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Abstract

In developed countries, age-related macular degeneration is a common cause of blindness in the
elderly. A common polymorphism, encoding the sequence variation Y402H in complement factor
H (CFH), has been strongly associated with disease susceptibility. Here, we examined 84
polymorphisms in and around CFH in 726 affected individuals (including 544 unrelated individuals)
and 268 unrelated controls. In this sample, 20 of these polymorphisms showed stronger association
with disease susceptibility than the Y402H variant. Further, no single polymorphism could account
for the contribution of the CFH locus to disease susceptibility. Instead, multiple polymorphisms
defined a set of four common haplotypes (of which two were associated with disease susceptibility
and two seemed to be protective) and multiple rare haplotypes (associated with increased
susceptibility in aggregate). Our results suggest that there are multiple disease susceptibility alleles
in the region and that noncoding CFH variants play a role in disease susceptibility.

Age-related macular degeneration (AMD; OMIM 603075) is a complex degenerative disorder
that primarily affects the elderly. Disease susceptibility is influenced by multiple geneticl_5
and environmental factors6-9. Recently, targeted and genome-wide searches have identified
alleles on chromosomes 1qg and 10q that are strongly associated with disease
susceptibilitylo_14. In each case, the association seems to be robust and has been replicated
in multiple samples. We previously showed that the Y402H-encoding variant of CFH is
strongly associated with AMD susceptibility in a sample of affected individuals and controls
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collected at the Kellogg Eye Center in Ann Arbor, Michigan15. Here, we examined the impact
of 84 polymorphisms in a region of 123 kb overlapping CFH on disease susceptibility.

After quality assessment of genotype data (see Methods), we tested each SNP for association
in 544 unrelated affected individuals and 268 unrelated controls (Fig. 1). As expected, we
observed strong association between disease status and the Y402H-encoding variant previously
associated with AMD in multiple studies (likelihood ratio test ¥2 = 110.05, P <10725),
Unexpectedly, 20 other variants showed even stronger association. The strongly associated
SNPs fell into two linkage disequilibrium (LD) groups (colored in purple and green in Fig. 1),
such that, within each group, pairwise r2 > 0.80, and between groups, pairwise r2 < 0.50. The
Y402H-encoding variant was included in one of the LD groups (the purple group in Fig. 1).
The three SNPs showing strongest association are a synonymous SNP in exon 10, rs2274700
(LRT %2 = 135.42, P < 10739) and two intronic SNPs, rs1410996 (LRT y2 = 132.70, P <
10729) and rs7535263 (LRT;i =130.43, P < 10729). We observed similar results using a
family-based association test 6,17 that incorporated all 726 affected individuals genotyped.

Table 1 summarizes results of family-based and case-control single-SNP association tests for
rs1061170 (the Y402H coding polymorphism) and the 20 SNPs that showed even more
significant association in our sample. Table 1 also includes four SNPs that showed weaker
marginal association but that were included in our haplotype model detailed below.
Supplementary Tables 1, 2 and 3 online provide genotype counts and detailed results for all
84 SNPs (including 2 d.f. association test results). The estimated sibling recurrence risk ratio
(Asip) (ref. 18) for rs1061170 is smaller than in our earlier analysisl5, which had not accounted
for the increased contrast between affected individuals and controls as a result of the selection
of families with multiple affected individuals. In the present analysis, we modeled phenotypes
for all affected individuals within each family simultaneously16’17, and we expect our
estimates of A, penetrances and allele frequencies to be more accurate. To help interpret the
Asip estimates associated with each polymorphism, we also used previously genotyped
microsatellite markers to calculate a MOD score (LOD score maximized over mode of
inheritancelg) at the location of the CFH locus. The estimated MOD score was 1.76 (3 d.f.,
P =0.04) with an estimated disease allele frequency of 0.230 and penetrances of 0.044, 0.340
and 1.00 for low-risk allele homozygotes, heterozygotes and high-risk allele homozygotes,
respectively. Notably, this disease model gave Ajp = 1.67, but the largest Asj, accounted for by
asingle SNP was only 1.25 (for marker rs7535263; see last column of Table 1). The haplotype
method20 also suggested the presence of multiple disease susceptibility alleles in the region,
because haplotypes grouped according to either the allele encoding Y402H or the allele at
rs2274700 (the marker showing strongest association) differed substantially between affected
individuals and controls (Supplementary Fig. 1 online).

