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Evidence for a Minimal Eukaryotic Phosphoproteome?
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Background. Reversible phosphorylation catalysed by kinases is probably the most important regulatory mechanism in
eukaryotes. Methodology/Principal Findings. We studied the in vitro phosphorylation of peptide arrays exhibiting the
majority of PhosphoBase-deposited protein sequences, by factors in cell lysates from representatives of various branches of
the eukaryotic species. We derived a set of substrates from the PhosphoBase whose phosphorylation by cellular extracts is
common to the divergent members of different kingdoms and thus may be considered a minimal eukaryotic
phosphoproteome. The protein kinases (or kinome) responsible for phosphorylation of these substrates are involved in
a variety of processes such as transcription, translation, and cytoskeletal reorganisation. Conclusions/Significance. These
results indicate that the divergence in eukaryotic kinases is not reflected at the level of substrate phosphorylation, revealing
the presence of a limited common substrate space for kinases in eukaryotes and suggests the presence of a set of kinase
substrates and regulatory mechanisms in an ancestral eukaryote that has since remained constant in eukaryotic life.
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INTRODUCTION

Kinases are enzymes that transfer a phosphate to an acceptor,
which can be carbohydrates, lipids or proteins. The superfamily of
eukaryotic protein kinases responsible for phosphorylation of
specific tyrosine, serine, and threonine residues is generally
recognised as the major regulator of virtually all metabolic
activities in eukaryotic cells including proliferation, gene expres-
sion, motility, vesicular transport, and programmed cell death [1].
Dysregulation of protein phosphorylation plays a major role in
many diseases such as cancer and neurodegenerative disorders,
and characterisation of the human kinome space revealed that 244
of 518 putative protein kinase genes are currently mapped to
disease loci or cancer amplicons [2,3]. Accordingly, drugs
targeting protein kinases are promising avenues for the therapeutic
treatment of a plethora of different diseases [4]. In addition,
elucidating kinase cascades has proved pivotal for understanding
and manipulating cellular behaviour in a variety of divergent
cukaryotes.

Most members of the protein kinase superfamily of enzymes can
be recognized from their primary sequences by the presence of
a catalytic eukaryotic protein kinase (ePK) domain of approxi-
mately 250 amino acids, whereas a small number of protein
kinases do not share this catalytic domain and are often collectively
called atypical kinases [5,6]. A comparison of kinase domains both
within and between species displays substantial diversity, which is
further increased by the non-catalytic functional domains of
kinases that are involved in regulation, interactions with other
protein partners, or subcellular localisation. This diversity in
catalytic and non-catalytic domains explains the functional
diversification of kinases within the eukaryotic kingdom. Eukar-
yotic protein kinases are now generally classified into several major
groups [7,8]: the cyclic nucleotide- and Ca2+-/phoshospholipid-
dependent kinases (AGC); a group consisting of the cyclin-
dependent and cyclin-dependent-like kinases, mitogen-activated
kinases, and glycogen synthase kinases (CMGC); the tyrosine
kinases (TK); the tyrosine kinase-like group (which are in fact
serine/threonine protein kinases) (TKL); the calmodulin-depen-
dent kinases (CAMK); the casein kinase 1 group (CK); and the
STE group (first identified in analyses of sterile yeast mutants) that
includes the enzymes acting upstream of the mitogen-activated
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kinases (STE), summarised in table 1 which is an extension on the
table published by Manning et al. 2002. Plants were considered
not have a TK group but instead have a large receptor-like kinase
group (RLK). However, recently Miranda—Saavedra el al. have
shown using a new library that this is not the case. This new
library is outperforms BLASTP and general Pfam hidden Markov
models in the classification of kinase domains. They show that
plants do contain tyrosine kinases and that diverse classes of
organisms have a large overlap in kinase families [8]. It should be
noted, however, that many eukaryotes also have kinase sequences
that are not easily assigned to one of these groups and are referred
to as “‘other protein kinases.” Thus far, pan-eukaryotic classifica-
tion of kinase substrate sequences has not been attempted and
would give better insight in the evolution and variability of
substrates and their kinases.

Comparative analyses of genomes have already demonstrated
substantial differences in the kinomes of different eukaryotes.
These differences are partly reflected in the highly variable
number of protein kinase genes present in the genomes of different
cukaryotes (e.g., the A. thaliana genome contains 973 apparent
protein kinases [9], the H. sapiens genome contains 518 [2], S.
purpuratus 13 predicted to have 353 protein kinases [10] D.
melanogaster appears to have 240 [7], S. cerevisiae has 115 protein
kinase genes [l1], and P. falciparum exhibits only 65 putative
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Table 1. Classification of the different kinases in major groups and the numbers of members detected in different organisms by

: genetic screens (general estimates).

Class Description Yeast Dictyostelium Worm Fly Sea Urchin Plant Human
. AGC PKA, PKC, PKG 17 (13%) 21 (7%) 30 (7%) 30 (13%) 29 (8%) 43 (4%) 63 (12%)
: CAMK Calcium/calmodulin Kinases 21 (16%) 21 (7%) 46 (10%) 32 (13%) 50 (14%) 89 (9%) 74 (14%)
CK1 Casein Kinase 4 (3%) 2 (1%) 85 (19%) 10 (4%) 6 (2%) 18 (2%) 12 (2%)

CMGC CDK, MAPK, GSK3, CLK 21 (16%) 28 (9%) 49 (11%) 33 (14%) 35 (10%) 65 (7%) 61 (12%)

Other 38 (29%) 71 (24%) 67 (15%) 45 (19%) 92 (26%) 19 (2%) 83 (16%)
STE Homologues of sterile 14 (11%) 44 (15%) 25 (6%) 18 (8%) 21 (6%) 67 (7%) 47 (9%)
TK Tyrosine Kinase 0 (0%) 0 (0%) 90 (20%) 32 (13%) 53 (15%) 0 (0%) 90 (17%)
TKL Tyrosine Kinase-like 0 (0%) 68 (23%) 15 (3%) 17 (7%) 35 (10%) 52 (5%)* 43 (8%)
RGC Receptor guanylate Cyclase 0 (0%) 0 (0%) 27 (6%) 6 (3%) 8 (2%) 0 (0%) 5 (1%)
RLK/Pelle Receptor Like Kinases 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 620 (64%) 0 (0%)
Atypical PDHK 2 (2%) 0 (0%) 1 (0%) 1 (0%) 2 (1%) 0 (0%) 5 (1%)
Alpha 0 (0%) 6 (2%) 4 (1%) 1 (0%) 3 (1%) 0 (0%) 6 (1%)
RIO 2 (2%) 2 (1%) 3 (1%) 3 (1%) 3 (1%) 0 (0%) 3 (1%)
TIF1 1 (1%) 1 (0%) 2 (0%) 1 (0%) 1 (0%) 0 (0%) 2 (0%)
: Other 2 (2%) 20 (7%) 1 (0%) 2 (1%) 8 (2%) 0 (0%) 9 (2%)
© ABC 3 2%) 4.(1%) 3 (1%) 3 (1%) 4.(1%) 0 (0%) 5 (1%)
Brd 0 (0%) 2 (1%) 1 (0%) 1 (0%) 1 (0%) 0 (0%) 4 (1%)
: PIKK 5 (4%) 5 (2%) 5 (1%) 5 (2%) 4 (1%) 0 (0%) 6 (1%)
Total 30 (100%) 295 (100%) 54 (100%) 240 (100%) 355 (100%) 973 (100%) 518 (100%)

