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Abstract
Interoceptive feedback signals from the body are transmitted to hypothalamic neurons that control
pituitary hormone release. This review article describes the organization of central neural pathways
that convey ascending visceral sensory signals to endocrine neurons in the paraventricular (PVN)
and supraoptic nuclei (SON) of the hypothalamus in rats. A special emphasis is placed on
viscerosensory inputs to corticotropin releasing factor (CRF)-containing PVN neurons that drive the
hypothalamic-pituitary-adrenal axis, and on inputs to magnocellular PVN and SON neurons that
release vasopressin (AVP) or oxytocin (OT) from the posterior pituitary. The postnatal development
of these ascending pathways also is considered.

Introduction
Interoceptive feedback signals from the body are conveyed to widely distributed regions of the
central nervous system (CNS), including regions of the hypothalamus and limbic forebrain that
initiate and modulate autonomic and endocrine homeostatic processes. This review article
describes the organization of central neural pathways that transmit sensory signals from
thoracic and abdominal viscera to endocrine neurons in the paraventricular (PVN) and
supraoptic nuclei (SON) of the hypothalamus. A special emphasis is placed on viscerosensory
inputs to parvocellular corticotropin releasing factor (CRF)-containing PVN neurons that
control anterior pituitary release of adrenocorticotropic hormone (ACTH), and on inputs to
magnocellular PVN and SON neurons that release vasopressin (AVP) or oxytocin (OT) from
their axon terminals in the posterior pituitary. The postnatal development of these ascending
pathways also is considered. In laboratory rats, central visceral sensory pathways undergo a
significant amount of synaptic assembly and refinement during the first two weeks of postnatal
life. The anatomical and functional maturation of interoceptive inputs to the endocrine
hypothalamus appears to parallel the organism's newly emerging ability to respond
physiologically to certain environmental challenges.

Visceral sensory inputs to spinal cord and caudal brainstem
Sensory signals from the viscera are carried to the CNS by spinal and cranial afferents. In rats,
spinal viscerosensory afferents terminate in laminae I–VII of the dorsal horn and intermediate
zone, and in lamina X around the central canal [1]. Inputs from visceral and somatic sensory
afferents converge onto common second order neurons within the spinal dorsal horn. A subset
of these neurons convey the convergent somato- and viscerosensory signals to the diencephalon
via the anterolateral spinothalamic tract. A separate spinal viscerosensory pathway relays
through lamina X, medial lamina VII, and the dorsal gray commissure to ascend at the junction
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of the gracile and cuneate fasciculi [2;3]. This viscerotopically organized pathway provides
direct and relayed inputs to the medullary nucleus of the solitary tract (NST), ventrolateral
medulla (VLM), pontine parabrachial nucleus (PBN), and hypothalamus [2;3;4;5;6;7;8].
Although spinal inputs to the hypothalamus do not appear to directly target endocrine neurons,
they synapse within regions of the lateral hypothalamus that do [9].

In addition to relayed spinal sensory inputs, the NST receives direct sensory inputs from
thoracic and abdominal viscera via glossopharyngeal and vagal cranial afferents.
Glossopharyngeal and vagal sensory neurons innervate the heart and associated cardiovascular
targets [10], and vagal sensory neurons innervate the gut and associated digestive viscera from
the oral cavity through the colon [11;12;13]. Central glossopharyngeal and vagal afferent fibers
enter the dorsolateral medulla via multiple sensory rootlets and converge within the solitary
tract, analogous to the spinal trigeminal tract or Lissauer's tract, which conveys the
viscerosensory axons along the rostrocaudal length of the NST [11].

Central visceral sensory pathways to the endocrine hypothalamus
As summarized in Figure 1, visceral sensory signals are relayed from the NST to the endocrine
hypothalamus via direct and indirect ascending pathways [14;15;16;17]. The indirect pathways
include relays from the area postrema (AP) and NST to the VLM [16;18;19;20] and PBN
[21;22;23;24]. The AP is a circumventricular organ with a reduced or absent blood-brain
barrier. Projections from AP neurons to the subjacent NST and also directly to the VLM and
PBN [22;23;25] provide a neural route for blood-borne signals (e.g., cytokines, osmolytes,
hormones, toxins) to affect central viscerosensory processing.

