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Summary

Multiple sclerosis (MS) is a demyelinating disease characterized by an unpre-
dictable clinical course with intermittent relapses that lead over time to sig-
nificant neurological disability. Clinical and radiological variables are limited
in the ability to predict disease course. Peripheral blood genome scale analy-
ses were used to characterize MS patients with different disease types, but not
for prediction of outcome. Using complementary-DNA microarrays we
studied peripheral-blood gene expression patterns in 53 relapsing–remitting
MS patients. Patients were classified into good, intermediate and poor clinical
outcome established after 2-year follow-up. A training set of 26 samples was
used to identify clinical outcome differentiating gene-expression signature.
Supervised learning and feature selection algorithms were applied to identify
a predictive signature that was validated in an independent group of 27
patients. Key genes within the predictive signature were confirmed by quan-
titative reverse transcription–polymerase chain reaction in an additional 10
patients. The analysis identified 431 differentiating genes between patients
with good and poor clinical outcome (change in neurological disability by the
expanded disability status scale was -0·33 � 0·24 and 1·6 � 0·35, P = 0·0002,
total number of relapses were 0 and 1·80 � 0·35, P = 0·00009, respectively).
An optimal set of 29 genes was depicted as a clinical outcome predictive gene
expression signature and classified appropriately 88·9% of patients. This pre-
dictive signature was enriched by genes related biologically to zinc-ion
binding and cytokine activity regulation pathways involved in inflammation
and apoptosis. Our findings provide a basis for monitoring patients by pre-
diction of disease outcome and can be incorporated into clinical decision-
making in relapsing–remitting MS.
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Introduction

Multiple sclerosis (MS) is a central nervous system disease
affecting young adults in which 85% of patients experience a
relapsing–remitting (RR) clinical course [1]. Clinical
outcome differs between patients, as the rate of disease pro-
gression and frequency of relapses vary along the disease
course [2]. It has been suggested that age of disease onset
below 35 years, rapid development and regression of initial
symptoms, a single symptom at onset and visual loss as the
initial symptom indicate a good prognosis. Brain magnetic
resonance imaging (MRI) parameters have also been impli-
cated as important in the evaluation of MS course by mea-
suring disease load over time [3]. Brain atrophy has been

reported to account for more variance than lesion burden in
predicting cognitive impairment [4]. However, all these
clinical and radiological variables are limited in their ability
to predict disease outcome, especially during the early stages
of the disease. Gene microarray technology, that analyses
simultaneously the expression of thousands of genes [5], can
be used as a comprehensive analysis method to correlate
gene expression patterns with numerous clinical parameters
related to patients’ outcome. Attempts to correlate MS gene
expression with disease activity disclosed that activity corre-
lated with the frequency of CX3CR1-positive natural killer
(NK) cells [6], and that MS expression profiling identified
responder and non-responder phenotypes to interferon
(IFN)-b treatment [7].
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We have demonstrated previously that gene expression
signature of peripheral blood mononuclear cells (PBMC)
significantly differentiates RRMS patients from healthy
subjects. Having also demonstrated that different gene sig-
nature characterizes MS disease stage (relapse versus remis-
sion) [8], in the current study we sought to evaluate whether
gene expression profiling can differentiate RRMS patients
according to their clinical course - either favourable or poor.
Our idea was to use an informative subset of original train-
ing samples. This subset consists of only good-outcome
RRMS patients who did not deteriorate neurologically
within a 2-year period, and patients with poor outcome who
increased their disability and demonstrated clinical disease
activity within the same follow-up period. These extreme
training samples yielded a clear platform from which to
identify genes whose expression is related to clinical
outcome. The discriminating genes were then integrated by a
support vector machine (SVM) to build a prediction model,
by which each validation sample was assigned a good or poor
risk score for MS progression. We found that RRMS patients
in high- and low-risk groups are clearly distinguishable. Our
results indicate that gene expression profiles combined with
carefully chosen learning algorithms can predict patient
outcome and may be incorporated in individualized, tailored
management of RRMS.

