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Abstract

We report a pilot study of performing classification of motor imagery for Brain Computer 

Interface applications, by means of source analysis of scalp-recorded EEGs. Independent 

component analysis (ICA) was used as a spatio-temporal filter extracting signal components 

relevant to left or right motor imagery (MI) tasks. Source analysis methods including equivalent 

dipole analysis and cortical current density imaging were applied to reconstruct equivalent neural 

sources corresponding to MI, and classification was performed based on the inverse solutions. The 

classification was considered correct if the equivalent source was found over the motor cortex 

in the corresponding hemisphere. A classification rate of about 80% was achieved in the human 

subject studied using both the equivalent dipole analysis and the cortical current density imaging 

analysis. The present promising results suggest that the source analysis approach could manifest a 

clearer picture on the cortical activity, and thus facilitate the classification of MI tasks from scalp 

EEGs.
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I. INTRODUCTION

People suffering from severe motor disabilities but being cognitively intact need an 

alternative method to interact with environment. Over the past decades, the development 

of the technology of Brain Computer Interface (BCI) (see Wolpaw et al 2002 for 

review) provides a novel and promising communication channel for these patients. It 

reads out the intents of the patients and translates them into physical commands which 

control the output devices. Both noninvasive and invasive approaches have been used to 

acquire data for BCI. The noninvasive methods include the use of electroencephalography 

(EEG), magnetoencephalography (MEG), positron emission tomography (PET), functional 

magnetic resonance imaging (fMRI), and optical imaging. Among them, because EEG 
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has relatively short time constants, which can function in most environments, and EEG 

acquisition systems are relatively simple and inexpensive, EEG based BCI systems are 

currently widely used (Wolpaw et al 1991, 2002; Pfurtscheller et al 1994, 1997; Birbaumer 

1999; Babiloni et al 2000, 2001; Wang & He, 2004; Vallabhaneni & He, 2004; Vallabhaneni 

et al, 2004). On the other hand, intracranial recording methods, such as electrocorticograms 

and single-neuron recordings, are invasive (Donoghue 2002; Nicolelis 2001, 2003; Rohde et 

al 2002) although these methods take advantage of better signal quality. For obvious reasons, 

it would be desirable if one can fully develop noninvasive methods to control BCI devices, 

thus avoiding brain implants in human subjects.

Present-day EEG-based BCIs use different signals to encode the subjects’ intent, such as 

slow cortical potentials, P300 potentials, and mu or beta rhythms (Wolpaw et al 1991, 2002; 

Pfurtscheller et al 1994, 1997, 1999; McFarland et al 1997; Birbaumer 1999; Babiloni et 

al 2000, 2001; Wang & He, 2004; Vallabhaneni & He, 2004). In the present study, we 

focus on mu rhythms caused by motor imagination, i.e. left and right hand imagination. Mu 

rhythm, a part in alpha band, is traditionally defined as an 8–12Hz rhythm recorded over 

sensorimotor cortex that decreases, or desynchronizes with movement, while it has recently 

been demonstrated that it also occurs with motor imagery (Pfurtscheller 1999). During 

unilateral hand movement imagery, an event-related desynchronization (ERD) appears on 

the contralateral hemisphere. So the difference in the scalp EEG with the different hand 

imagination can be used to generate different control signals for BCI systems (Pfurtscheller 

et al 1997; Babiloni et al 2000, 2001; Wang & He 2004; Vallabhaneni & He, 2004).

The source analysis methods, which solve the inverse problem of EEG from noninvasively 

recorded scalp potentials, allow analysis of brain signals in the source space (He 1999; He 

and Lian, 2004). The reconstructed source distribution over certain physical regions, e.g. 

brain cortex, within the human brain can be regarded as an alternative representation of 

intracranial recordings, which compensates the distortion and smearing effect caused by low 

conductive skull (He et al., 2002; He, 2004). From this point of view, the EEG-based source 

analysis methods would convert the signal space of noninvasive EEG measurement from 

the smeared scalp potential into the source distribution within the human brain, which is 

believed to have improved quality. In the present study, we test the hypothesis that the source 

analysis methods will aid the classification of motor imagination by revealing the activity of 

the brain, thus facilitating BCI from the scalp EEG.

