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Abstract
Implicit solvation models are commonly optimized with respect to experimental data or Poisson
Boltzmann (PB) results obtained for small molecules, where the force field sometimes is not
considered. In previous studies we have developed an optimization procedure for cyclic peptides and
surface loops in proteins based on the entire system studied and the specific force field used. Thus,
the loop has been modeled by the simplified solvation function Etot = EFF(ɛ=2r) + ∑i σiAi, where
EFF(ɛ=nr) is the AMBER force field energy with a distance dependent dielectric function, ɛ=nr, Ai
is the solvent accessible surface area of atom i, and σi is its atomic solvation parameter. During the
optimization process the loop is free to move while the protein template is held fixed in its X-ray
structure. To improve on the results of this model, in the present work we apply our optimization
procedure to the physically more rigorous solvation model, the generalized Born with surface area
(GB/SA) (together with the all-atom AMBER force field) as suggested by Still and coworkers (J.
Phys. Chem.A 1997, 101, 3005). The six parameters of the GB/SA model namely, P1-P5 and the
surface area parameter, σ (programmed in the program TINKER) are re-optimized for a “training”
group of nine loops, and from the individual sets of optimized parameters a best-fit set is defined.
The best-fit set and Still’s original set of parameters (where Lys, Arg, His, Glu, and Asp are charged
or neutralized) were applied to the training group as well as to a “test” group of seven loops and the
energy gaps and the corresponding RMSD values were calculated. These GB/SA results based on
the three sets of parameters have been found to be comparable; surprisingly, however, they are
somewhat inferior (e.g.., of larger energy gaps) to those obtained previously from the simplified
model described above. We discuss recent results for loops obtained by other solvation models and
potential directions for future studies.

Introduction
The interest in surface loops and the difficulty in predicting their structure

A surface loop in a protein is a chain segment connecting two secondary structure elements,
which generally protrudes into the solvent and thus is expected to be relatively flexible, as
indeed has been found by multidimensional nuclear magnetic resonance (NMR) experiments.
In many cases this flexibility is also reflected in X-ray crystallography data in terms of large
B-factors1 or a complete disorder. Surface loops take part in protein-protein and protein-ligand
interactions, where their flexibility in many cases is essential for these recognition processes.
For example, the conformational change between a free and a bound antibody demonstrates
the flexibility of the antibody combining site, which typically includes hypervariable loops;
this provides an example of induced fit as a mechanism for antibody-antigen recognition (e.g.,
see Refs. 2 and 3). Alternatively, the selected-fit mechanism has been suggested, where the
free loop interconverts among different states, and one of them is selected upon binding.4
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Dynamic NMR experiments5 and molecular dynamics (MD) simulations6 of HIV protease
have found a strong correlation between the flexibility of certain segments of the protein and
the movement of the flaps (that cover the active site) upon ligation.7 Loops are known to form
“lids” over active sites of proteins and mutagenesis experiments show that residues within these
loops are crucial for substrate binding or enzymatic catalysis; again, these loops are typically
flexible (see review by Fetrow8).

Predicting of loop structures by computational methods is important in homology modeling,
where a framework of unconnected homologous segments is initially created and the structure
of the loops connecting these segments has to be subsequently determined. For long loops this
is an unsolved problem to date.9–12 Prediction of loop structures constitutes a challenge also
in protein engineering, where a loop undergoes mutations, insertions, or deletions of amino
acids. Studying the flexibility of loops by experimental methods is not straightforward and
theoretical analysis by molecular modeling techniques is expected to clarify the picture.

The interest in surface loops has yielded extensive theoretical work where one avenue of
research has been the classification of loop structures.13–21 However, to understand various
recognition mechanisms like those mentioned above, it is mandatory to be able to predict the
structure (or structures) of a loop by theoretical/computational procedures, which is not a trivial
task due to the irregular structures of loops, their flexibility and exposure to the solvent. Loop
structures are commonly predicted by either a comparative modeling approach based on known
loop conformations from the Protein Data Bank (PDB),22,23 or an energetic approach; also,
methods exist that are hybrids of these two approaches. Due to the lack of sufficiently large
data bases, only short loops (up to five residues) could be treated effectively by comparative
modeling,24–29 while hybrid methods are effective up to nine residues.24,26,30–33 With the
energetic approach loop structures are generated by conformational search methods (simulated
annealing, bond relaxation algorithm and others) subject to the spatial restrictions imposed by
the known 3D structure of the rest of the protein (the template). The quality of the prediction
depends on the quality of the loop-loop and loop-template interaction energy, the modeling of
the solvent, and the extent of conformational search applied.34–44 An extensive discussion,
references, and background material on loops appear in our previous work, denoted here as
papers I45 and II.46