Methods

Patients

Sixty-three patients with definite RRMS (45 females,
18 males), aged 38·2 � 3·9 years, disease duration
9·2 � 2·8 years, annual relapse rate 1·1 � 0·5 and neurologi-
cal disability evaluated by the Expanded Disability Status
Scale (EDSS) [9], 1·9 � 0·6, were included in the study; 26
patients participated in the differentiating clinical outcome
analysis, 27 patients in the validation process of prediction
and 10 patients in the functional biological validation.

The clinical and demographic variables were similar
between groups (Table 1). In the differentiating clinical
outcome group, 13 patients were receiving immunomodula-

tory treatments for at least 3 months prior to the gene
expression study, and 13 patients were naive to immuno-
modulatory treatment. In the validation group, 11 patients
were receiving immunomodulatory treatments for at least
3 months prior to the gene expression study, and 16 patients
were naive to immunomodulatory treatments. Within up to
1 month from withdrawal of blood, all patients were treated
with IFN-b1a. None of the patients had ever received cyto-
toxic treatments and all were free of steroid treatment for at
least 30 days before blood was withdrawn. All patients had
peripheral blood counts within the normal range. The study
was approved by the Sheba Medical Center Institutional
Review Board, and all patients gave written informed
consent for participation.

Clinical follow-up

Patients were followed-up prospectively for a period of
2 years. Neurological examination was performed once every
3 months and at the time of a suspected relapse, and EDSS
assessment was completed accordingly. Relapse was defined
as the onset of new objective neurological symptoms/signs
or worsening of existing neurological disability, not accom-
panied by metabolic changes, fever or other signs of infec-
tion, lasting for a period of at least 48 h accompanied by
objective change of at least 0·5 points in the EDSS score. For
EDSS evaluations we used only stable EDSS scores that were
confirmed at 3-month follow-up examinations. Confirmed
relapses and EDSS scores were recorded consecutively.

Definition of clinical outcome

Clinical outcome was defined according to neurological dis-
ability as the primary criterion and total number of relapses
as the secondary criterion.

Good outcome

Good outcome comprised patients who had not deteriorated
in their neurological disability and had not experienced any
relapse during the 24 months of follow-up.

Table 1. Demographic and clinical variables of the study relapsing–remitting multiple sclerosis (RRMS) population.

Variable

Differentiating clinical

outcome group

n = 26

Validation

Clinical outcome

classifier group

n = 27

Biological function

by qRT–PCR group

n = 10

Age (years) 40·2 � 5·8 40·5 � 1·6 36·1 � 2·1

F (M) 21 (5) 16 (11) 8 (2)

Disease duration (years) 9·9 � 4·2 10·3 � 1·6 8·5 � 1·4

Relapse rate 1·3 � 0·7 0·9 � 0·2 0·9 � 0·2

EDSS 2·0 � 1·0 2·5 � 0·2 1·9 � 0·3

Treated 13 11 None

EDSS: Expanded Disability Status Scale; qRT–PCR: quantitative reverse transcription–polymerase chain reaction.
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Poor outcome

Poor outcome comprised patients who deteriorated in their
neurological disability (DEDSS increased by at least 0·5
points) within the 24 months of follow-up, either with or
without relapses.

Intermediate outcome

Intermediate outcome comprised patients who did not dete-
riorate in their neurological disability yet experienced at least
one relapse during the 24 months of follow-up.

RNA isolation and microarray expression profiling

PBMC were separated on Ficol-Hypaque gradient, total RNA
was purified, labelled, hybridized to a Genechip array
(U95Av2 and HU-133A) and scanned (Hewlett Packard,
GeneArray-TM scanner G2500A) according to the manufac-
turer’s protocol (Affymetrix Inc, Santa Clara, CA, USA), as
described previously [8].