To further dissect the association between these polymorphisms and susceptibility to AMD,
we examined whether a model with two or more SNPs resulted in significantly stronger
association. To do this, we used a likelihood ratio test (LRT) to compare haplotype frequencies
between affected individuals and controls. We started with the SNP showing the strongest
association with disease and then iteratively expanded the model one SNP at a time. At each
iteration, we selected the SNP that resulted in the largest increase in the LRT statistic. The SNP
that showed the strongest LRT association with disease was rs2274700 (LRT x< = 135.42,
Table 1). When evaluating all pairs of SNPs including rs2274700 and one other SNP, we
observed very strong association for haplotypes defined by pairing rs2274700 and rs1280514
(LRT %2 = 188.69). To evaluate the statistical significance of this finding, we permuted case
and control labels among individuals with the same genotype (C/C, C/T, T/T or missing) for
marker rs2274700. This permutation preserves the LD pattern in the original sample as well
as the association between rs2274700 and disease. For each permutation, we selected the SNP
pairing that produced the strongest association and recorded the increase in the LRT statistic.
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In 10,000 permutations of the data, we saw an average increase of 1.76 in the LRT 2 statistic
and never observed an increase in the LRT y2 > 53.27, corresponding to the pairing of
rs2274700 and rs1280514 in the original data.

We proceeded to refine our haplotype model in a similar manner. At each stage, we selected
the SNP producing the largest increase in the LRT 2 statistic and evaluated empirical
significance by permuting case and control labels among individuals with the same genotype
at previously selected markers. Table 2 shows that 4-5 SNPs are required to describe
association between the CFH locus and AMD susceptibility.

Table 3 provides details of haplotypes defined by the five selected SNPs and their frequencies
in affected individuals and controls. We estimated haplotype effects using logistic regression
to model individual affection status as a function of the expected dosage of each
haplotypezl. We identified two common disease susceptibility haplotypes, two common
protective haplotypes and a set of rare haplotypes, which in the aggregate seem to be associated
with increased disease susceptibility. The C allele of Y402H was present in ~94% of
chromosomes that carry the most common risk haplotype and was absent from the common
protective haplotypes. However, the allele was also absent from chromosomes carrying the
second common risk haplotype (Table 3). On its own, neither Y402H nor any of the other 83
variants we examined could distinguish the common risk haplotypes from the common
protective haplotypes. In addition, we did not identify any combination of alleles at two or
more SNPs that was shared between the two common risk haplotypes but absent from the
protective haplotypes (or vice versa). Thus, our results suggest that there might be multiple
susceptibility alleles in the region. If there is a single (still to be identified) causal allele, it
would most likely have to appear on multiple different haplotype backgrounds.

Inspection of genotype frequencies in affected individuals and controls suggests that
individuals carrying zero, one or two risk haplotypes are at progressively increased risk of
developing disease. Table 4 presents the estimated probability of disease for each possible
haplo-genotype combination, estimated using maximum likelihood and assuming disease
prevalence of 20% and a multiplicative model for disease risk. Note that the estimated
probabilities of developing disease for each genotype configuration will depend on the overall
disease prevalence, which varies with age.

Notably, when we recoded imputed haplotypes into a biallelic system (with a high-risk allele
and a low risk allele), we found no evidence for additional linked variants16:17 (LOD<0.01).
Further, using the haplotype method20, we found that haplotypes classified using the five
selected markers were similar in affected individuals and controls (Supplementary Fig. 1).
These two results suggest that, if susceptibility alleles are not included in the set of genotyped
variants, they will either be in very strong LD with the selected SNPs or have relatively small
effects.

One concern is that our model selection procedure might affect the resulting set of risk and
protective haplotypes and, ultimately, our conclusions. Thus, we repeated our analysis using
each of the ten SNPs showing the strongest evidence for association as the starting point for
stepwise analysis. Depending on the choice of starting SNP, this resulted in a model with four
or five SNPs (Supplementary Table 4 online). In each case, the selected SNPs were in strong
LD with the originally selected SNPs. We also used an exhaustive search procedure to examine
all possible combinations of up to five SNPs (Supplementary Table 5 online). The best four-
SNP combination identified was the same as in the original stepwise analysis, and the best
five-SNP combination differed by only one SNP (rs11582939 was replaced with rs2336221;
r between the two is >0.99). Given substantial LD in the region, it is not surprising that
different subsets of markers can be used to distinguish risk and non-risk haplotypes.

