
of either temperature drift in the control phase or the relationship
to observations, constraints that have been used in previous studies
using similar data (4, 5).

For analyses of CS variation (Fig. 6 and SI Fig. 10), we
created explanatory variables capturing variation in the hard-
ware and software for each set of duplicate runs: for contin-

uous variables (RAM size and clock measures) we used CV;
for discrete variables (processor, operating system, and
middleware) we created a discrete variable detailing whether
the duplicate runs had a particular level or a mix of levels. We
used these quantities as explanatory variables in these trees
alongside the parameters used (see SI Table 2).

To determine the association of explanatory variables with model
response, we used classification and regression trees (20). These
techniques recursively split data to minimize variation (measured as
deviance for continuous variables and entropy for categorical
variables) for the two resulting subsets of data. Splitting, in prin-
ciple, can continue as long as there are multiple observations to be
split and different levels of explanatory variables within subsets.
However, although the fit of the resulting tree to the data used to
create it will only improve by further splitting, the ability of the tree
to predict data not used to create it will not. We used a standard
approach of creating large trees (considering splits down to those
reducing the lack of fit by a factor 1 � 10�4) and then pruning them
to an optimal size. This size was determined by 100-fold cross-
validation, i.e., splitting the data randomly into 100 equally sized
subsets, with the 99th as a training set and the 100th as a test set.
From the test set results, we calculated the error in prediction
(cross-validation error) averaged over the 100 possible training and
test sets. The optimal tree was chosen as the smallest where the
cross-validation error lay within 1 SE of the minimum cross-
validation error.

To identify unphysical cooling in the tropical East Pacific (4),
surface temperature differences between the final year of the
doubled CO2 and calibration phases were taken for the 78.75 W, 2.5
N box and corrected for overall change by subtracting the figure for
48.75 W, 2.5 N in 13,983 BOINC runs. This quantity is distributed
with the principal mode at 0 K and a secondary mode around �27.5
K; values less than �15 K was deemed to show strong evidence for
this cooling.

Software. Statistical analyses used R 2.0.1 (21) and JMPIN 5.1 (22).
Within R, classification and regression trees were fitted by using the
rpart v.3.1–23 package.
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