* References to the different kinomes are mentioned in the text. * In plants, this group consists only of raf-like members in the A. thaliana genome.

: doi:10.1371/journal.pone.0000777.t001

protein kinases) [12], as well as in highly divergent kinase
structures. For instance, plant and unicellular eukaryotic genomes
do not contain any apparent kinases from the tyrosine kinase
group, despite the detection of phosphorylated tyrosine residues in
plants, suggesting that tyrosine phosphorylation in these organisms
1s possible or that it is mediated via other types of kinases [13-16].
Strikingly, of the 106 putative protein kinases identified in S. pombe
on the basis of primary sequence, only 67 have orthologues in S.
cerevisiea but 47 have an orthologue in H. sapiens [17], indicating
a great deal of conservation in kinases between different
organisms. This high degree of overlap might indicate the
presence of conservatism in kinase substrates too. In the P.
Jalciparum kinome, 30% of protein kinases belong to the FIKK
family of protein kinases that is apicomplexa-specific and not
found in other groups of ecukaryotes [12]. As mentioned
previously, plants contain a large group of serine/threonine
kinases (receptor-like kinases) not found in other eukaryotes. These
RLKSs most likely share a common evolutionary origin with the
receptor tyrosine kinases present in animals and are thus
sometimes collectively referred to as receptor kinases and
providing an explanation that tyrosine containing motifs on the
PepChip can be phosphorylated by these lysates [9]. Interestingly,
a recent wm silico report on the kinome of the sea urchin has
provided new evidence on the evolution of different kinase
subfamilies as being an intermediate eukaryote between animals
and plants [10]. Fungi such as yeast and Newrospora do not appear
to have representatives of the receptor kinase group, whereas the
slime mould D. discoideum does have receptor kinases, which fits
with the role of receptor kinases in multicellular organisms [18].
Thus, the eukaryotic family of protein kinases displays sub-
stantial diversity at the genetic level between different eukaryotic
families.
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Whether a kinase is able to phosphorylate its substrate depends
on multiple factors such as the physical localisation of both
molecules, availability of the substrate to the kinase, but a very
important factor, in case of a protein kinase, is the amino acid
context surrounding the phospho acceptor. The amino acids
surrounding the substrate amino acid confer specificity to which
kinase can bind correctly to the substrate and confer a phosphate
group to the acceptor. The fact that different kinases have different
target substrates is being exploited for phosphoproteome profiling
using peptide arrays. In this approach, kinase substrates described
in the PhosphoBase phosphorylation site database [19] are spotted
on a glass slide and incubated with cell lysates and 33P-labelled y-
ATP. Phosphorylation of target peptides in arrays has provided
substrate phosphorylation profiles for LPS-stimulated monocytes
and was instrumental for the discovery of Lck and Fyn kinases as
early targets of glucocorticoids [20,21]. Importantly, the extent to
which the diversity of kinases at the genetic level is reflected in
differences in substrate specificity has not been investigated on
a large scale.

In the present study, we investigated substrate requirements of
phosphoproteomes of several divergent eukaryotes by employing
peptide arrays on resting, unstimulated cellular lysates. Our results
show that the divergence of eukaryotic protein kinases observed at
the level of primary sequence is not completely reflected at the level
of substrate phosphorylation, revealing a large overlap in the
phosphorylation profiles from lysates of different eukaryotic origins.
Furthermore, the identified minimal eukaryotic phosphoproteome
suggests the presence of a set of kinase substrates in an ancestral
eukaryote that has since remained invariant in eukaryotic life. The
phosphoproteome seems to be involved in the maintenance of cell
homeostasis as judged from the source of the peptides involved and
thus may be a requisite for eukaryotic life [22].
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RESULTS AND DISCUSSION
Phosphorylation of peptide arrays exhibiting
mammalian-biased kinase substrates by divergent

eukaryote sources

A peptide array (PepChip) was employed to determine the
preference of cell lysates for kinase substrates. We used the
PhosphoBase resource (version 2.0) (now called Phospho.Elm:
http://phospho.elm.cu.org) as a source of diverse peptide
substrates for kinases [19]. This database contains kinase substrate
peptides from diverse organisms, including yeast and plant
peptides, but is strongly biased towards mammalian peptide
sequences (Figure 1A and Table S1). It must be noted that this set
of substrates is just a small subset of known protein kinase
substrates and the complete phosphoproteome which is considered
to be a lot bigger. Arrays were constructed by covalently coupling
chemically synthesized, soluble peptides to glass substrates as
described previously [21]. Arrays contained 1152 different
oligopeptides, covering the majority of substrate peptides available
through PhosphoBase (version 2.0). On each carrier, the array was
spotted twice to allow assessment of variability in substrate
phosphorylation. The final physical dimensions of the array were
25x75 mm. Each peptide spot had a diameter of approximately
250 um, and each spot was 620 pm from adjacent spots. When
the arrays were incubated with [33P-y] ATP and cell lysates from
diverse eukaryotic sources, radioactivity was efficiently incorpo-
rated. In contrast, no radioactivity was incorporated when arrays
were incubated with [33P-a] ATP and lysates, demonstrating that
spot phosphorylation was mediated by specific attachment of the
y-phosphate of ATP to the oligopeptides in the array (Figure 1B).
Both the technical replicates (same peptide on the same chip) and
the biological replicates were generally of good quality (see
supplementary data). Remarkably, the efficiencies by which cell
lysates derived from divergent eukaryotic sources phosphorylated
specific peptides in the array overlapped substantially, with
mammalian lysates showing **P incorporation in a large number
of spots (Figure 1C). This overlap in phosphorylation of a strongly
mammalian-biased set of kinase substrates indicates that a sub-
group of kinases is present in divergent eukaryotes has similar
peptide sequence requirements for catalysing phosphorylation
reactions.