The NST, VLM and PBN each contain neurons that project directly to the hypothalamus [14;
16;26;27;28], although PBN inputs to the PVN and SON are relatively sparse. PVN and SON
endocrine neurons receive direct synaptic input from the NST and VLM, but receive little or
no direct input from the PBN [28;29;30]. The PBN instead provides robust inputs to the central
nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) [28;31;32], both
of which also receive direct inputs from the NST and VLM. The CeA and BNST are highly
interconnected [33], and the ventrolateral BNST densely innervates the medial parvocellular
PVN (PVNmp) [34;35]. Caudal VLM neurons that receive indirect input from arterial
baroreceptors and from the cervical vagus nerve (via the NST) have long ascending axons that
terminate directly on neurohypophyseal and tuberoinfundibular PVN neurons [30].

Viscerosensory recruitment of neural inputs to the endocrine hypothalamus
The ability of visceral sensory stimuli to affect pituitary hormone release has been appreciated
for many years. Early studies demonstrated posterior pituitary release of antidiuretic and milk-
ejection factors (i.e., AVP and OT, respectively) in rats after electrical stimulation of the central
end of the cut vagus nerve [36;37;38;39;40]. A series of studies by Ueta and colleagues
subsequently demonstrated that gastrointestinal and vagal stimulation promotes significant
activation of magnocellular and parvocellular endocrine neurons within the PVN and SON in
anesthetized rats [41;42;43]. Some of these experiments involved mechanical gastric distension
or electrical stimulation of vagal afferents, while others involved pharmacological stimulation
of gastrointestinal vagal afferents via systemic administration of cholecystokinin octapeptide
(CCK).

Exogenously administered CCK provides a useful experimental tool with which to activate
ascending visceral sensory pathways. Systemic CCK increases pituitary hormone release via
CCK-1 receptor-mediated activation of vagal afferent inputs to the caudal medulla that recruit
central ascending viscerosensory pathways to the hypothalamus [43;44;45;46;47;48]. In 1986
it was reported that synthetic CCK administered peripherally at supraphysiological doses
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potently stimulates pituitary OT (but not AVP) secretion in rats [49]. The OT secretory
responses to CCK administration were markedly attenuated after bilateral subdiaphragmatic
vagotomy, after capsaicin-induced sensory vagotomy, or after systemic blockade of CCK-1
receptors [49;50]. In rats, systemic CCK increases the firing rate of magnocellular OT neurons,
and transiently inhibits the firing of magnocellular AVP neurons [51]. Plasma OT levels also
are increased by gastric distension, which synergizes with exogenous CCK to further elevate
plasma OT in rats [49]. In addition to increasing plasma OT levels, systemic CCK
administration alters pituitary release of growth hormone and thyrotropin in adult male rats
[52;53;54]. Interestingly, systemic CCK increases plasma levels of AVP but not OT in humans
[55] and ferrets [56], and increases plasma levels of AVP, luteinizing hormone, gonadotropin-
releasing hormone, and ACTH in rhesus macaques [57;58;59]. It is unclear why rats and mice
release OT after CCK administration, whereas ferrets, primates, and rabbits (Dr. Loretta
Flanagan-Cato, personal communication) release AVP instead. Although the reason for the
species difference is unclear, the pattern of hormone release is consistent with known species
differences in endocrine responses to stress. The doses of synthetic CCK used to stimulate
endocrine secretion are nauseogenic and even emetic in humans, and promote sickness-like
behavior and HPA axis activation in rats and other experimental animals. Rats and mice release
OT along with ACTH during stress responses, whereas humans and non-human primates
release ACTH and AVP.

The natural ligand for endogenous CCK-1 receptors is CCK that is released from the gut in a
nutrient-dependent manner. Circulating plasma levels of endogenous CCK increase transiently
in rats and other mammals (including humans) after food intake, representing peptide
“spillover” into the systemic circulation after CCK is released locally near its sites of action
within digestive tissues and along gastrointestinal vagal afferent fibers. Under normal
circumstances, endogenous CCK acts at its receptors to initiate and maintain various digestive
processes, and also to promote satiety. Although a very large or calorically dense meal might
produce homeostatic stress, it is unlikely that endogenous CCK released after a typical meal
activates the same ascending visceral pathways as are activated by synthetic CCK, and normal
meal-related satiety may have nothing to do with the ability of CCK or gastric distension to
stimulate hypothalamic endocrine neurons. Indeed, the ability of CCK to promote satiety seems
to require only neural circuits that are contained within the caudal brainstem [47;60;61]. Thus,
it remains unclear whether either endogenously released CCK or natural meal-related gastric
distension contributes to recruitment of hypothalamic endocrine neurons. As discussed further,
below, it has been shown that voluntary intake of a large meal by rats activates only a subset
of the NST visceral sensory neurons that are activated after systemic CCK or other
“interoceptive stress” treatments [62]. Nevertheless, the ability of synthetic CCK, mechanical
gastric distension, and vagal nerve stimulation to alter pituitary hormone secretion provides
compelling evidence for the sufficiency of visceral sensory pathways to recruit the endocrine
hypothalamus.