Clinical outcome differentiating genes analysis

RMAExpress software was used to analyse the scanned arrays
[10]. In order to be consistent with the ontology and array
type, all the transcripts in U95Av2 microarray were con-
verted to the corresponding transcripts in HU-133A using
NetAffex comparison table. Probe sets that did not have a
signal present in at least 90% of the samples were filtered.
Noise effect was reduced by fitting a multiple effect model
for each gene modelling the log-ratio measurement as a sum
of contributions for age, gender, batch, subject state (naive or
treated) and time from last steroid treatment.

Statistical methods

Statistical analysis was performed using the ScoreGenes soft-
ware tools (http://compbio.cs.huji.ac.il/scoregenes/). Data
were analysed by t-test, the threshold number of misclassifi-
cations (TNoM) method and the Info-test score. Differenti-
ating genes were defined as genes whose expression was
significantly higher or lower, with P < 0·05 in all three statis-
tical tests. Overabundance analysis was used to compare
between the number of observed and expected genes that
differentiated between the good and poor clinical outcome
under the null hypothesis that the classification of the
samples was random [11,12]. To verify further the accuracy
of the classification we used the leave-one-out cross-
validation (LOOCV) statistical method [13]. LOOCV simu-
lates removal of a single sample for every trial and trains on
the rest. The procedure is repeated until each sample is left
out once and the number of correct and incorrect predic-
tions is counted. The demographic variables are presented as

mean � standard deviation (s.d.). Student’s t-test was used
to compare the difference in clinical variables between
groups, and P < 0·05 was considered statistically significant.

Predictive genes analysis and validation

To depict the predictive genes from the differentiating clini-
cal outcome signature, the SVM in combination with
Forward feature selection algorithm were applied (http://ro.
utia.cz/fs/fs_algorithms.html) [14–16]. SVM generates a
classifier based on a known labelled training set (19 of 26
RRMS patients with good or poor clinical outcome from the
differentiating clinical outcome group). Then, the classifica-
tion power of the generated classifier is evaluated by apply-
ing it to an independent test set (nine of 27 RRMS patients
from the validation group). The feature selection algorithm
finds a subset of predictive genes that enables the generated
classifier to achieve the highest classification rate [14]. To
validate the power of the predictive genes, the classifier was
applied to an additional independent set (18 of 27 RRMS
patients from the validation group). Additionally, to confirm
independently the obtained expression profiling data, we
performed quantitative reverse transcription–polymerase
chain reaction (qRT–PCR) on PBMC samples from 10 MS
patients for three key genes of the predictive signature.

The study design is depicted in Fig. 1.

Biological functional analysis

Functional annotation of the clinical outcome differentiat-
ing and predictive gene signatures was performed using
functional classification tools (FCT; David Bioinformatics
Resources: http://david.abcc.ncifcrf.gov/home.jsp). Gene
enrichment was defined as a group of genes associated highly
with a specific biological function and measured statistically
by one-tailed Fisher’s exact probability value using the David
system. Biological regulatory pathway reconstruction for the
predictive gene signature was performed using: (1) Pathwa-
yArchitect software (http://www.stratagene.com) based on
published data in the literature, and (2) Genomica soft-
ware (http://genomica.weizmann.ac.il), based on Bayesian
network methods taken from the field of machine learning,
and was applied to our results of the differentiating gene
microarray expression signature [17]. This evaluation was
aimed to identify potentially target genes that share a
common regulatory mechanism.

Results

Clinical classification of study patients

Patients were classified into three groups based on their
clinical disease outcome: (1) patients with good outcome
(n = 9, mean age 39·3 � 3·3 years, disease duration
10·7 � 3·4 years), (2) patients with intermediate outcome
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(n = 7, mean age 35·8 � 5·4 years, disease duration
8·6 � 4·7 years) and (3) patients with poor outcome (n = 10,
mean age 46·3 � 4·2 years, disease duration 10·3 � 0·9). As
the aim of our study was to evaluate the differences within
the extremes, the analysis was performed between the good
and the poor clinical outcome groups. The comparison dem-
onstrated significant differences between patients with good
and poor clinical outcomes. Change in neurological disabil-
ity assessed by the EDSS was -0·33 � 0·24 and 1·6 � 0·35,
P = 0·0002, and total number of relapses was 0 and
1·80 � 0·35, P = 0·00009, respectively.

