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Abstract
Brain aging is associated with inflammatory changes. However, data on how the brain arachidonic
acid (AA) metabolism is altered as a function of age are limited and discrepant. AA is released from
membrane phospholipids by phospholipase A2 (PLA2) and then further metabolized to bioactive
prostaglandins and thromboxanes by cyclooxygenases (COX) -1 and -2. We examined the
phospholipase A2 (PLA2)/cyclooxygenase (COX)-mediated AA metabolic pathway in the
hippocampus and cerebral cortex of 4, 12, 24 and 30 month-old rats. A 2-fold increase in brain
thromboxane B2 level in 24 and 30 months was accompanied by increased hippocampal COX-1
mRNA levels at 12, 24, and 30 months. COX-2 mRNA expression was significantly decreased only
at 30 months. Hippocampal Ca2+-independent iPLA2 mRNA levels were decreased at 24 and 30
months without any change in Ca2+-dependent PLA2 expression. In the cerebral cortex, mRNA levels
of COX and PLA2 were not significantly changed. The specific changes in the AA cascade observed
in the hippocampus may alter phospholipids homeostasis and possibly increase the susceptibility of
the aging brain to neuroinflammation.
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1. Introduction
Aging is associated with increased inflammatory responses and vulnerability of neurons to
degeneration [17,18,22,39]. Some authors have raised the possibility that inflammation may
occur during normal aging and increase the vulnerability to neurodegenerative disorders such
as Alzheimer’s disease (AD) [7,20,26]. Since the arachidonic acid (AA) cascade plays a key
role in neuroinflammation [37], we thought it of interest to identify the changes that occur in
this pathway during physiological aging.

AA (20:4n-6) is released from membrane phospholipids by phospholipase A2 (PLA2) enzymes.
The PLA2 family can be generally divided into two groups: the Ca2+-independent PLA2
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(iPLA2) and the Ca2+-dependent PLA2, which includes secretory (sPLA2) and cytosolic
PLA2 (cPLA2) [24]. iPLA2 is thought to mediate homeostatic phospholipid remodeling
through fatty acid deacylation/reacylation reactions [49] and may also be involved in cellular
signaling [5]. In contrast to cPLA2, which releases predominantly AA, iPLA2 has been
suggested to selectively release docosahexaenoic acid (DHA; 22:6n-3), a n-3 polyunsaturated
fatty acid highly concentrated in brain membranes [42,43]. Once released, AA is then converted
to bioactive prostaglandins and thromboxanes by cyclooxygenase (COX) enzymes. Two
isoforms of COX have been described: COX-1, constitutively expressed in most tissues [30],
but also induced by certain inflammatory stimuli in peripheral tissues [46], and COX-2,
generally induced by inflammatory stimuli including cytokines, hormones, and mitogens
[44], but also constitutively expressed in the central nervous system, especially in pyramidal
neurons of hippocampal and cortical circuits [50].

Learning and memory deficits have been well documented in aged F344 rats [14,21,41,45].
Activated microglia and astrocytes [16] and elevated levels of pro-inflammatory cytokines
[10,18,51] have been described in the rodent brain during normal aging. However, the
involvement of COX-mediated AA metabolism in this “pro-inflammatory-status” remains
unclear [4,23,38]. Aging-related changes in COX-mediated AA metabolism are suggested by
age-dependent spatial memory deficits and increased neuronal apoptosis and astrocytic
activation in transgenic mice overexpressing COX-2 [2]. We have previously shown in the
Rhesus monkey an age-dependant decrease in the levels of cPLA2 protein in the cerebellum
and of COX-2 protein in the frontal pole [47]. Taken together, these data suggest that AA
metabolism may be disturbed in normal aging. We chose two morphologically and functionally
distinct regions, the hippocampus and the cerebral cortex, that have been shown to be affected
by the aging process [14,35]. We assessed age-related changes in the metabolism of AA, with
a particular focus on the PLA2/COX pathway across a range of 4 ages (4, 12, 24, and 27–30
months).