Viscerosensory inputs to the endocrine hypothalamus are primarily
noradrenergic

Viscerosensory projections from the NST and VLM to the PBN, hypothalamus, CeA, and
BNST are primarily (although not exclusively) catecholaminergic, arising from nor/adrenergic
A2/C2 neurons within the NST and A1/C1 neurons within the VLM [19;26;63]. For
convenience, in this article catecholaminergic NST and VLM projection neurons are referred
to collectively as noradrenergic (NA) neurons, because they all are immunoreactive for the NA
synthetic enzyme dopamine beta hydroxylase (DbH). Various peptides are co-expressed by
these NA neurons, including those that project directly to the PVN and SON [48;64;65;66].
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Dense NA inputs to the PVN (Figure 2) and SON arise almost exclusively from the NST and
VLM, with an additional restricted input to the periventricular PVN that arises from the pontine
locus coeruleus [19;26;67]. The PVN and SON contain high densities of adrenergic receptors
in subregions that receive input from the NST and VLM [19;67;68]. Ascending NA projections
from the NST and VLM course primarily through the ventral noradrenergic ascending bundle
(VNAB) (Figure 1) [19;67]. Electrical stimulation of the VNAB elicits CRF secretion through
an adrenergic receptor-mediated mechanism [69], and increases plasma levels of ACTH.
Similarly, direct stimulation of the NST and VLM increases PVN neuronal firing and pituitary
secretion [70;71], and these effects are attenuated by prior destruction of NA terminals within
the PVN [70].

Peripheral visceral stimuli also recruit activation of medullary NA neurons that project to the
hypothalamus and limbic forebrain, coincident with increased NA release at target sites. For
example, extracellular NA content increases in the PVN after systemic administration of CCK,
which, as reviewed above, activates vagal sensory inputs to the NST and stimulates pituitary
release of several hormones. Systemic CCK activates NA neurons within the NST and VLM
in rats [48], ferrets [56], and rhesus macaques [72]. In rats, NA neurons activated after CCK
administration include those that project directly to the PVN [46], and immunotoxin-induced
destruction of these NA neurons attenuates the ability of systemic CCK to activate Fos
expression within PVN endocrine neurons [27]. A CCK-induced increase in NA content
measured within the PVN directly parallels increased plasma levels of ACTH and OT in rats,
consistent with the predominantly excitatory effects of systemic CCK and synaptic effects of
NA on hypothalamic CRF and OT neurons [73;74;75;76]. Voluntary food intake also promotes
NA neural activation within the NST and VLM in rats, and the proportion of NA neurons
activated in both regions increases in proportion with the size of the meal consumed [77].
However, it is unclear whether food intake and exogenous CCK activate the same medullary
NA neurons, including those that project to the hypothalamus.

Within the PVN neuropil, NA terminals have been reported to form both symmetric- and
asymmetric-type synapses with the dendrites and somata of presumptive endocrine neurons,
including ones immunoreactive for OT, AVP, CRF, and thyrotropin releasing hormone [78;
79;80;81;82;83;84;85;86;87;88;89]. Magnocellular subregions of the PVN that control AVP
and OT release from the posterior pituitary appear to be preferentially targeted by NA inputs
arising in the VLM, whereas NA projections arising in the NST appear to preferentially target
magnocellular OT neurons within the PVN and SON [90], and CRF neurons within the PVNmp
[30;91]. CRF neurons summate excitatory and inhibitory inputs into a net secretory signal to
drive ACTH release from anterior pituitary corticotrophs [92;93]. Thus, CRF neurons within
the PVNmp control basal, circadian, and stress-induced glucocorticoid secretion via the HPA
axis [94;95;96;97]. Ample evidence indicates that NA inputs provide critical control over the
activity of these stress-responsive CRF neurons [95;98;99;100;101].