Serine (S), threonine (T), and tyrosine (Y)

phosphorylation is similar in divergent eukaryotes

Eukaryotic organisms from the plant and fungal kingdoms were
not thought to express archetypical tyrosine kinases, as judged
from the primary sequences of kinases present in their genomes.
However, such organisms have been reported to be capable of
phosphorylating tyrosine residues via dual-specificity kinases
[11,14-16,23,24]. Another explanation for tyrosine phosphoryla-
tion by these lysates is the fact that serine, threonine, and tyrosine
are not the only phosphate acceptors in eukaryotes. Several lines of
research have already shown that histidine and aspartate are also
phosphorylated in eukaryotic cells (reviewed in [25-27]). There-
fore, another explanation could be that histidine and/or aspartate
kinases were a possible confounder in our minimal phosphopro-
teome set (Table 2). This is boosted by the observation that of the
353 monophospho-substrates, only 35% of the serine/threonine
motifs contained a histidine (H) or aspartate (D) and 60% of the
tyrosine motifs. The difference in the distribution of the H and D
amino acids between S/T and Y containing motifs could imply
that phosphorylation of histidine (H), aspartate (D) and tyrosine (Y)
might have a common ancestry and a coupled evolutionary
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background which is not unlikely as remarkable similarities exists
between these two classes of kinases (reviewed by Wolanin et al.
and references therein)[28]. However, most the tyrosine substrates
in our minimal phosphoproteome panel do not contain a histidine
or aspartate and therefore common evolutionary backgrounds for
histidine, aspartate and tyrosine seems less likely. Thus, the
absence of obvious tyrosine kinases in the plant and fungal
kingdoms does not result in the inability to phosphorylate tyrosine
containing substrates in these organisms. Thus, we compared the
relative capacities of animal-derived cell lysates to phosphorylate
tyrosine-containing peptide substrates with lysates obtained from
the other two eukaryotic kingdoms. To this end, we compared the
contribution of serine, threonine, or tyrosine amino acid-contain-
ing substrates to the total phosphorylation of all peptide substrates,
correcting for the relative abundance of the amino acid in the
entire set of substrates. Peptides that can be phosphorylated at
more than one residue would bias the results towards a particular
amino acid. For example, a peptide that is phosphorylated at two
adjacent serines could result in higher signal intensity than
a peptide phosphorylated on one threonine. Thus, only those
peptides with a single serine, threonine, or tyrosine phosphoryla-
tion site were considered (see Table S2). When array phosphor-
ylation was studied in this manner, it appeared that the relative
capacities of cell lysates to phosphorylate serine, threonine, or
tyrosine substrates were remarkably similar, independent of the
kingdom (Figure 2A and B).

Clustering of array phosphorylation patterns along

phylogenetic lines

We wished to determine whether the patterns of array phosphor-
ylation reflect phylogenetic relations among the various sources of
the cell lysates. To this end, we calculated the Spearman correla-
tion coeflicient among the array results using all datasets separately
(Table S3), combining datasets with similar origin (Table S4) or
combining datasets to organisms (T'able S5) and then clustered the
results according to Johnson (Figure 2C) [29]. Histograms the
distributions of positive spots of these three datasets analysis show
a normal distribution which is shifted to the right (Histogram S1,
S2 and S3). Cell lysates from plant and animal sources clustered
intra regna, with plants showing less intraregnal variation than
animals. This finding could arise from the fact that plant cell
lysates were produced from entire organisms, whereas animal
lysates were from specialised tissues. Strikingly, the variation in
array phosphorylation was comparable between different human
or different mouse lysates and between mammalian lysates and
a Drosophila lysate. Substrate preferences for kinases do seem to
have undergone some diversification after the separation of the
animal and plant branches of the eukaryotes. For example,
intraregnal variation in phosphorylation between monocotyledons
and dicotyledons is smaller than the variation between M. musculus
B-cells and H. sapiens macrophages. However, diversity in substrate
preferences apparently has not increased after the separation of
the Arthropoda and Chordata phyla, and the animal phospho-
proteome was established early in animal evolution. This
observation corresponds well with analyses of the animal
phosphoproteome employing the primary sequences of kinases
from divergent animals, as well as with very recent data showing
that all major signalling pathways are present in the Porifera
phylum, which separated from other animals very early in animal
evolution [30,31]. Lysates obtained from the fungal kingdom show
much more diversity in array phosphorylation than animal lysates,
with a P. pastoris lysate actually clustering with plants rather than
with other members of the fungal kingdom. A possible explanation
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Figure 1. (A) Distribution of the primary origin of substrates spotted on the PepChip by regnum and species. (B) Incubation of a lysate on
a PepChip with equal amounts of [*3P-¢]- and [>*P-y]-labelled ATP to show functional phosphorylation (C) Weighted average of at least three
PepChip profiles of the different samples.

doi:10.1371/journal.pone.0000777.g001
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Table 2. Distribution of the other phospho acceptors,
. histidine (H) and aspartate (D) in monophospho motifs
: (containing only one S, T or Y).

All Substrates Withou DH With DH %—DH  %-+DH

D STY  100% (353)
DST 87% (308)

100% (219)
92% (201)

100% (134) 62% 38%
80% (107) 65% 35%

'S 69% (245) 72% (159) 64% (86) 65% 35%
18% (63) 19% (42) 16% (21) 67% 33%
13% (45) 8% (18) 20% (27) 40% 60%

doi:10.1371/journal.pone.0000777.t002

1s that fungi consist of a diverse group of organisms closely related
to plants [32,33]. It must be noted however, that the other two
fungi in the set are also not clustered together, again indicating
a large diversity. The diversity in the phosphoproteomes can of
course also be caused by the changes in evolutionary pressure on
the different samples. It is possible that the evolutionary pressure
on metabolic processes in organisms like fungi is of a different level
when compared to plants or animals. When the average
phosphorylation patterns of the plant, fungal, and animal
kingdoms were compared (Figure 2C), the phosphorylation
pattern of plants was found to more closely resemble the animal
phosphorylation pattern than the fungal pattern.