2. Materials and methods
2.1 Animals

The study was approved by the National Institutes of Health (NIH) Animal Care and Use
Committee in accordance with NIH guidelines on the care and use of laboratory animals. Male
Fischer-344 rats, 4, 12, 24 and 27–30 month-old (NIA-sponsored colony at Harlan Sprague-
Dawley, Indianapolis, IN) were housed at least one week in our animal facility, maintained at
25°C with a 12 hr light/dark cycle, with free access to food and water. All rats were killed with
an overdose of sodium pentobarbital (100 mg/kg, i.p.). Then, rats used to measure prostaglandin
levels were subjected to high-energy head-focused microwave irradiation (4.8 kW, 3.4 sec,
Cober Electronics, Stanford, CT, USA) to stop metabolism, as reported [8,9,33]. Rats used for
mRNA analysis were decapitated, hippocampus and cerebral cortex were rapidly dissected out
on ice, immediately frozen in −50°C 2-methylbutane, and stored at −80°C until used.

2.2 Determination of brain prostaglandin E2 (PGE2) and thromboxane B2 (TXB2)
concentration

After microwave fixation, the amount of the brain extract required to perform analysis did not
allow measuring prostaglandin levels in individual brain regions without pooling samples from
different animals. Therefore, we measured PGE2 and TXB2 concentration in the whole brain.
Microwaved brains were weighed and extracted with 18 volumes of hexane: 2-propanol (3:2,
by volume) using a glass Tenbroeck homogenizer. The prostanoids were purified from the lipid
extract as described by Radin [34] and the concentrations of PGE2 and TXB2 were determined
using specific enzyme-linked immunosorbent assay kits (Oxford Biomedical, Oxford, MI,
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USA), as previously reported [8]. According to the manufacturer, the sensitivity of the PGE2
and TXB2 assays are 0.2 ng/ml and 0.009 ng/ml at 80% B/Bo, respectively.

2.3 Real-Time Quantitative PCR
Total RNA was extracted from hippocampus or cerebral cortex using RNeasy Lipid Tissue
Midi Kit (Qiagen, Valencia, CA, USA) as directed by the manufacturer. Five g of total RNA
was reverse transcribed using a High Capacity cDNA Archive kit (Applied Biosystems, Foster
City, CA, USA). Five g of each RNA sample was incubated similarly in the absence of reverse
transcriptase to ensure that PCR products resulted from amplification from the specific mRNA
rather than from genomic DNA contamination.

The levels of gene expression of COX-1, COX-2, cPLA2, iPLA2, glial fibrillary acidic protein
(GFAP) were measured by real-time quantitative RT-PCR, using the ABI PRISM 7000
Sequence Detection System (Applied Biosystems). Specific primers and probes were
purchased from the available Assays-on-Demands (Applied Biosystems). We used
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an endogenous control, as its
expression has been shown to remain unchanged during aging [40]. Data were analyzed using
sequence detection systems software (Applied Biosystems). Results were expressed as the
amount of target gene normalized to the endogenous control (GAPDH) and relative to the 4
month-old rats using the ΔΔCT method [25].

2.4 Statistical analysis
Results are expressed as mean ± SEM. Statistical analysis was performed using One-Way
ANOVA followed by post-hoc Bonferroni test. P < 0.05 was considered statistically
significant.

3. Results
3.1 TXB2 levels are specifically increased in the aged brain

Levels of TXB2, a stable product of the very short half-lived TXA2, were increased by 2 fold
[F(3,19) = 4.89, p = 0.010] in 24 and 30 month-old group compared to the 4 month-old group
(Fig. 1A). PGE2 levels (Fig. 1B) showed a trend towards an increase at 24 months, which did
not reach statistical significance among the different groups [F(3,19) = 2.71, p = 0.072].

3.2 COX-1 mRNA expression is upregulated whereas COX-2 mRNA expression is
downregulated in the hippocampus during aging

Hippocampal COX-1 mRNA expression (Fig. 2A) was increased by 20% at 12 months and by
27% at 24 and 30 months compared to the 4 months group [F(3,19) = 28.03, p < 0.0001]. In
contrast, hippocampal COX-2 mRNA expression (Fig. 2B) was statistically reduced by 15%
in the 30 months group compared to the 4 months group [F(3,19) = 4.47, p = 0.015]. COX
mRNA expressions (Table 1) were not changed in the cerebral cortex of all age groups
examined [COX-1: F(3,19) = 0.37, p = 0.773; COX-2: F(3,19) = 2.97, p = 0.058].