Differentiating clinical outcome gene
expression signature

The distinctive clinical outcome gene expression pattern
between patients with good and poor clinical outcomes
included 431 differentiating genes which passed the three
statistical tests, with P < 0·05 (Fig. 2a). Functional analysis
disclosed genes associated with signal transduction, catalytic
activity, adhesion and inflammation (Fig. 2b). Overabun-
dance analysis of the observed compared with the expected
number of genes that distinguished significantly between
patients with good or poor clinical outcome was higher than
expected (431 versus 200 genes at P = 0·03) (Fig. 2c).
LOOCV resulted in a high classification rate of 90%,
P < 0·0001 (Fig. 2d), suggesting that the differentiating genes
signature is reliable and not related to spurious differences
due to multiple testing.

Predictive clinical outcome gene expression signature

Application of the SVM on data from 19 of 26 patients with
good (nine patients) or poor (10 patients) outcome as a
training set, and nine of 27 additional patients from the
validation group as test set, resulted in a high classification
rate of 89%. This high classification was achieved by the
Forward feature selection algorithm using 34 gene tran-
scripts (29 genes), defined accordingly as predictive (Fig. 3a).

Classification rate was 70·4% using only one gene (RRN3)
and reached a rate of 85·2% using six genes (RRN3, KLF4,
HAB1, TPSB2, IGLJ3, COL11A2). The addition of one or all
of the remaining predictive genes resulted in maximal clas-
sification rate of 89·0%. This suggests that maximal predic-
tive ability could be achieved using only seven genes. As there
is no preference to any of the genes beyond the six predictive
genes, we analysed the biological relevance of all 34 predic-
tive genes.

Independent validation of the predictive clinical
outcome gene expression signature

Applying the resulting SVM-generated classifier, based on
the 34 predictive genes to an additional data set of 18 of 27
patients from the validation group, maintained the high clas-
sification rate of 88·9%, P < 0·00001.

qRT–PCR performed in PBMC samples from 10 MS
patients for three key genes of the predictive signature
(S100B, KLF4 and RRN3) showed a perfect correlation of the
expression levels of the candidate genes analysed with the
mean expression levels obtained from the microarray
experiments. S100B was lower by 1·47, P = 0·003; KLF4 was
higher by 1·87, P = 0·044; and RRN3 was higher by 2·29,
P = 0·003, in MS patients with poor outcome.

Biological regulation of the predictive clinical outcome
gene expression signature

Functional annotation of the 34 predictive genes demon-
strated that this group of genes was enriched significantly by
zinc-ion binding protein genes (S100B, KLF4, CAII) and by
genes with cytokine activity (CCL17, MUC4, PTN VEGFB),
P = 0·02 and P = 0·005, respectively (Fig. 3b). The Genomica
software confirmed enrichment by the zinc-ion binding gene
family and by cytokine activity genes using all the 431 dif-
ferentiating gene expression signature data (Fig. 3c). Using
these enriched gene-families, regulatory pathways were
reconstructed (Fig. 3d,e). These pathways suggest that

Fig. 1. Flowchart of the study design. Overview

of the strategy used for the identification and

validation of predictive clinical outcome

gene-expression signature in

relapsing–remitting multiple sclerosis.
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apoptosis regulation through zinc-ion binding and cytokine
activity is responsible for Th1/Th2 shift and may play a role
in the clinical outcome of RRMS.

Genomica reconstruction of regulatory gene expression
networks based on all 431 differentiating genes resulted in a
regulation pathway in which the predictive zinc-ion binding
gene KLF4, in association with CLPP and RRLP, mediate
downstream genes including S100B (Fig. 3f). Other interest-
ing functional groups in the 29 predictive genes include

adhesion and cell migration such as CD44 and COL11A2,
and T cell receptor genes such as TCRVB; all play an impor-
tant role in MS pathogenesis.