Extraction of a minimal phosphoproteome
The clustering analysis indicated that a significant subset of
peptide substrates has remained evolutionarily stabile in terms of
phosphorylation, irrespective of the eukaryotic source of the cell
lysate. Hence, we decided to investigate the set of substrates whose
phosphorylation is shared by all organisms tested in the present
study. It appeared that phosphorylation of a set of 128 substrates
was common to all organisms tested (If phosphorylation is
random, one would expect only 0.6 substrates common in
different tissues (binomial distribution 13 positive, 1152 total,
cumulative chance 0,02; p<<0.01) (supplementary information in
Table S6). Table 3 lists the set of substrates that are
phosphorylated by the divergent eukaryote cell lysates tested.
Some of the substrates in the set are highly similar, e.g., 12 slightly
different peptides containing Serl5 of glycogen phosphorylase that
were apparently deposited in PhosphoBase as separate substrates.
When the list of pan-eukaryotic kinase targets is corrected for
essentially identical peptide substrates, 71 different peptide
substrates remained. These peptides are, in our set, the substrates
for what may be termed a minimal eukaryotic phosphoproteome.
Remarkably, all substrates in table 3 contain one or more lysines
(K), suggesting a bias in sequence composition or kinase. However,
this seems unlikely as studies by Brinkworth et al. showed that,
when using prediction models for substrates of kinases, the basic
amino acids lysine (K) and arginine (R) are often required for
optimal recognition of substrates [34]. Therefore the fact that
lysine and arginine are present in the substrates in table 3 is not
completely unexpected. Furthermore, it must be noted that the
annotation of the substrates is based on the available data at
present, and therefore incomplete. Profiling fungal lysates on
a primarily mammalian set of substrates can cause the phosphor-
ylation of irrelevant motifs. However the fact that these motifs are
still phosphorylated clearly indicates the possible presence for
kinase<>substrate interactions in other organisms even though no
direct i vivo relevance is apparent. Table 4 shows the distribution
of peptide substrates with regard to the molecular functions of their
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source proteins (according to Gene Ontology, based on human
homologues in the Swiss-Prot database whenever possible). These
data suggest that the phosphorylation events of this minimal
phosphoproteome are associated with cell homeostasis; DNA
replication, organisation, and stability; RNA translation; cytoskeletal
organisation; motility; transmembrane ion transport; and signal
transduction. Indeed, these are functions associated with every
eukaryotic cell. When all of the peptides on the chip were subjected
to a Blastp search (results are listed on http://www.koskov.nl), not all
of the peptides included in the minimal kinome scored higher
(p<<0.01) for multiregnal homology hits than peptides not present in
the pan-eukaryotic kinase substrate set. A possible explanation for
this observation is that knowledge of non-mammalian regulation of
phosphorylation is not as elaborate as that in mammals.

For most substrates in this minimal phosphoproteome set,
a kinase capable of phosphorylating the peptide has been
described (Table 3). Although most of the kinases in this list are
common to all eukaryotes (e.g., phosphorylase kinase and S6
kinase), some are unique to animals. This is especially true for the
tyrosine kinases Src, Ros, and c-Fms, which do not have
orthologues in plants or fungi. Hence, phosphorylation of tyrosine
in the substrates by plant or fungal cell lysates proceeds through
other kinases that have similar substrate specificities as the
members of the tyrosine kinase family in animals. Possible
candidates for such phosphorylation are the kinases belonging to
the dual specificity DYRK, STE7, and Wee family of kinases,
which are thought to be capable of tyrosine phosphorylation [35—
38]. However, unique groups of kinases in these species could also
be candidates. Interestingly, a recent analysis of the D. discoideum
kinome identified a number of kinases that, based on their primary
sequences, may act as tyrosine kinases [18]. In 4. thaliana, APK1 is
capable of tyrosine phosphorylation [13]. It would be interesting to
investigate whether any of these kinases are responsible for this
minimal phosphoproteome tyrosine phosphorylation events ob-
served in the present study. Interestingly, inhibitors of animal
tyrosine kinases also function in plants, suggesting substantial
structural homology between the kinases responsible for tyrosine
phosphorylation in both kingdoms [39,40]. Further insights into
kinase evolution and specificity in different species are needed.

Peptides in this minimal phosphoproteome are not

general kinase substrates

An important question concerns the necessity of this minimal
eukaryotic phosphoproteome for cell function. The finding that
a set of peptide substrates is phosphorylated by cell lysates from
highly divergent eukaryotes may indicate that such kinase activity
is essential for eukaryotic life and that strong evolutionary pressure
exists to prevent its loss. An alternative explanation would be that
these substrates act as so-called tiber-substrates that are relatively
non-specifically phosphorylated by multiple kinases. To investigate
this question, we incubated chips with relatively high concentra-
tions of purified kinases, eg., human Tpl2 (MAP3KS8). We
observed that the substrates phosphorylated by these purified
kinases did not overlap with the set of substrates comprising this
minimal eukaryotic phosphoproteome (R2=0.11). Thus, phos-
phorylation of the substrates in the minimal phosphoproteome
likely reflects the specific activities of multiple kinases in the
eukaryotic cell lysates. However, this can only be validated when
the phosphorylation profile all kinases are analysed separately.
Apparently, strong evolutionary pressure on a minimal phospho-
proteome exists, counteracting changes in substrate specificity for
the kinases responsible for these phosphorylation events. By
inference, this set of substrate motifs was probably present in an
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Figure 2. (A) Distribution of serine, threonine, and tyrosine substrates of the different phyla on the PepChip, before (left) and after (right)
correction for the abundance of each phosphate acceptor on the PepChip. (B) Venn diagram of spots phosphorylated by the different regna. (C)
Hierarchical clustering (according to Johnson [29]) of the phosphorylated motifs among the lysates tested.

doi:10.1371/journal.pone.0000777.g002

ancestral eukaryotic progenitor cell. This notion is in agreement
with a recent study by Scheeftf and Bourne provides convincing
evidence for the evolution of the various kinase families from
a common ancestor [41]. It is tempting to speculate that this
ancestral protein kinase, or other kinases that appeared relatively
early in the history of eukaryotic life, delivered the foundation of
essential kinase substrate motifs (the minimal eukaryotic phospho-
proteome) that remained stabile ever since.

@ PLoS ONE | www.plosone.org

Concluding, in this paper we described the presence of a set of
kinase substrates that is recognised and phosphorylated by a diverse
panel of eukaryotic cell lysates. This is remarkable since this set is
biased towards mammalian motifs, but can still be a target of non
mammalian lysates. The fact that this occurs indicates that some
level of conservation exists in the eukaryotic linage. Analysis of the
preferred substrates revealed that lysine and arginine have an
important role in primary sequence of kinase substrates. The
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Table 3. Unique substrates phosphorylated in the majority of the profiles tested (supplementary info). Distribution in other species
: and the conservation of each substrate are also indicated.