3.3 Hippocampal iPLA2 (VI) mRNA expression is downregulated in aged rats
Hippocampal iPLA2 mRNA expression (Fig. 3A) was decreased by 15% at 24 and 30 months
compared to the 4 months group [F(3,19) = 4.67, p = 0.013]. Hippocampal cPLA2 mRNA
expression level (Fig. 3B) was not changed in all age groups examined [F(3,19) = 0.32, p =
0.81], neither did cortical cPLA2 [F(3,19) = 1.89, p = 0.165] and iPLA2 mRNA expression
levels [F(3,19) = 1.37, p = 0.283] (Table 1).
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3.4 GFAP mRNA expression is increased in hippocampus and cerebral cortex during aging
To confirm aging-related astrocytic activation, we measured the expression of GFAP, a specific
marker of astrocytes. Hippocampal GFAP mRNA expression (Fig. 4) was increased by 46%
at 24 months and by 72 % at 30 months compared to the 4 months group [F(3,19) = 31.21, p
< 0.0001]. Cortical GFAP mRNA expression (Table 1) was increased by 2 fold at 24 months
and by 2.4 fold at 30 months compared to the 4 months group [F(3,19) = 60.74, p < 0.0001].

4. Discussion
In this study, we found that brain TXB2 level was increased by 2 fold in 24 and 30 month-old
rats compared to 4 month-old rats and we also showed that parts of the AA cascade are
specifically altered in the hippocampus during normal aging: namely 1) COX-1 expression is
increased, 2) COX-2 expression is decreased, and 3) iPLA2, but not cPLA2, expression is
decreased. In contrast, we did not find any significant change in the expression of COX or
iPLA2 in the cerebral cortex from aged rats.

The upregulation of COX-1 mRNA expression appeared quite early in adulthood (12 months)
and therefore can be viewed as part of the normal aging process. In contrast, COX-2 mRNA
level was downregulated only at 30 months. Previous studies have examined hippocampal and
cortical COX-2 mRNA expression in different strains of rats aged from 3 to 27 months and
reported no change [4,23]. Therefore, COX-2 gene expression appears to become affected only
in the advanced phase of the aging process. COX-1 upregulation as a function of age may have
different implications. First, it may be responsible for the increased brain levels of TXB2, an
AA-derived prostaglandin, via the subsequent metabolism of COX and thromboxane synthase.
Indeed, evidence indicates that thromboxane synthase preferentially couples with COX-1 for
TXB2 production [11]. Although brain microvessels also contribute to COX-1 derived TXB2
synthesis, since microvessels represent only 0.1 % of the whole brain [48] the increase in
TXB2 that we observed in this study is unlikely significantly contributed by the cerebral
circulation. However, since in this study TXB2 and PGE2 levels were determined in the whole
brain, it would be interesting to further examine the regional distribution of the changes in
prostaglandin during normal aging. An increase in COX activity has been reported in the
cerebrum of F344 rats at 24 months versus 6 month-old [4], corresponding approximately to
the age at which we found increased levels of TXB2 in this study. Since COX-1 is mainly
localized in glia, as opposed to COX-2 which is mainly in neurons [13,50,52], the upregulation
of COX-1 could be associated with the aging-related glial activation. In particular, the age-
related increase of GFAP mRNA that we show has been well documented in human and rodent
brain [19,29,32]. Glial activation may contribute to neuronal dysfunction as both microglia
and astrocytes become activated early during physiological aging [12,16]. It remains unclear
why only the hippocampus is responsive to the age-related astrocytic activation which occurred
in several brain regions. It is unlikely that COX-1 upregulation in the hippocampus alone could
account for the increase of TXB2 level in the whole brain. It is possible that other cerebral
regions that we did not examine may have an upregulated COX-1 expression. Another
possibility is that increased hippocampal COX-1 mRNA expression is accompanied by an
upregulation in thromboxane synthase activity in the hippocampus and/or in other regions.
Even though age-related changes occur in the whole brain, the aging process can exhibit
regional specificity, the hippocampus being especially sensitive [6,14].

Only few reports have addressed changes in brain prostanoid production with aging. Using
brain microwaving to stop lipid metabolism in vivo [3,9], we demonstrated an increased level
of TXB2 in the brains of 24 and 30 month-old animals compared to 4 month-old rats. The same
tendency was observed for PGE2 levels, although it did not reach statistical significance.
Prostaglandins have been shown to have numerous effect on astrocytes in vitro including
upregulating GFAP expression [31]. Thus, it should be further clarified if the astrocytic
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activation observed during aging is either the consequence or the cause of altered AA
metabolism. COX-1 upregulation with aging might play a role in altering the
neuroinflammatory response and increasing vulnerability to neurodegenerative diseases with
a marked inflammatory component [28].