Discussion

Prognostic modelling of patients with RRMS is a challenge
in view of the unpredictable course of the disease. To the best
of our knowledge, our study is the first that correlates gene
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Fig. 3. (a) Predictive classification chart. The

classification rate of 29 predictive genes is

demonstrated. Highest classification rate is

achieved using only seven genes, yet according

to the feature selection algorithm, genes are

added to the subset as long as the classification

rate is not decreased. y-Axis denotes

classification rate; x-axis denotes the number of

genes. (b) Gene enrichment. Direction of an

over-expressed (1) or down-expressed (- 1)

gene is demonstrated in the enriched groups

within the poor versus good outcome signature.

(c) Heatmap of module analysis using

differentiating clinical outcome genes.

Enrichment of zinc-ion binding gene set for

patients with relapses and cytokine activity gene

set for patients with stable disease [no change

in neurological disability, Expanded Disability

Status Scale (EDSS) = 0] are demonstrated. The

upper left graphical panel is a matrix of gene

sets versus arrays, where a coloured entry

indicates that the genes in the gene set had

changed significantly in a co-ordinated fashion

in the respective array (red, increased; green,

decreased). The centre graphical panel shows

individual clinical outcome attributes to which

each array belongs. The bottom graphical panel

demonstrates overall clinical outcome attributes

in which gene sets were significantly enriched.

(d) Reconstructed zinc-ion binding pathway.

Pathway analysis performed using genes from

the predictive signature (yellow circles) and

genes brought into the pathway based on

literature-known relationships according to

PathwayArchitect software (green circles).

Arrows indicate regulatory interactions

confirmed by literature database, dashed arrows

indicate suggested gene interactions. (e)

Reconstructed cytokine activity pathway.

Pathway analysis performed using genes from

the predictive signature (grey circles) and genes

brought into the pathway based on

literature-known relationships according to

PathwayArchitect software (blue circles). Arrows

indicate regulatory interactions confirmed by

literature database, dashed arrows indicate

suggested gene interactions. (f) Gene expression

regulatory network module. The single gene

expression module from the gene expression

regulatory network of 431 differentiating genes

is demonstrated. Each node in the regulation

tree represents a regulating gene. The

expression of the regulating genes themselves is

shown below their node. Cluster of gene

expression profiles (rows represent genes,

columns represent patients’ arrays) arranged

according to the regulation tree. Note that

zinc-ion binding related genes KLF4 (regulating

gene) and S100B (regulated gene) belong to the

same regulatory module (black asterisks).
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expression profiles segregating RRMS patients into classes
associated with clinical outcome. As MS has a winding
course and the rate of disease progression differs between
patients [18–20], it is of great importance to look for surro-
gate markers that will enable future envisaging of the disease
process in an individual patient. Prediction of outcome in
MS was reported to relate to different clinical variables such
as age at disease onset, gender and the type of neurological
symptomatology presented at onset. The major clinical
determinants of more severe disease are male sex, relatively
older age at onset, motor or cerebellar symptoms at onset
and high annual relapse rate [21–23]. However, the ability of
these variables to predict the clinical course is imperfect. This
uncertainty in forecasting disease outcome means that some
MS patients who need aggressive treatment do not receive it,
while others are treated unnecessarily and as a result are
exposed to the risk of side effects without a sound rationale
[24]. In the current study we used a comprehensive approach
to gain detailed understanding of the evolution of MS by
analysing disease process-relevant gene signatures. Our
rationale was to look for differentiating gene transcripts
that are related to and predict clinical outcome and
not - although it might be - are the causes for the change in
clinical outcome. It is evident that the patients included in
the study had a priori different clinical outcomes, but the
ability to take a snapshot in time and identify a specific gene
signature that characterizes good or poor clinical outcome is
the major significance of our findings. Classifying patients
into homogeneous groups based on the progression of neu-
rological disability and number of relapses, and then sorting
between different disease outcome groups according to gene
expression anchors, enabled us to expand the knowledge of
the disease phenotypes. The clinical outcome expression sig-
nature includes genes involved in proliferation, stimulation
of T cell and T cell receptors, inflammation and adhesion.
The reliability of the differentiating 431 clinical outcome
gene-expression pattern was validated further by the low
error estimates using LOOCV as well as by the overabun-
dance analysis, showing a significant difference between the
expected and observed data. These results provided further
evidence that the identified genes were indeed representative
of true biological processes that lead to different clinical
phenomena. We assumed that not all the genes that differ-
entiated between good and poor clinical outcome were effec-
tive predictive genes. Accordingly, we applied the SVM
method combined with the Forward feature selection algo-
rithm to evaluate outcome predictive genes and validated
further the predictive pattern in an additional group of
RRMS patients. Classification rate was 70·4% using only one
gene (RRN3), and reached a rate of 85·2% using six genes
(RRN3, KLF4, HAB1, TPSB2, IGLJ3, COL11A2). In larger
groups, the applicable methods would use much smaller
groups of genes (six or 34). The clinical outcome predictive
gene expression signature was enriched by zinc-ion binding
and cytokine activity pathways. Activation of mononuclear