Sequence Ph-Site Put. Kinase SwissProt  Protein Homologues Conserved
GQEVYVKKT Y-992 auto Q02763 Angiopoietin-1 receptor vertebrate, yeast similar (except yeast)
LEKKYVRRD Y-706 auto P09581 macrophage colony stimulating factor 1 receptor mammal highly similar
* KQPIYIVME Y-424 auto P00541 Tyrosine-protein kinase transforming protein Fps mammal, fly highly similar
YKNDYYRKR Y-2131 auto P08941 Ros proto-oncogene tyrosine kinase vertebrate, yeast, worm divergent
FKAFSPKGS S-597 CDK P12957 Caldesmon aves highly similar
EFPLSPPKK S-37 CDK P16949 stathmin mammal, insect similar

* VIKRSPRKR S-646 CDK P08153 transcriptional factor SWI5 yeast, mammal divergent
NWHMTPPRK T-316 CDK P13681 serine/threonine protein phosphatase PP1 bacterial, yeast divergent
KISITSRKA T-36 ERA P06616 GTP-binding protein era insect -

: DSTYYKASK Y-577 FAK P34152 Focal adhesion kinase mammal, amphibian highly similar
AKRISGKMA S-277 G1/S kinase ?  P13863 Cell division control protein 2 mammal highly similar
AVVRTPPKS T-231 GSK3 P10636 Microtubule-associated protein tau mammal highly similar
* VKRISGLIY S-47 H4-PK-| P02304 Histone H4 universal highly similar
KGTGYIKTE Y-701 JAK,Src P42224 Signal Transducer and Activator of Transcription 1 mammal highly similar
KNIVTPRTP T-94 MAPK P02687 Myelin basic protein mammal, amphibian highly similar
ELILSPRSK S-24 MAPK,CDK P16949 stathmin mammal, insect similar
AKKMSTYNV S-315 MHCK P19706 myosin heavy chain mammal -
KRAQISVRGL S-15 PhK P11217 glycogen phosphorylase mammal similar
TKKTSFVNF S-218 PKA P41035 eukaryotic translation initation factor 2 beta mammal, plant, yeast, highly similar
: insect

SRRQSVLVK S-715 PKA Q13002 glutamate receptor 6 mammal, amphibian similar
RKASRKE S-32 PKA P02277 Histone H2B mammal, shark divergent

* KRKRSRKES S-32 PKA P02278 Histone H2B chordata highly similar
KRFGSKAHM S-374 PKA P29476 nitric-oxide synthase mammal highly similar
EIKKSWSRW S-467 PKA P25107 parathyroid hormone/parathyroid hormone-related mammal, yeast, funghi divergent

: peptide receptor

KRRSSSYHV S-687 PKA P04775 Sodium channel protein type Il alpha mammal, squid similar
KRKSSQALV S-15 PKA P03373 Transforming protein erbA aves divergent

: RAKRSGSV S-27 PKA P12798 phosphorylase b kinase beta mammal similar
KKKKASVA S-43 PKA P12928 pyruvate kinase - -

KRRGSVPIL S-247 PKA P16452 erythrocyte membrane protein band 4.2 mammal, yeast divergent
KLRRSSSVG S-381 PKA,PKC P02718 Acetylcholine receptor protein delta fish unique
KTRSSRAGL S-19 PKA,PKC P02261 Histone H2A universal highly similar
KRPSVRAKA S-10 PKA,PKC P02687 Myelin basic protein mammal, amphibian highly similar
GGRASDYKS S-131 PKA,PKC P02687 Myelin basic protein mammal, amphibian highly similar
* KRKNSILNP S-700 PKA,PKG P13569 cystic fibrosis transmembrane conductance regulator mammal highly similar
TRIPSAKKY S-104 PKC Q62048 astrocytic phosphoprotein PEA-15 mammal highly similar
KTTASTRKV S-790 PKC P13569 cystic fibrosis transmembrane conductance regulator mammal highly similar
* RKAASVIAK S-43 PKC P06764 DNA polymerase beta mammal, amphibian highly similar
KKRLSVERI S-29 PKC P11388 DNA topoisomerase Il alpha mammal highly similar
RGKSSSYSK S-577 PKC P02671 Fibrinogen alpha human -

: STLASSFKR S-889 PKC Q05586 glutamate (NMDA) receptor subunit zeta 1 mammal, plant similar
RVRKTKGKY T-710 PKC P19490 glutamate (NMDA) receptor subunit zeta 1 mammal, plant similar
GGSVTKKRK T-416 PKC P11516 Lamin A/C mammal, worm divergent
KKKFSFKKP S-92 PKC P28667 MARCKS-related protein mammal, aves highly similar
: AKDASKRGR S-181 PKC P10522 myelin mammal, aves highly similar
KRPSKRAKA S-7 PKC P02687 Myelin basic protein mammal, amphibian highly similar
KRAKAKTAKKR ~ T-9 PKC P02612 Myosin regulatory light chain 2 mammal, aves, mussel similar

: SSKRAKAK S-1 PKC P02612 Myosin regulatory light chain 2 mammal, aves, mussel similar
LSGFSFKKS S-162 PKC P30009 myristolated alanine-rich C-kinase substrate mammal, aves highly similar
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Sequence Ph-Site Put. Kinase SwissProt  Protein Homologues Conserved
LSGFSFKKN S-169 PKC P29966 myristolated alanine-rich C-kinase substrate mammal, aves highly similar
KKRFSFKKS S-157 PKC P12624 myristolated alanine-rich C-kinase substrate (WVARCKS)  mammal highly similar
GDKKSKKAK S-23 PKC P06685 Na+/K+ ATPase 1 mammal, bacteria divergent
KIQASFRGH S-36 PKC P35722 neurogranin vertebrate divergent
KGQESFKKQ S-227 PKC P06748 Nucleophosmin mammal highly similar
KKLGSKKPQ S-1506  PKC P04775 Sodium channel protein type Il alpha mammal, bacteria divergent

* KSKISASRK S-43 PKC P08057 troponin | mammal, aves, amphibian highly similar
KAKVTGRWK T-280 PKC P13789 troponin T mammal highly similar
ALGISYGRK S-46 PKC P04326 TAT protein viral similar
RVRKSKGKY S-717 PKC,PKG P19491 glutamate receptor 2 mammal, insect similar

* FRKFTKSER T-84 PKG P00516 cGMP-dependent protein kinase (PKG) mammal, yeast similar
GAFSTVKGV T-489 RK P28327 rhodopsin kinase mammal highly similar
SRRPSYRKI S-133 S6K P16220 cAMP response element binding protein mammal highly similar
KASASPRRK S-29 sperm-specific P02256 Histone H1 sea urchin highly similar
KRAASPRKS S-10 sperm-specific P02256 Histone H1 sea urchin highly similar
KGGSYSQAA Y-344 Src P01889 HLA class | histocompatibility antigen B7 mammal highly similar
: TPAISPSKR S-99 unknown P33316 deoxyuridine 5'-triphosphate nucleotidohydrolase human -
KKDVTPVKA T-53 unknown P10156 Histone H1 bacteria -
KSPAKTPVK S-766 unknown P19246 Neurofilament triplet H protein mammal -