We also found a decrease in the Ca2+-independent iPLA2 mRNA levels in the hippocampus
of 24 and 30 month-old rat. In contrast to cPLA2, which preferentially cleaves AA from
membrane phospholipids, iPLA2 is thought to show selectivity towards docosahexaenoic acid
(DHA) [42]. DHA, the major n-3 polyunsaturated fatty acid found in cerebral membranes,
plays a crucial role in physiological functions such as neurotransmission, membrane fluidity,
ion channel and regulation of enzyme activity and gene expression [1], and it may protect
against cognitive decline [27]. The decrease in iPLA2 expression observed in this study is
consistent with evidence that the DHA content in cerebral phospholipids is decreased during
normal aging [15] and that cortical iPLA2 is downregulated in DHA-deprived rats [36].
Considering the role of iPLA2 in regulating homeostatic phospholipid levels [49], the
downregulation of iPLA2 expression during aging might alter phospholipid homeostasis by
decreasing the release of DHA in the hippocampus. Therefore, the age-related decrease of AA
and DHA in membrane phospholipids [15], coupled with the downregulation of iPLA2, could
contribute to increase the ratio of free AA/DHA and consequently alter the brain prostanoid
profile. These changes may exert profound effects in the hippocampus, a region highly
vulnerable to the aging process [6,14].

In summary, our results indicate that the mRNA expression of three important enzymes in the
AA metabolic pathway, COX-1, COX-2, and iPLA2, is altered in the hippocampus during
normal aging. These changes may alter brain phospholipids homeostasis and possibly increase
the susceptibility of the aging brain to neuroinflammation. Future studies should address the
functional consequences of the changes in gene expression described here by examining protein
expression and activity of the AA cascade enzymes, as well as regional distribution of COX-1
within all brain regions during aging.
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Fig 1.
Thromboxane B2 (A) and prostaglandin E2 (B) levels in the microwaved brain of 4, 12, 24 and
30 month-old F344 rats. Data (mean ± SEM, n= 5–6) are expressed as the percentage of the 4
month-old rats. p values are expressed as the comparison of aged rats with 4-month-old rats
using One-Way ANOVA (*p<0.05, **p<0.01; post-hoc Bonferroni test).
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Fig 2.
COX-1 and COX-2 mRNA expression in the hippocampi (A-B) of 4, 12, 24 and 30 month-old
F344 rats. Data (mean ± SEM, n=5–6) are normalized to the level of the internal control,
GAPDH and are expressed as the percentage of the 4 month-old rats. p values are expressed
as the comparison of aged rats with 4-month-old rats using One-Way ANOVA (*p<0.05,
***p<0.001; post-hoc Bonferroni test).
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Fig 3.
iPLA2 (VI) and cPLA2 mRNA expression in the hippocampi (A-B) of 4, 12, 24 and 30 month-
old F344 rats. Data (mean ± SEM, n=5–6) are normalized to the level of the internal control,
GAPDH and are expressed as the percentage of the 4 month-old rats. p values are expressed
as the comparison of aged rats with 4-month-old rats using One-Way ANOVA ( *p<0.05; post-
hoc Bonferroni test).
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Fig 4.
GFAP mRNA expression (B) in the hippocampi of 4, 12, 24 and 30 month-old F344 rats. Data
(mean ± SEM, n=5–6) are normalized to the level of the internal control, GAPDH, and are
expressed as the percentage of the 4 month-old rats. p values are
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Table 1
mRNA expression of genes involved in the PLA2/COX pathway in the rat cerebral cortex during aging using
quantitative real–time PCR.

Genes1 4 months (n=6) 12 months (n=6) 24 months (n=6) 30 months (n=5)

COX-1 100 ± 2 100 ± 5 105 ± 9 108 ±7
COX-2 100 ± 5 126 ±12 100 ± 3 97 ± 8
cPLA2 101 ± 5 113 ± 6 118 ± 6 105 ± 7
iPLA2 100 ± 3 96 ± 4 90 ± 6 88 ± 6
GFAP 101 ± 6 122 ± 4 206 ± 12 *** 241 ± 11 ***

1
Data (mean ± SEM, n=5–6) are normalized to the level of the internal control, GAPDH, and are expressed as the percentage of values in the 4 month-

old rats. p values are expressed as the comparison of aged rats with 4-month-old rats using One-Way ANOVA

***
p<0.01; post-hoc Bonferroni test.
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