Recent findings indicate that NA inputs to the PVNmp are provided by NST and/or VLM
neurons with collateralized inputs to the BNST [102]. Immunotoxic lesioning methods have
demonstrated that these NA inputs are necessary for systemic yohimbine (a sympathomimetic
adrenergic signal-enhancing drug) to activate neural expression of the immediate-early gene
product, Fos, in CRF neurons within the PVNmp, and to increase plasma corticosterone levels
[102]. Similar preliminary results have been obtained in toxin-lesioned rats subsequently
treated with systemic lithium chloride (LiCl) (Figure 2). Conversely, inputs to magnocellular
regions of the PVN and SON appear to arise from medullary NA neurons that do not also
project to either the BNST or the PVNmp [102]. This finding complements previous evidence
that magnocellular and parvocellular PVN subdivisions are differentially innervated by NA
inputs arising from the VLM and NST, respectively [91]. In addition to its direct NA input,
the PVNmp receives a dense projection from neurons within the same BNST region [35] that
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is heavily innervated by medullary NA neurons [103;104]. Thus, NA-mediated viscerosensory
modulation of neural function within the endocrine PVN includes direct inputs from medullary
NA neurons, and indirect inputs that are relayed through the BNST.

Non-catecholaminergic viscerosensory inputs to the hypothalamus
Ascending NA projections to the hypothalamus and limbic forebrain are paralleled by
projections arising from a separate and smaller population of non-NA neurons with widely
arborizing axon terminals, whose cell bodies are located in the caudal NST and adjacent
reticular formation. These neurons appear to coexpress immunoreactivity for multiple peptides,
including glucagon-like peptide 1 (GLP-1) [63;90;105;106;107;108]. The synaptic targets of
GLP-1 neurons include CRF neurons in the PVNmp [109] and OT neurons in the magnocellular
PVN and SON (Figure 3), where GLP-1 binding sites and receptor gene expression are
localized [110;111;112;113;114]. Cells in the caudal NST and adjacent reticular formation
provide the sole source of endogenous ligand for these GLP-1 receptors [90;106], and
ascending GLP-1 fiber projections appear to follow the VNAB, intermingled with NA fibers
(Figure 1).

Central infusions of GLP-1 or GLP-1 receptor agonists activate PVN neurons (Figure 3) and
increase plasma levels of ACTH and OT [115;116;117;118;119;120;121;122]. Several
different interoceptive stressors (e.g., systemic CCK, LiCl, lipopolysaccharide) activate Fos
expression by medullary GLP-1 neurons, including those that project to the PVN [62]. Other
studies have demonstrated that central GLP-1 receptor signaling pathways contribute to the
ability of these stressors to recruit the HPA axis [121;123;124]. Thus, “stressful”
viscerosensory stimuli appear to recruit ascending GLP-1-containing neural pathways in a
manner similar to the recruitment of ascending NA pathways. Interestingly, although medullary
NA neurons are activated in rats after food intake [77], voluntary ingestion of even a very large
meal does not activate GLP-1 neurons [62]. Mechanical gastric distension can activate Fos
expression in GLP-1 neurons [125], evidence that they do respond to gastric sensory input if
stimulation is robust enough. Recruitment of hindbrain GLP-1 neurons, including those that
innervate the hypothalamus, may depend on the intensity or modality of visceral stimulation,
and may even differentiate stressful from non-stressful visceral stimuli [62].

Postnatal development of viscerosensory inputs to the endocrine
hypothalamus

The natural process of neural circuit development offers special opportunities to probe the
functional organization of ascending viscerosensory pathways. Developmental research in this
area has been fairly limited, but the results are intriguing. The first few postnatal weeks in rats
correspond to a so-called “stress hyporesponsive period” (SHRP) characterized by reduced or
absent HPA axis responsiveness to certain types of stressors [126;127;128], including
interoceptive stressors [47;129;130]. The causal factors underlying the SHRP remain
controversial, and are likely to be multiple and complex [129;131;132;133]. It appears that the
SHRP is not simply due to an inability of hypothalamic, anterior pituitary, and/or adrenal
components of the HPA axis to respond to input, because certain stimuli can increase
hypothalamic Fos expression, activate the HPA axis, and increase plasma levels of ACTH,
cortisol, OT and AVP in rat pups during the SHRP [128;129;134]. We have proposed that the
SHRP is at least partially due to structural and/or functional immaturity of ascending NA (and
perhaps GLP-1-containing) neural pathways that carry visceral sensory inputs from the caudal
medulla to the PVN.