KKASFKAKK S-351 unknown Q11179 Serine/threonine-protein kinase C amphibian, mammal divergent

: SSLKSRKRA S-39 unknown P22613 spermatid nuclear transition protein 1 mammal highly similar
KYRKSSLKS S-35 unknown P22613 spermatid nuclear transition protein 1 mammal highly similar
GSLKSRKRA S-39 unknown P17306 spermatid nuclear transition protein 1 mammal -

. doi:10.1371/journal.pone.0000777.t003

possibility that the minimal kinome is produced by a few kinases
seems unlikely since single kinase experiments reproduce a very
limited part of this panel. However a limited set of kinases can very
well be able to reproduce this set. This seems not unlikely since the
major function of this set is to maintain cell homeostasis, other
more specialised functions require specialised kinases.

MATERIALS AND METHODS

Organisms

Whole extracts of C. albicans, P. pastoris, F. Solani, D. melanogaster, T.
aestivium and A. thaliana were used and cell types of M. musculus and
H. sapiens were used as mentioned in the text.

Peptide Array Analysis

For kinome array samples, 10° ceq or 500 pg were lysed or
homogenised in 100 pl of cell lysis buffer (20 mM Tris-HCL, pH 7.5,
150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-
100, 2.5 mM sodium pyrophosphate, | mM MgCl12, 1 mM f-
glycerophosphate, | mM NazVO,, 1 mM NaF, 1 pug/ml leupeptin,
1 pg/ml aprotinin, 1 mM PMSF). The cell lysates were sub-
sequently cleared on a 0.22-um filter. Peptide array incubation mix
was produced by adding 10 pl of filter-cleared activation mix (50%
glycerol, 50 uM [y-33P] ATP, 0.05% v/v Brij-35, 0.25 mg/ml
bovine serum albumin, [y-33P] ATP (1000 kBq)). Next, the peptide
array mix was added onto the chip, and the chip was kept at 37°C in
a humidified stove for 90 min. Subsequently the peptide array was
washed twice with Tris-buffered saline with Tween, twice in 2 M
NaCl, and twice in demineralized HyO and then air-dried. The
experiments were performed three times in duplicate.

@ PLoS ONE | www.plosone.org

Analysis of Peptide Array

The chips were exposed to a phosphorimager plate for 72 hours,
and the density of the spots was measured and analyzed with array
software.

Analysis

For the analysis clustering using the spearman correlation
coefficient was calculated for each combination of sets and
clustering was performed using Johnston hierarchical clustering
schemes. Inclusion parameters for each of the kinome profiles are
described in supplemental data, Table S4.

SUPPORTING INFORMATION

Table S1 Substrates spotted on the PepChip.
Found at: doi:10.1371/journal.pone.0000777.s001 (0.17 MB
XLS)

Table S2 List of monophospho-acceptor motifs, with the
distribution of histidine and aspartate residues indicated.

Found at: doi:10.1371/journal.pone.0000777.s002 (0.11 MB
XLS)

Table 83 Presence (1) or absence (0) of spots phosphorylated by
the different lysates tested. This table is used to determine the
clustering of the different lysates.

Found at: doi:10.1371/journal.pone.0000777.s003 (0.32 MB
XLS)

Table S4 Presence (1) or absence (0) of spots phosphorylated
averaged for the different sample background.