Nat Genet. Author manuscript; available in PMC 2007 August 8.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal.

Page 4

Nevertheless, in each of our alternative analyses, the selected SNPs defined two common risk
haplotypes, two common protective haplotypes and a series of rare haplotypes that were, in
the aggregate, associated with disease.

Another concern is that vagaries of missing data patterns could strengthen or weaken the
evidence of association for individual SNPs or haplotypes. To address this, we used
PHASEZ22:23 to impute missing genotypes. We initially masked 3,372 (5%) of the available
genotypes to check our ability to infer the genotypes correctly. We found only 33 mismatches
between the original masked genotypes and inferred genotypes. Given the high quality of the
inferred genotypes, we generated (i) a complete dataset by imputing the most likely genotype
at each position using PHASE and (ii) ten additional datasets by sampling a plausible haplotype
configuration for each individual, according to the posterior haplotype distribution estimated
by PHASE. We then repeated single-marker and haplotype analyses in each ‘completed’
dataset and used stepwise logistic regression to identify a set of associated SNPs in the best
imputed dataset. In each case, the results were consistent with our initial analyses: multiple
SNPs showed substantially stronger association than did Y402H, and the markers selected in
haplotype analyses defined two common susceptibility haplotypes, two common protective
haplotypes and multiple rare haplotypes associated with disease susceptibility in the aggregate
(Supplementary Table 4).

Taken together, our results show that (i) multiple variants show stronger association with AMD
than the Y402H polymorphism, (ii) variants showing the strongest association appear to effect
no change in the CFH protein, (iii) multiple haplotypes in the region seem to modulate risk of
AMD and (iv) there are likely to be multiple disease-predisposing variants in the region.

One intriguing hypothesis is that the associated variants (or haplotypes) modulate risk of AMD
not because they disrupt CFH protein function, but because they are important for regulating
the expression of CFH, of other nearby complement genes or both (the region includes
numerous CFH-like genes with similar sequences whose presence may account, in part, for
the many SNPs in public databases for which we could not execute successful genotyping
assays; see Methods). Using genotypes for the HapMap panel of individuals24 and gene
expression data for 37 lymphoblastoid cell lines2®, we evaluated the effect of the 84 SNPs
examined here on the expression of transcripts in the CFH cluster in leukocytes. After
Bonferroni adjustment for multiple testing, we found no evidence for association (P < 0.05).
Thorough evaluation of the effects of these SNPs on gene expression would require a large
sample and a more appropriate choice of tissue (for example, retina).

Our results show that dissection of complex disease susceptibility loci will be a challenging
process and that identification of strongly associated alleles, even when they are protein coding,
should not preclude further detailed genetic analysis. Here, we identified strong evidence for
additional susceptibility alleles at the CFH locus, and our results suggest that, even if the
Y402H variant plays a causal role in the etiology of AMD, it is unlikely to be the only major
determinant of disease susceptibility in the region. It is even possible that Y402H is simply in
LD with nearby alleles that show even stronger association. The strong LD in the region means
that statistical methods will have limited resolution to distinguish between alternative sets of
strongly associated SNPs. We propose that detailed sequence comparisons of the region
encompassing CFH in affected and unaffected individuals, examination of individuals from
populations that show less extensive LD and dissection of gene expression patterns in
individuals carrying different CFH haplotypes will clarify the role of the CFH locus in
susceptibility to AMD.
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Families with AMD were primarily ascertained and recruited from the clinical practice at the
Kellogg Eye Center, University of Michigan Hospitals. The patient population used for
genotyping in this study is white and primarily of Western European ancestry, reflecting the
genetic constitution of the Great Lakes region. Ophthalmic records for current and previous
eye examinations, fundus photographs and fluorescein angiograms were obtained for all
probands and family members. All records and ophthalmic documentation were scored for the
presence of AMD clinical findings in each eye and were updated every 1-2 years. The
recruitment and research protocols were reviewed and approved by the University of Michigan
institutional review board, and informed consent was obtained from all study participants.
Fundus findings in each eye were classified on the basis of a standardized set of diagnostic
criteria established by the International Age-Related Maculopathy Epidemiological Study26.
For the genetic studies reported here, macular findings were scored in each individual by use
of a broad description of AMD. In total, our sample of 726 affected individuals includes 235
affected relative pairs in 93 families (153 sibling pairs, 4 half-sibling pairs, 45 cousin pairs, 4
parent-child pairs and 29 avuncular pairs). Focusing on a subset of the sample that included
only unrelated individuals resulted in 544 affected individuals and 268 unrelated controls.