cells in MS involves proinflammatory cytokines such as
IFN-g and tumour necrosis factor (TNF)-a that promote
disease activity. Conversely, anti-inflammatory cytokines
such as TGF-b, interleukin (IL)-4 and IL-10 decrease proin-
flammatory activation. The molecular transcripts we identi-
fied regulate the balance of these opposing effectors and are
thus associated with clinical outcome prediction. The zinc-
ion binding genes in the predictive signature include KLF4,
known to be activated by (signal transucers and activators of
transcription (STAT1), which is activated by S100B [25], and
increases IFN-g expression [26], a well-known proinflamma-
tory cytokine involved in MS disease activity.

KLF4 is markedly induced in response to IFN-g,
lipolpolysaccharide (LPS) or TNF-a. Over-expression of
KLF4 is associated with macrophage activation marker
inducible nitric-oxide synthase and with TGF-b1 inhibition.
KLF4 interacts with the NF-kB family member p65 (RelA),
and has an important role as a regulator of key signalling
pathways that control macrophage activation [27].

The S100B gene protein is known to be involved in intra-
cellular and extracellular regulatory events within the central
nervous system. S100B was found to be elevated in acute
brain lesions of RRMS patients [28], and its plasma levels
were reported elevated in RRMS patients responding to
IFN-b treatment [29]. This is in accordance with our find-
ings, demonstrating decreased S100B expression in patients
with poor outcome. Additionally, a novel association of the
zinc-ion binding gene CA11 was identified in the network
reconstruction.

The balance between T helper 1 (Th1) and Th2 immune
responses plays an important role in the pathogenesis of MS.
In addition to the recognition of encephalitogenic epitopes,
the ability to produce Th1 cytokines is an important func-
tional requirement by which myelin-reactive T cells mediate
the disease, while Th2 cells secreting IL-10 suppress the
ongoing inflammation. The cytokine activity-enriched gene
family identified in the prediction signature included
CCL17, MUC4, PTN and VEGFB. CCL17 displays chemot-
actic activity for Th2 lymphocytes [30], and its activity is well
known to be enhanced by the Th2-related cytokines IL-4 and
IL-13, leading to inhibition of inflammation. MUC4 expres-
sion is dependent upon IL-4 and IL-13 levels [31–33]. PTN is
involved in regulation of cell-mediated immunity [34], and
negatively regulates VEGF activity [35]. These findings dem-
onstrate that the poor clinical outcome predictive signature
in RRMS is affected mainly by decreased Th2 cytokine activ-
ity and aberrant regulation of inflammation.

In conclusion, the predictive outcome gene expression sig-
nature is sensitive to RRMS evolution and as such provides a
new perspective on disease progression. Moreover, our find-
ings suggest that the co-stimulatory regulatory pathways of
zinc-ion binding and cytokine activity-related genes within
the predictive signature may serve as new targets for thera-
peutic interventions. Finally, the predictive signature may
enable planning of tailored therapeutic strategies, and allow
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delineation of patients at high risk who may benefit from
early therapy.
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