II. METHODS

1) Data Description

The EEG data consisting of the synchronized imaginary movement experiments were made 

available by Dr. Allen Osman of University of Pennsylvania (Osman & Robert 2001; Sajda 

et al 2003).

Scalp EEG data were recorded from 59 electrodes placed according to the International 

10/20 System with sampling rate of 100 Hz. The subjects were asked to imagine either right 

or left hand movement (180 trials, 90 left and 90 right) according to a highly predictable 

time cue.
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Each trial (6 second) began with a blank screen. Two important timing cues that should 

be mentioned here are that at 3.75 seconds of a trial epoch, a cue (preparation cue, lasting 

250 ms) of one letter ("L" or "R") appeared on the screen indicating which hand movement 

should be imagined; and at 5.0 seconds another cue ‘X’ (execution cue, lasting 50 ms) 

appeared, indicating that it was time to make the requested response as is shown in Fig. 

1. However, an important thing should be mentioned here that even though the execution 

cue is set as the start point of imagination, subjects would begin imagining right after the 

preparation cue.

2) Data Pre-processing

Data preprocessing consisted Laplacian spatial filtering, time-frequency analysis, bandpass 

temporal filtering, and independent component analysis. The raw EEG data were processed 

using each of these procedures, as described in detail below.

A) Laplacian Spatial Filtering—The surface Laplacian filter is a sort of spatial high pass 

filter, and it attempts to enhance neuronal activity which is close to the recording electrode 

(Hjorth 1975; Babiloni et al, 1996; He 1999; He et al 2001), thus accentuating localized 

activity and reducing diffused activity (McFarland et al 1997). It could be approximately 

calculated by using the five-point approximation method (Hjorth 1975).

Mj
Lap = Mj − 1

4 ∑
k ∈ Nj

Mk (1)

where Mj is the scalp potential EEG of the j-th channel, and Nj is an index set of the four 

neighboring channels.

B) Time-Frequency Analysis

The time range of one trial is 6s, while we cannot use the whole time range for source 

analysis since not all points during this period contain information of the difference between 

left and right hand movement imagination. Also, the correct frequency band should be 

chosen as event-related (de)synchronization (ERD/ERS) is highly frequency related. In the 

present study, the Time-Frequency (TF) representation was used to select the time window 

and frequency band for source analysis.

The TF representation provides a time-varying energy of the signal in each frequency band 

(Tallon-Baudry et al 1997). In the present study, the signal was convoluted by complex 

Morlet’s wavelets w(t,f0):

w(t, f0) = A ⋅ exp ( − t2/2σt2) exp (2iπf0t) (2)

with σf = 1/2πσi, A = σt π −1/2. The trade-off ratio (f0/σf) was chosen as 7 to create a 

wavelet family. This constant was used to determine the compromise between time and 

frequency localization.
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The time-varying energy [E(t,f0)] of the signal at a specific frequency band is the squared 

norm of the convolution of a complex wavelet with the signal:

E(t, f0) = w(t, f0) ∗ M(t) 2 (3)

where M refers to Laplacian-filtered scalp-recorded EEG data. The convolution of the signal 

by a family of wavelets constructs a TF representation of the signal as shown in Fig. 2. Fig. 

2 shows the averaged TF representation of all trials. The left column is TF representation 

for EEG signals recorded at electrode C3 (on the left hemisphere), while the right for 

channel C4 (on the right hemisphere). The upper row corresponds to left hand movement 

imagination, and the lower right hand movement imagination.