August 2007 | Issue 8 | e777



Minimal Phosphoproteome

Auanoe 103dadal | ssepd JHW asuodsal saunwiwi uabnue Ajignedwodolsty | ssep viH 68810d
buljeubis pareipaw-apiisoutoydsoyd
Buipuig YNQ ‘2JN129YDJe UIJRWOIYD JO 9OURUSIUIEW JO/PUB JUSWYSI|CRISD ¥H duoIsIH 50£z0d
Buipuiq ¥YNQ Alquiasse awosoa|pnu gCH 2u0isIH £1720d
Buipuiq YNa Alquiasse awosoajpnu | 9dA) gzH auoisiH 8/720d
buipuiq YNQ A|lquiasse awosoa[dnu VZH 3U0IsSIH 19220d
buipuig YNQ Algwiasse awoso3[dnu ‘sisausbolq pue uoleziuebio swosowolyd LH duoisiH 95101d
buipuig YNQ Algwiasse awoso3[dnu ‘sisausbolq pue uoneziuebio swosowolyd LH duoisiH 95220d
ulpulq das/d1s [042u0d yimoib esd ugay0.d Bulpulg-d19 91990d
Aanoe asejfioydsoyd usbodA|b wisijogelaw usbodA|b asejfioydsoyd uabodA|H /lziLd
A1Aoe Jo1dadas a1eweln|b aA13d3|9s dieuley uodsuely ‘uoissiwsuesy dndeuds ‘Aemyed buieubis syewein|b 9 J01dadal ajewein|n Z00ELD
uoissiwsuesy dndeuds ‘uol winiyyl| 01 asuodsal ‘d1bi191ewelIn|b ‘uoissiwsues}
cindeuds Jo uonenbas ‘bulpAdas 103dadal Jo uonenbal ‘uoniezijeusdiul
Ayanoe soidadas ‘Buipulq ueyoad ‘Bulpulg urewop zad Jo1dadai ‘uoissiwsued) dndeuds jo uoneinbas sAnisod ‘uoneziedo| uieroid C 1oydadai sjeweln|n 16¥61d
1uapuadap-yNQ@ uondudsues) ‘uondnpsuell |eubis | 19z uNngns J0ldadas (YAWN) 1ewein|n 985500
Ajanoe Joydadas uoissiwsues) dideuds ‘joueyls
a1eweln|b aAd3as yeuedse-g-jAYyrdw-N ‘A 0} asuodsas ‘Aidnse|d ondeuAs jo uonenbas ‘Alowsw Jo/pue Buiules)
|]ouueyd uol pajeb-auA|b ‘Buipulq suA|6 ‘Buipuiq a1ewelin|b ‘Kemyzed Buijeubis a1ewein|b ‘Lodsuel) uolled ‘siSeISOaWOY Uol wnidjed | e19z nungns 103dadal [YQWN] S1ewein|n LE¥SEd
uolnpsuel) [eubis ‘uoreiBIW UOINAU
‘azis uebio jo uonenbas aanebau ‘uoneziuebio UOIR|RYSOIAD SNgNI0IDIW
Auanoe aseupy ‘buipuiq uisioid ‘uoneziuebio xulew Jejn||adel1xa ‘uoliezi|edo| snapNu ‘Aljnow |32 | 9seury uoisaypy |e304 SLved
x3|dwod uabouuqyy ‘uoibal JejnjjedeXd uonesausbal anssi ‘uonenbeod poojq Josindaid ureyd eydje usbouuqi4 1/920d
buipuiq pioe d19PNU ‘A1IAIDe J01DR) UONR|SURI] ‘Bulpulq YNY uolleIul [euolie|suel) €199 1UNQgNS g 10128} UOIeNIUl Uolie|suel) d1joAiexn] SE0Lbd
Buipuiq D aseuny uiRroid ‘Buipuiq Bnip ‘AlAde asesswosiodol YNNG sisoydode jo uonejnbas ‘uondnpsuely jeubis ‘uonedijdas yYNG ‘ledal YN eydje || asesswosiodol YN 88¢lLd
Buipuiq ajngnioniw ‘AuAnde aserswAjod yNg uonedijdas YN@ uapuadap-yNQg ‘ltedas YN e1aq asesdwAjod yNGd +¥9/90d
Auanoe aseyeydsoydip 41np wsijogeldw pide di3Pnu ‘uoneddal YNd asejoipAyopnoajpnu aeydsoydul-,§ auipunAxosp gleeed
Buipuiq ue104d ‘Buipulq urewop zad
‘A1IAI1DR 3sed |y Buljjoi1uod-9dueIdNPUOD-[PUURYD ‘AlIAIIDE [SUURYD
apuojyd juapuadap-uonejlioydsoyd pue Buipuig-d1y ‘Buipulq 41y yodsuel) ‘abueydxa snoaseb Aiojesdsal Joje|n6aJ 3d2ULINPUOD SueIqUIBWISURI] SISOIqL dIISAD 69S€1Ld
1uspuadap-yNQ ‘uondudsuesy jo uonenbal ‘924> |33 ybnoiyy uoissaiboid
Aaioe 40 uone|nbas ‘buissadoid YNYW jo uonenbal ‘Ymoib |95 Jo uone|nbas
aseun) auluoaiyl/auuas uyoad ‘Buipuiq uiLioid ‘bulpuiq d1v ‘uonejfioydsoyd pioe oujwe ui10id ‘sisoliw ‘uonesayijoid |j9d ‘sisordode Z ud104d [013U0d U €98€1d
Auanoe
10108} uondudsuesy ‘AlAnde 103dej0d uondudsueny ‘buipulq uialoid uondudsuesy Juspuadap-yNQg ‘uonanpsuely jeubis uigloid bulpuiq Juswale asuodsal dNY2 0zeolLd
Buipuiq ulnpowied ‘uisoAwodouy ‘uioe AMnow 12D uowisap|ed 1S62T1d
uodsuel ‘sisoydode
buipuiq urazoid Jo uone|nbas ‘podwi 9sodn|b jo uone|nbal aanebau ‘sisoydode-nue G1-v3d ueoidoydsoyd snk>onsy 870790
AuAnoe aseun| auisoiAy uiroid Kemyied bBuijeubis aseun| auisoily
101da@das sueiquiswisuel) ‘AlAnde Joydadal ‘AlAnde aseury uialoid uia104d J01dada1 dueiquBWSURI] ‘uondNpsuel) jeubis ‘Buljeubis ||93-]j2d 103dadas |-unlodolbuy €9/200
AUAIDR [SUUBYD DAI1D9]95-UOIIED PIIRAIDE-3UII0YD|A1908 JIUOodIU uodsues) ‘uondnpsuel) [eubis ‘UoideIIUOD JPPSNW Josindaid eyPp nungns uieload Jo1dedal suljoydjA19dy 81/70d
uonduNy JenddoN ssa30.d |ed1bojolg uidl0.d 101dSSIMS

"}9S 91RJISQNS PIZIUBWNY JOJ UMOYS ‘SWOUD] [ewiUlW 3y} JO S91eJISqNS Y3} J0) dseqelep 101d-sSImg 3yl 03 buipiodde A6ojojuQ auao v a|qel

@ PLoS ONE | www.plosone.org

August 2007 | Issue 8 | e777



Minimal Phosphoproteome

Buipuiq ¥YNQ

Buipuiq ¥YNG

AuAnoe [puueyd wnipos paieb-abeljop

Auanoe
Joyoe) uondudsuesy ‘bBuipuiq uiRioid ‘ANAIDE JSdNPSsueL) eubis
101da33J 3U0IAd (UlRWOP-00ZQ) SSe|2-UoidSIul/uUndlodoleway

Ayanoe aseury uyoid

AuAioe 103dadas ‘ANAIIDe aseupy auisolkl-uiold

Auaoe aseury uisyold

Ayanoe J03dadal suowioy plollyiesed

Buipuiq uia10id papjojun ‘AliAnde 101eAldROD uondudsuesl
‘Buipuiq ui10.d 1e] ‘Buipulq YNY ‘A1IA1DE UOIIEZIIBWIPOWOY
uiaoid ‘A3Al3de UoNeZIIBWIPOIRIAY ulRYold ‘Bulpulq geddey-4N

AuAnoe aseyjuks apixo-dumu
Buipuiq uiinpowjed

COuw_wv_mOtAu JO JUa2N1ISUod [einidnils

Ajanoe ased]y buibueyoxa-wnissejod:wnipos
Buipuiq ulnpowed ‘bulpulg Judawe|ly unde
Buipuig ulnpowied ‘bulpuig JusWe(l ulIde
Buipuig ulnpowied ‘bulpuig JusWe(l ul3de

AlA1DR JOJOW JUBWE|IYOIdIW ‘Bulpulg UOl wnidjed ‘AlIANDe ased |y

uonebuole Jespnu prewlads ‘Aunow wiads ‘aiedal yeauq puens
9]6uls ‘uondnpoidal [enxas ‘A|qUISSSeSIP SWOSo[PNU ‘suidloid [BIoSOWw oIy
Jo abueydxe ‘uoneziiuey ‘Buiduals unewo.yd ‘Buippowal unewolyd

uonebuols Jespnu prewlads ‘Annow wiads ‘Jiedal yealq puens
916uls ‘uondNpoldal [enxas ‘A|quiassesip aWosoa|dINuU ‘suid3oid |ewosowolyd
Jo abueydxa ‘uonezi|iuay ‘BuduI|IS unewWOoIYd ‘BullPPOWI UneWOIYD

uodsues) uol wnipos ‘jelaualod uoilde Jo uolesduab

uialoid 1y]S jo uonefioydsoyd

2uIs0iA1 ‘Jajowoud || asesswAjod yNY woly uondudsuel) ‘uordnpsues) [eubis
‘ayisesed 4o uaboyied 1sad 03 asuodsal ‘91241 |31 ybnoiyy uoissaiboid