Early catecholamine histofluorescence studies suggested that NA inputs to the hypothalamus
and limbic forebrain are essentially absent in rats at birth [135;136]. More sensitive
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immunocytochemical techniques and tract-tracing later demonstrated that NA projections from
the NST and VLM to the PVN actually are already present in newborn rats [130]. However,
the density of NA terminals in the PVN increases markedly during the first three weeks of
postnatal development [130], in concert with increasing levels of hypothalamic NA [137;
138]. Additional evidence for delayed maturation of ascending NA inputs is offered by analysis
of fiber immunolabeling for prolactin releasing peptide (PrRP), which is co-expressed by a
subset of NA neurons within the NST [66;139]. The NST is the only source of PrRP-positive
fibers within the CNS; thus, immunohistochemical detection of PrRP-positive fibers provides
a useful and discrete marker for ascending NST projections during development. PrRP-positive
fibers are first visible within the ventral lateral BNST on postnatal day (P) 3 [140]. By P6,
PrRP fibers are present within the PVN and other forebrain targets, although their density is
not as great at this early time point as in adult rats [140].

The apparent structural immaturity of ascending NA inputs to the PVN in neonatal rats predicts
that neurons within the developing hypothalamus are less sensitive to viscerosensory signals
in neonatal vs. adult rats. Indeed, although systemic CCK activates neurons within the caudal
brainstem [47] and suppresses independent ingestion in neonatal rats [141;142;143], CCK does
not activate Fos expression in the hypothalamus or other forebrain regions, and does not
stimulate pituitary hormone release in neonatal rats [47]. The ability of exogenous CCK to
engage medullary NST neurons and to suppress food intake in 2-day-old rats means that CCK-1
receptor-mediated activation of vagal afferent inputs to the NST and subsequent processes for
recruitment of brainstem circuits that underlie CCK-induced hypophagia already are
functional. This is not surprising, because anatomical tracing studies revealed a precocious
development of vagal viscerosensory inputs to the NST during embryonic development
[144]. In newborn rat pups, exogenous CCK causes a significant increase in the excitability of
NST neurons that are synaptically activated by electrical stimulation of the subdiaphragmatic
vagus nerve, and the increased sensitivity is blocked by a specific CCK-1 receptor antagonist
[145]. A similar pattern of NST activation occurs in neonatal rats after more naturalistic
feeding-induced vagal stimulation [146], although that study did not investigate hypothalamic
activation after feeding in neonates.

The hindbrain distribution of neural Fos expression is virtually identical in 2-day-old and adult
rats after CCK treatment, with activated neurons located in specific subregions of the NST that
receive gastric vagal sensory input [47]. Conversely, the lack of hypothalamic activation in
neonatal rats after CCK treatment is consistent with other evidence for delayed postnatal
maturation of ascending NA projections from the NST and VLM [147] that transmit
viscerosensory information from hindbrain to hypothalamus in adult rats [19;26;46;148].
Another recent study investigated the postnatal maturation of central neural Fos responses to
LiCl, a malaise-inducing agent [149]. Rat pups were injected i.p. with 0.15M LiCl (2% BW)
or control solution (0.15M NaCl) at multiple time points between the day of birth (P0) and
P28. Compared to Fos activation after control saline treatment, LiCl did not increase Fos in
the PVN or other forebrain regions on P0, but did so on P7 and later. Maximal PVN Fos
responses to LiCl were observed on P14, whereas LiCl-induced BNST activation continued to
increase through P28. Comparable results have been obtained by others examining central Fos
responses to an acute lipopolysaccharide challenge in developing rats [150]. These findings
provide additional evidence that central interoceptive circuits in rats are not fully functional at
birth, but instead show age-dependent increases in neural recruitment following viscerosensory
stimulation.

Given the apparent inability of systemic CCK, LiCl, or lipopolysaccharide to activate
hypothalamic neurons in neonatal rats, one might hypothesize that the endocrine hypothalamus
is refractory to all excitatory inputs early in development. This turns out not to be the case. For
example, acute osmotic dehydration robustly activates hypothalamic Fos expression and
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increases pituitary hormone levels in neonatal rats [134]. The important difference seems to
be the ability of osmotic dehydration to activate PVN and SON neurons without requiring
ascending viscerosensory inputs from the caudal brainstem [151]. Thus, the lack of neonatal
hypothalamic responsiveness to CCK, LiCl, and other visceral sensory stimuli is most likely
due to functional immaturity of ascending viscerosensory inputs from the NST and VLM to
the hypothalamus.