From Fig. 2, we can see that the mu rhythm has a clear energy decrease or ERD on the 

contralateral hemisphere starting from 4s to 5.75s, which also suggests that the subject 

would begin to imagine right after the preparation cue instead of the execution cue. With 

the help of TF representation, we chose the time window from 4.5 to 5s and frequency band 

from 11–12Hz for source analysis due to the observation of largest difference as appeared 

during this time window and the frequency band.

C) Bandpass Temporal Filtering—The Laplacian-filtered EEG data were then band-

pass filtered in the alpha band (11–12Hz) using fifth order butterworth temporal filter. As 

previously reported, mu rhythm ERD emerges over the contralateral central region from the 

start of the movement imagination (Pfurtscheller 1994, 1997, 1999), which means the mu 

rhythm is blocked on the contralateral side, we can anticipate that using source analysis 

methods, the equivalent sources estimated using dipole localization method or cortical 

current density imaging should be stronger on the ipsilateral side of the brain.

D) Noise Estimation—The 20% time points with lowest mean global field/potential 

power (MGFP) were selected as noise.

After getting the noise covariance matrix C, the original data were transformed to SNR 

values by

M∼ = 1
diag C M (4)

where M is the spatial and temporally filtered EEG data and only the diagonal value in 

matrix C was used.

E) Independent Components Analysis (ICA)—The ICA method is a statistical 

method for transforming an observed multidimensional vector into components that are 

statistically as independent from each other as possible (Jutten & Herault, 1991; Comon 

1994; Hyvärinen & Oja, 1997). The goal is to find a coordinate system in which the data are 

maximally statistically independent:
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M∼ = A ⋅ S (5)

where M̃ is the SNR value of n (channel number) by t (time points), A is the mixing matrix 

and S is a matrix whose components are mutually independent.

Solving the ICA problem is to find a matrix W iteratively so that the linear transformation of 

the data M̃ yields components that are as mutually independent as possible.

S = W ⋅ M∼ (6)

In the present study, the fixed-point algorithm was used for ICA (Hyvärinen & Oja, 1997). 

Before implementing ICA, Singular value decomposition (SVD) was used for decorrelation. 

This procedure can speed up the iteration process of ICA by setting all singular values to 

zero which are below a certain threshold. It was realized as

M∼ = U ⋅ Σ ⋅ V T (7)

where ∑ is a diagonal matrix containing singular values of M̃. U contains the orthogonal, 

normalized spatial patterns and VT contains the normalized time courses.

After noise estimation, we have changed our signal data to SNR values, all the time courses 

with singular value less than a certain value were regarded as noise subspace and discarded. 

Assuming that Vc is the subset of time courses from VT corresponding to singular values 

above threshold, which is regarded as signal subspace, ICA can be computed and realized 

only on this signal subspace. Then, equation (6) can be changed to

S∼ = W∼ ⋅ V c (8)

Replacing VT in equation (7) by Vc from equation (8), the mixing matrix A in equation (5) 

can be obtained by following equation

A = UΣW∼−1 (9)

Sorting mixing matrix A by its column norm, independent components can be obtained from 

equation (5) in non-decreasing order.

3) Source Analysis

Source analysis is a widely used technique to estimate the source signals from scalp 

recorded EEG data. Such approach has been used extensively to localize neural sources 

that generate the scalp EEG (He 1999; He & Lian, 2004). It’s necessary to assume a model 

of the source and a model of the head volume conductor for estimation of the neural sources. 

In the present study, both the equivalent dipole analysis and cortical current density (CCD) 

imaging approaches were used. The equivalent dipole model assumes that the neural sources 
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corresponding to a particular event or task can be approximated by one or few current 

dipoles that are movable within the brain (He et al., 1987; He & Lian, 2004). The cortical 

current density model assumes that neural sources can be approximated by a layer of current 

dipoles distributed over the cortex (Dale & Sereno, 1993). The 3-concentric sphere head 

model (Rush and Driscoll, 1968) contains three concentric layers with different electrical 

conductivities, which represent the cortex, skull and scalp, respectively.