Genotyping and quality assessment

We attempted to design genotyping assays for all 244 SNPs in the region (dbSNP 124, February
2005). Primers were successfully designed for 193 of these SNPs and genotyping was carried
out on the Sequenom platform by the Broad Institute/National Center for Research Resources
Genotyping Center (Cambridge, Massachusetts). To facilitate quality assessment, we also
genotyped the 90 CEU samples that are part of the HapMap24. Coding SNPs where the initial
genotyping assay failed were attempted through sequencing at the University of Michigan
DNA Sequencing Core. Among the 193 SNPs for which assays were attempted, a total of 84
SNPs passed Hardy-Weinberg equilibrium (HWE) tests2/ (P> 0.001), had >75% of genotypes
completed and showed a minor allele frequency of >0.05. The 84 successfully assayed SNPs
had average minor allele frequencies (MAF) of 0.281 and genotyping completeness rates of
93.17%. The remaining SNPs were excluded from further consideration because they were
rare (46 SNPs had MAF <0.05) or monomorphic (25 SNPs), had low genotyping success rates
(23 SNPs) or failed HWE (15 SNPs). We excluded the 23 SNPs with low completeness rates
because missingness patterns suggested a high proportion of missing heterozygotes, consistent
with limitations of the assay platform. For 42 SNPs, we compared our genotype calls with
those downloaded from the HapMap website and observed 15 discrepancies among 3,317
overlapping genotypes (genotyping error rate of ~0.22%).

Single-SNP association tests comparing unrelated affected individuals and controls

Allele frequencies in affected individuals and controls were compared using a standard
likelihood ratio test statistic. Briefly, if the Ojj denotes the observed counts for allele i (i = 1
or 2) in group j (j = affected individuals or controls), and E;; denotes the expected counts under
the null hypothesis of no association, then the test statistic was defined as
O..
E—” Significance was evaluated against a reference 2 distribution with 1
i
degree of freedom. When we carried out a 2 d.f. association test (Supplementary Table 2),
rankings for individual SNPs changed slightly but the top 10 SNPs remained the same in both
the 1 d.f. and 2 d.f. analyses. When we compared the 1 d.f. and 2 d.f. models using logistic
regression, we saw no significant improvement in model fit from the 2 d.f. models and thus
the analysis presented in this manuscript focus on the 1 d.f. tests.

2 _
X —ZZI-jOI-j In
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Single-SNP association tests incorporating related affected individuals and unrelated

controls

To incorporate all available genotype data in our test of association and to estimate genetic
model parameters, we fitted parametric models of association using the LAM p16,17 program.
Briefly, the program estimates a disease allele frequency, a SNP allele frequency and three
penetrances (constrained so that the disease prevalence = 20%) using all available data. Each
SNP was analyzed together with two flanking microsatellite markers (GATA135F02 and
GATA48B01, genotyped as part of our genome-wide linkage scan2) and independently of all
other SNPs. Under the null hypothesis (linkage but no association), the SNP and disease alleles
are assumed to be in linkage equilibrium (this corresponds to calculating a MOD scorelg).
Under the alternative hypothesis, LD between the SNP and unobserved disease alleles is
estimated using maximum likelihood and results in a one-parameter test (because three disease-
SNP haplotype frequencies are estimated under the alternative but only two allele frequencies
are estimated under the null). The fitted model allows for ascertainment. Our analyses assumed
a fixed disease prevalence of 20%; different estimates would change parameter estimates, but
do not seem to affect the overall ranking of SNPs (Supplementary Fig. 2).