Conclusion
Visceral sensory information reaches the endocrine hypothalamus via central neural pathways
that are primarily, but not exclusively, noradrenergic. NA and complementary peptidergic (e.g.,
GLP-1) inputs to magnocellular and parvocellular endocrine neurons within the SON and PVN
arise directly from medullary NST and VLM neurons, with additional viscerosensory inputs
relayed through the pontine PBN and other central sites. The functional importance of these
pathways for modulating and driving HPA axis and other endocrine responses to interoceptive
stimuli has been demonstrated by experiments involving pathway lesioning and
pharmacological blockade in adult rats, and through the natural process of neural development
in neonatal rats.
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Abbreviations
ACTH  

adrenocorticotropic hormone

AP  
area postrema

AVP  
arginine vasopressin

BNST  
bed nucleus of the stria terminalis

CeA  
central nucleus of the amygdale

CCK  
cholecystokinin octapeptide

CNS  
central nervous system

CRF  
corticotropin-releasing factor (hormone)

DbH  
dopamine beta hydroxylase

GLP-1  
glucagon-like peptide 1

LiCl  
lithium chloride

NA  
noradrenergic

NST  
nucleus of the solitary tract

OT  
oxytocin
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P  
postnatal day

PBN  
parabrachial nucleus

PrRP  
prolactin releasing peptide

PVN  
paraventricular nucleus of the hypothalamus

PVNlm  
lateral magnocellular PVN

PVNmp  
medial parvocellular PVN

SHRP  
stress hyporesponsive period

SON  
supraoptic nucleus of the hypothalamus

VLM  
ventrolateral medulla

VNAB  
ventral noradrenergic ascending bundle
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Figure 1.
Schematic of ascending pathways (arrows) through which visceral sensory signals from the
spinal cord and caudal brainstem reach the hypothalamus and limbic forebrain. Multiple
interconnections among these brain regions are not shown, including reciprocal connections
between the CeA and BNST, and descending projections from the hypothalamus and limbic
forebrain to the PBN, NST and VLM. See abbreviation list.
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Figure 2.
Immunoperoxidase labeling of DbH-positive NA fibers within the PVN in an intact adult rat
(A) and in a rat following toxin-induced destruction of NA neurons within the NST (B).
Systemic administration of LiCl (0.15M, 2% BW, i.p.) induces robust neural Fos expression
within the medial parvocellular and lateral magnocelluar PVN of the intact rat (C), but
attenuated Fos expression within the medial parvocellular PVN of the toxin-lesioned rat (D).
Remaining NA fibers presumably arise from the VLM and from residual non-lesioned NST
neurons, although the LC may contribute NA inputs to the periventricular region. See
abbreviation list.
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Figure 3.
The top panel and inset depict immunoperoxidase labeling of GLP-1 immunopositive fibers
(brown) within the PVN and SON (inset) in an adult rat after systemic administration of LiCl
(0.15M, 2% BW, i.p.). Robust LiCl-induced neural Fos expression (blue-black nuclear label)
is present throughout the PVN, including the PVNmp and PVNlm. GLP-1-positive fibers are
largely absent within the core of the PVNlm, where AVP-positive neurons cluster in rats.
Instead, GLP-1-positive fibers are distributed around the perimeter of the PVNlm, where
magnocellular OT neurons predominate, and throughout the PVNmp, where parvocellular CRF
and OT neurons predominate. LiCl-induced Fos expression also is prevalent throughout the
SON (inset), where GLP-1-positive fibers cluster within the dorsal and medial SON where
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magnocellular OT neurons predominate. The lower panel depicts immunoperoxidase labeling
of CRF-positive neurons (brown) within the PVN in an adult rat perfused 90 min after
intracerebroventricular infusion of 1.0 g of synthetic GLP-1-(7–36) amide. Fos expression is
robust within the PVNmp, including activation of the majority of CRF-positive neurons.
Conversely, Fos is largely absent within the core of the PVNlm, where magnocellular AVP
neurons predominate. 3v, third ventricle. See abbreviation list.
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