Because we are only interested in the activity in motor cortex, channels on the frontal 

and occipital parts were removed -- only the electrodes around sensorimotor cortex (FC3, 

FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, CP4) were chosen for 

source analysis. In the present study, only the first component of ICA was used for source 

reconstruction, by setting all but the first column of A to zero. The time point with the 

largest amplitude in this first component of ICA was used for source reconstruction, which 

consists of 15 data points over the corresponding sites of the scalp.

In the equivalent dipole analysis, to find the location and moment of the dipole is to 

minimize the residual error (He et al., 1987):

Δ2 = ∥ Lj − M∼ ∥2 (10)

where L is the lead field matrix, j is the dipole moment and M̃ represents the first component 

of ICA. The Simplex method (Kowalik & Osborne, 1968) was used to solve this problem.

CCD is defined as dipole moment per volume with the unit μAmm/mm3. A CCD is 

discretized into a large number of elementary dipoles which are distributed over the cortical 

surface. The weighted minimum norm (MN) method was used to solve the inverse problem,

Δ2 = ∥ Lj − M∼ ∥2 + λ ∥ Qj ∥2 (11)

where L is the lead field, j is the cortical current density vector, M̃ is the first component of 

ICA, Q is a weighting matrix with depth information, and λ is the regularization parameter, 

which was determined by the L-curve criterion (Hansen 1992).

III. RESULTS

The effect of source analysis is illustrated in Fig. 3. Fig. 3(a) depicts the scalp EEG map of 

one single trial, after Laplacian spatial filtering and bandpass temporal filtering, while Fig. 

3(b) shows the equivalent dipole solution and cortical current density distribution (only those 

larger than 80% of the largest current strength are plotted.). From Fig. 3(a), it is hard to tell 

whether the activity is originated on the left or right hemisphere of the brain, while it is clear 

from the source space as shown in Fig. 3(b).

Figs. 4 and 5 show the equivalent dipole solutions and cortical current density distribution 

of five trials for both left and right hand movement imagination respectively. As we have 

mentioned above that in mu rhythm, an ERD appears at the contralateral side of the brain 
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during motor imagination, thus the equivalent dipole and CCD should appear or be stronger 

at the ipsilateral side. These two figures support this hypothesis.

Till now, a simple classification rule can be defined based on source analysis results.

a. For equivalent dipole analysis, the classification is correct if the equivalent dipole 

is located at the ipsilateral side with the imaginary hand.

b. For CCD, all currents larger than 80% of the largest sum up. If the summation 

is larger at the ipsilateral side than at the contralateral side, we judge the 

classification correct, otherwise wrong.

The classification accuracy was defined as the ratio of the number of trials the present source 

analysis method classified correctly the motor imagery over the total number of the trials. 

Based on these two criteria, we obtained 78.9% and 80.6% classification accuracy in the 

human subject studied. This result is quite promising because it is based on single trial, 

not averaged values. We also didn’t use any training procedure and all data analysis was 

performed based on only one frequency component. So to use more frequency bands and a 

better classifier may further improve the results as obtained from the source analysis.

IV. DISCUSSION

In the present pilot study we have initially tested the hypothesis that source analysis methods 

such as dipole localization and cortical imaging can be applied to classification of motor 

imagery tasks for BCI applications. The promising results we have obtained in this pilot 

study suggest that the source analysis approach has the unique characteristics of detecting 

the activity within the human brain thus substantially reducing the distortion or smearing 

problem caused by the skull low conductivity and making the motor imagery classification 

easier.

We have performed the source analysis of the recorded scalp EEG signals in a human 

subject by means of two representative source reconstruction methods: equivalent dipole 

localization and cortical imaging. The classification was based on the phenomena that 

during motor imagination, contralateral mu rhythm ERD always appears, and thus the 

corresponding equivalent source distribution should show dominating phenomena on the 

ipsilateral side. By means of signal processing strategy we have developed and tested in 

the present study, our results show that reasonable classification rate can be achieved by 

this simple classification rule. Note that, not only the contralateral ERD can be found, a 

significant ipsilateral ERS has also been observed, which may make this classification more 

accurately. However, the classification rule we have adopted in the present study is totally 

based on the contralateral ERD. If some subjects have different topography of ERD, this rule 

may not be so effective. A better classifier with some training procedure could be introduced 

to further improve the approach (Babiloni et al 2000, 2001; Pfurtscheller 1997; Wang & He 

2004; Vallabhaneni & He, 2004).