Identification of strongly associated haplotypes

We used a stepwise procedure to identify the most strongly associated haplotypes. For each
marker combination, we estimated haplotype frequencies in affected individuals, in controls
and in the combined sample using maximum likelihood as implemented in FUGUE-CC28,
The three-frequency estimates were used to calculate the likelihood of observed case genotypes
(Lcases), of observed control genotypes (Lcontrols) @and of the combined set of genotypes
(Lcombined)- A likelihood ratio statistic T =In (Lcaseslcontrols) — IN(Lcombined) Was used evaluate
differences between cases and controls and its significance was evaluated by permuting case
and control labels. At each stage, the marker producing the greatest increase in the test statistic
T was added to the model. As described in the text, we evaluated significance of the
improvement in model fit produced by adding the Nt marker by focusing on permutations that
did not alter genotypes for the previously selected N — 1 markers. This assessment of
significance includes a built-in multiplicity adjustment, because at each stage we compare the
maximum observed test statistic from the original data with the maximum statistics from the
permuted datasets. The procedure is slightly conservative (that is, it slightly favors less complex
models that include fewer SNPs), because the permutations become more and more constrained
as additional SNPs are added into the model. However, given our large dataset and the presence
of many common haplotypes, this concern is minor: even after selecting five SNPs, >10105
distinct permutations of the data are possible. We opted to use the permutation procedure
described in the text because it (i) naturally accommodates missing data (with 84 SNPs, many
individuals have at least one missing genotype), (ii) preserves patterns of LD in the original
data, (iii) allowed us to condition out the effects of SNPs previously selected into the model
and (iv) achieves a balance between a model that is too simple (for example, including only
marginal effects) and one that is too complex (accounting for all genotype combinations).
Individual haplotype effects were estimated using an approach analogous to one proposed
previously by others?L, but using logistic regression rather than linear regression to
accommodate a discrete outcome.

Stepwise logistic regression

We carried out a stepwise-logistic regression using SAS version 9 (Cary, North Carolina).
Genotypes at each marker were coded as 0, 1 or 2, corresponding to a 1-d.f. test. Owing to
strong LD in the region, when building the logistic regression model, we did not use the Wald
test, which is known to be unstable in the presence of collinearity. Rather, we compared the
log likelihoods of the nested models using a likelihood ratio test. Similar to the stepwise
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haplotype analysis, at each stage, the marker producing the greatest increase in the LRT was
added to the model (provided that adding the marker significantly improved the model, P <
0.05).

Electronic database information

LAMP software for estimating MOD scores and fitting parametric association models in
samples including unrelated individuals and/or family data is available online at http://
www.sph.umich.edu/csg/abecasis/LAMP/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

P values for single-SNP association, when comparing unrelated affected individuals (cases)

and controls. The dotted horizontal line is —logyo(P) of the original Y402H variant

(circled in

blue). Strongly associated SNPs fall into one of two LD groups (SNPs in one of these groups
are colored in green; SNPs in the other group are colored in purple; SNPs outside either group
are in black). SNPs selected from the stepwise haplotype association analysis are circled in

red. Linkage disequilibrium across the CFH region29 is shown below, plotted as pairwise r2

values.
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Table 2
Results of stepwise haplotype association analysis
SNPs ALRT P

1s2274700 135.42 <0.0001
1s2274700 rs1280514 53.27 <0.0001
rs2274700 rs1280514 5412852 30.66 <0.0001
1s2274700 rs1280514 rs412852 rs11582939 96.81 <0.0001
1s2274700 rs1280514 rs412852 rs11582939 rs1048663 19.22 0.0104

Empirical P value was adjusted for multiple testing and was assessed using 10,000 permutations. A permutated sample was obtained by permuting disease
affection status among affected individuals and controls while preserving evidence for association among SNPs selected in the previous step. Specifically,
at each step, we grouped individuals according to genotype patterns at previously selected SNPs, and then permuted the disease affection status within
each group of individuals with the same genotype pattern. Haplotype association was evaluated using a likelihood ratio test to compare haplotype

frequencies between cases and controls. The likelihood ratio statistic was calculated with FUGUE-CC28, ALRT, difference in the likelihood ratio statistic

between the current step and the previous step.
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Table 4

Estimated probability of disease for each possible haplo-genotype combination

Page 13

Haplotype hl h2 h3 h4 h5-h8

h1 0.4475 (0.0183) 0.1100 (0.0077) 0.3778 (0.0339) 0.0697 (0.0189) 0.5887 (0.0151)
h2 0.0271 (0.0048) 0.0929 (0.0102) 0.0171 (0.0053) 0.1448 (0.0132)
h3 0.3190 (0.0586) 0.0588 (0.0142) 0.4970 (0.0507)
h4 0.0109 (0.0064) 0.0917 (0.0268)
h5-h8 0.7745 (0.0261)

Probabilities estimated using maximum likelihood and assuming a multiplicative model for disease risk. s.d. for each estimate (in parenthesis) estimated

using the jackknife procedure. Population prevalence was fixed at 20%. h1-h8 represent the eight haplotypes listed in Table 3.
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