40 uone|nbas ‘spedsed geddey-4N/aseury geddey-| ‘uoneande asedsed

umousun
uonpnpsues) [eubis

Buijeubis pajeipaw uisdopoys
‘Remyzed Buijeubis uidyoid 103dadas pajdnod uidloid-o jo uonenbas

juswdolanap
|e19|)s 49budsSaW PuoIAS dPII03PNU dIPAd> 03 pajdnod ‘buleubis uiRioid-o

uondnpsuesy [eubis ‘Ajquasse

awosoqu ‘ssails 01 asuodsal ‘Lodsueny diwse|doifdosdnu ‘uonessyold |9
J0 uone|nbas annebau ‘Lodsuesy uidloid JejnjjEdeNUL ‘D]PAD BWOSOIIUDD
‘buibe 19> ‘sisoydode-jaue ‘1031oey uondudsuesy geddey-4N JO UOlIRAIDE

uol12eIUOD BPShW
uolnonpsuel) eubis ‘QusawdojaAsp WdsAs SNoAIBU
sisouabolq pue uoneziuebio U0IB|RSOIAD JUSWElY SeIPAWIDIUI

Ajjnow wiads ‘podsuesy uol wnipos ‘uodwi uol wnissejod
‘sise}soawoy uol uaboipAy ‘uodsuesy uojoid pajdnod siskjoIpAy d1v

UOIDRIIUOD SISNW YI00WS ‘JUSWSAOW PISeq-Juswielly ufide

JUSWISAOW P3seg-juswe|y uipde

uolssiwsuesy dideuls JuUswyeaYsSUS

| uil04d uonISUeL) JB3PNU pliewISds

| ui104d uonisues) sespnu prewsads

z 2dA1 u104d [DUURY> WNIPOS

e1aq/eyde-|
uondidsues) Jo J0JeAlde pue Jadnpsuel [eubis

D 9seury U19304d-3Ujuoa1yl/aulias

SOY aseury uR3oid-auisolf} ausbodouo-030id

aseury uisdopoyy

J01dadas apndad
paiejai-suowloy proiAylesed/auowioy pioikyesed

(WdN) utwsoydoapnN
9seyuAs apIXo-duu
ujuesboinaN

uidlo4d H 19]d113 JusWe|OINBN

Josindaid ureyd
L-eydje ased ]|y buniodsuesl-wnisseyod/wnipos

91eJ41SgNS dSeU-D Ydu-suluele palejkoisuAp
2je.IsgNs dseup)-) you-auiuele pajejkoisuAp
21e35gNs dseun)-) you-auiuele pajejkoisuAp
Z uteyd 1ybi| A1oieinbas uisoAy

d| uteyd Aaeay uisoAp

€l9zed

90€/1d
S/L¥0d

veeevd
6/LLLD
L¥7680d

JA4X 14 ]

L0lSed

8%7/90d
9.v6td
ceLSsed
oveeld

§8990d
6000€d
9966¢d
¥¢ocld
cl9zod
90/61d

y1eays uljaAw JO UsNIIISUOD [eINIdNIS 9AJIBU ‘asuodsal dunwiwl “JUaWdo[aA3P WRISAS SNOAIDU [RIIUDD (dgW) utaro.d diseq ulPAW /8970d
A1IAnDe 9|Nd9joW [BANIONIIS uoissjwsuely ddeuls ulRAW 7esolLd
uonezuswAjod sjngniosdiw Jo uonenbal aAnisod ‘UOISUSIXD UOXE JO
U013[3X5014d JO JUINUISUOD |eINIdNIIS ‘Bulpulq ulewop uone|nbas aAnIsod ‘suoinau Jo uonelduab ‘uonezuswAjodap sngnioniw Jo
€HS ‘Buipuig ajngniomniw ‘Buipulq uieioidodl| ‘Buipuiq swAzua uone|nbas aAnebau ‘sissuabolq pue uoleziuebio U013|RNSOILD 3jNGNICDIW ney uldoid paleosse-a|NgNIoIN 9€901d
Buipuiq ulnpowijed ‘Buipulq Juswe|ly uide uononpsuely eubis ‘Ayjow |92 uiajoid paie[aI-SHIYYIN £9982d
uoldnpsues}
Ayianoe Jo1dadas Joyoey bunenwis Auojod abeydoidew jeubis ‘Juswdolanap ‘uonesdyljoid |19 ‘asuodsal [eiowny |eiqosdiwiue J03dadas | 401dey Bunejnwis-Auojod abeydoidepy 18560d
buipuiq urazoid sisauabolq pue uoneziuebio sueiquiaw Jeapnu J/V ulweq 91611ld
uonduN4 Jejndsjon ssadoud |edibojoig uiRl04d 101dSSIMS

"JUod *y d|qeL

@ PLoS ONE | www.plosone.org

August 2007 | Issue 8 | e777

10



actin binding, calcium channel inhibitor activity, protein binding

protein binding, thyroid hormone receptor activity, transcription
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Found at: doi:10.1371/journal.pone.0000777.s004 (0.23 MB
XLS)

Table 85 Presence (1) or absence (0) of spots phosphorylated
averaged for the different organisms.

Found at: doi:10.1371/journal.pone.0000777.s005 (0.25 MB
XLS)

Table S6 Calculation of the probability that 116 trials
(substrates) are positive (in at least 90% of the samples, corrected
for origin bias) in a total number of 1152 trials (= whole PepChip)
using a binominal distribution calculation (http://www.stat.sc.
edu/~west/applets/binomialdemo.html). The p-value for success
in the binomial distribution is calculated by using the cumulative
relative amount of positive spots for every organism. The result of
this test shows the chance that a spot is phosphorylated in every
set.

Found at: doi:10.1371/journal.pone.0000777.s006 (0.32 MB
XLS)

Histogram S1 Histogram of frequency distribution of Table S3.
Found at: doi:10.1371/journal.pone.0000777.s007 (0.02 MB
XLS)

Histogram 82 Histogram of frequency distribution of Table S4.
Found at: doi:10.1371/journal.pone.0000777.s008 (0.02 MB
XLS)

Histogram S3 Histogram of frequency distribution of Table S5.
Found at: doi:10.1371/journal.pone.0000777.s009 (0.03 MB
XLS)
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