Previously reported methods showed about 80% classification accuracy for the 10-fold 

cross-validation protocol with training (Wang & He, 2004; Vallabhaneni & He, 2004), while 

the present method achieved about 80% classification accuracy using all trials without 
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training. The unique feature of not requiring training process appears to be one of the 

advantages of the present approach, where the physical relationships between the neural 

sources and scalp EEG are taken into consideration. The obtained source signals have better 

SNR than the scalp EEG data and can be well related to cortical regions that are involved 

in the motor imagery tasks. ICA appears to play an important role to extract the useful 

information, enabling effective source estimation to identify the imagined hand movements 

by revealing the origins of the brain activities so as to manifest the difference between 

mental tasks directly. The present 80% single trial based classification accuracy indicates 

that the use of source analysis methods in facilitating discrimination of left or right hand 

movement imagination is quite positive. It is worthy to point out that a full scale of human 

study in a large group of subjects should be conducted before the final conclusion can be 

drawn. However, the present results do suggest the feasibility of using source analysis for 

classifying motor imagery tasks.

In the present study, all the 180 trials that are provided by the UPenn database are used for 

testing without rejecting any “bad” trial. However, in the practical experiment, subjects 

could not always concentrate and perform well on every trial. Sometimes they might 

be distracted and thought nothing. The performance would be further improved if these 

“bad” trials could be rejected based on on-line feedback. Although we have tested the 

present approach in off-line data, the approach itself could be implemented in on-line BCI 

application with little alteration.

Note that the frequency band and time window are also essential for classification because 

we know for different subjects, the clearest ERD may occur at different frequency band 

and at different time points (Pfurtscheller 1997; Wang & He, 2004). In this study, we have 

selected the two parameters manually with the help of TF representation. How to find a 

better way to choose the suitable frequency band and time window for source analysis is 

another issue that should be further explored.

In summary, we have developed a source analysis approach in combination with signal 

preprocessing for classification of motor imagery, and tested the present approach in a 

human subject. The present results obtained in the pilot study suggest that the source 

analysis provides an alternative means of aiding the classification of motor imagery tasks by 

converting scalp EEGs onto the source signals.
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Fig. 1. 
Time sequence of one trial epoch of the experiment.
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Fig. 2. 
Averaged Time-Frequency (TF) representation of channel C3 and C4 during motor imagery 

in a subject. Left column refers to TF representation for C3 and right column for C4. The 

upper row refers to the TF representation of left hand movement imagination and the lower 

refers to right hand movement imagination. The time period shown here is 3s from the 

preparation cue (3.75s) and frequency band is from 5 to 30 Hz.
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Fig. 3. 
Illustration of effect of source analysis. The left panel illustrates the surface Laplacian and 

temporal-bandpass filtered scalp EEG map of a single trial, and the right panel depicts the 

equivalent dipole solution and cortical current density distribution estimated from it.
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Fig. 4. 
Examples of equivalent dipole solutions of different trials in a human subject during 

imagination of left or right hand in alpha band. (A,B,C,D,E - left-hand movement imagery; 

F,G,H,I,J - right-hand movement imagery). Results were estimated from single trial scalp 

EEG data. See text for detailed procedures to obtain single trial inverse solutions.
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Fig. 5. 
Examples of cortical current density distributions of different trials in a human subject 

during motor imagination. (A,B,C,D,E - left-hand movement imagery; F,G,H,I,J – right-

hand movement imagery). Results were estimated from single trial scalp EEG data. See text 

for detailed procedures to obtain single trial inverse solutions.
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