With the energetic approach modeling of the solvent is of special importance. In some of the
earlier studies the solvation problem was not addressed at all, while others only used a distance
dependent dielectric function (ɛ = r). Better treatments of solvation were applied by Moult and
James35 and Mas et al.47 A systematic comparison of solvation models was first carried out
by Smith and Honig,48 who tested the ɛ = r model against results obtained by the finite
difference Poisson Boltzmann (FDPB) calculation including a hydrophobic term; the implicit
solvation model of Wesson and Eisenberg49 with ɛ = r was also studied by them. Later, the
generalized Born surface area (GB/SA) model50 was applied to loops of ribonuclease (RNase)
51 A and has been found by Blundell’s group to discriminate better than other models between
the native loop structures and close to native “decoy” structures.52–53 Very recently an
extensive study of loops was carried out by Jacobson et al. 54 who used the surface GB55 and
a nonpolar solvation model56 (SGB-NP) with the OPLS force field.57 Zhang et al.58 have
tested their knowledge-based statistical potential, DFIRE (distance-scaled, finite ideal gas
reference state) by applying it to the loop sets studied in Refs 52–53 and 54 (see the section
results and discussion). Another interesting loop prediction algorithm has been suggested by
Xiang et al.59 Finally we mention our loop studies in papers I and II, which will be discussed
in detail later. However, more work is needed to compare the quality of the various models for
loops and other systems.
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Statistical mechanics methodology for treating flexibility
The foregoing discussion indicates that, to date, the energetic approach is the best way for
predicting the structure of large loops in homology modeling and protein engineering. It also
constitutes the only alternative for studying intermediate flexibility, where a loop populates
several microstates in equilibrium (see below). Recently, we have developed a statistical
mechanics methodology for treating intermediate flexibility (most suitable for implicit
solvation models) which was applied initially to peptides,60–65 and in papers I45and II,46
also to surface loops.66–68 The first step is to carry out an extensive conformational search
using our local torsional deformation (LTD) method45,46 60,69,70, from which the global
energy minimum (GEM) loop structure and low energy minimized structures within 2–3 kcal/
mol above GEM are identified; a subgroup of them that are significantly different are then
selected where each becomes a “seed” for a local Monte Carlo (MC) or MD simulation that
spans its vicinity (this local region is called microstate). Finally, the free energies of the most
stable microstates are obtained (with the local states method71,72 or the hypothetical scanning
MC method,73,74) which lead to the populations and to weighted averages of physical
quantities that are compared with the experiment.61,64,65 Developing a reliable solvation
energy function is mandatory and thus is the aim of this paper (as has been the aim of papers
I45 & II46).

Previous optimization of a simplified solvation model
Because explicit solvent, the most accurate model, is computationally expensive, we have
chosen to study initially a relatively simple implicit solvation model defined by eq 1, which
was applied to cyclic peptides in DMSO, and in papers I45 and II46 also to loops in water,

Etot = EFF(ɛ = nr) + Esolv = EFF(ɛ = nr) +∑
i
σiAi. (1)

EFF is the force field energy, Ai is the structure dependent solvent accessible surface area of
atom i, and σi is the atomic solvation parameter (ASP); ɛ = nr is a distance dependent dielectric
function, where n is a parameter. Even with such a simplified model, treatment of loops is
feasible only for a relatively small template that typically consists of those atoms that are
located within 10 Ǻ from any loop atom in a specific loop structure; the template atoms are
fixed in their known X-ray structure, whereas the loop is free to move. Etot includes the loop-
loop and loop-template energy, while the template-template interactions are ignored. With this
model, the conformational search, the identification of the most stable microstates, and the
calculation of their free energy is considerably easier than with explicit solvent. Therefore,
most of the loop studies in the literature are based on implicit solvation models with relatively
small number of exceptions where explicit models were used (e.g., Refs. 27, 75, and 76).

eq 1 is not new and has been used in many previous studies, where the ASPs for a protein have
been commonly determined from the free energy of transfer of small molecules from the gas
phase to water.49.77 However, it is not clear to what extent ASPs derived for small molecules
are suited for the protein environment. Also, these sets of ASPs were used with various force
fields, in most cases without further calibration (see discussions in Refs. 60 and 63, and in
references cited therein). Recent studies based on various solvation potentials, Esolv, including
our results in papers I45 and II,46 support these reservations.48,51 This problem has was first
recognized by Schiffer et al.,78 and then by Fraternali and van Gunsteren.79 Optimization of
solvation models with respect to a force field has now become a common practice.

We have developed a procedure for optimizing parameters of implicit solvation models that
to a large extent is free of the limitations discussed above. This procedure was applied first to
cyclic peptides and recently to loops modeled by eq 1; in an attempt to further improve the
latter results our main objective in this paper is to apply this procedure to the GB/SA model
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of Still and coworkers,50 which relies on stronger theoretical grounds than eq 1. We shall
compare results for loops obtained in papers I and II (using eq 1) to the GB/SA results, and
will study eq 1 again, where ɛ = nr is replaced by more complex dielectric functions. Because
the general features of the optimization method apply to any model, we discuss them with
respect to eq 1.

Thus, for a given loop the optimized ASPs and n are those for which the known X-ray loop
structure becomes the GEM structure. This definition, however, turns out to be too strict and
in papers I and II we argue that it can be relaxed; thus, an energy difference (the energy gap)
of up to 2–3 kcal/mol is allowed between the GEM and the energy of the native optimized
structure (NOS) (obtained by local energy minimization of the known X-ray loop structure
using the optimized parameters; a more precise definition of NOS will be given later. EFF (eq
1) is defined by the all-atom AMBER80 force field that for loops has been found to perform
better than other force fields (see paper I45). The optimization is based on an extensive
conformational search using LTD, which its program has been implemented within the
molecular mechanics/molecular dynamics program TINKER.81 For the optimized sets of
ASPs (denoted σi

*) and the optimal n=2, the energy gap, ΔEtot
m(n, σi

*) is defined by

ΔEtot
m (n, σi

*) = Etot
NOS(n, σi

*) – Etot
m (n, σi

*) (2)

where Etot m(n, σi
*) is the lowest minimized energy obtained, which is assumed to be the GEM.

Etot
NOS(n, σi

*) is the minimized energy of NOS based on the optimal parameters. Thus, unlike
the conventional parametrization of eq 1 that relies on free energy of transfer data of small
molecules, our derivation of the ASPs depends on the force field used and is based on the
energy of the entire loop in the protein environment.

Our aim is to derive ASPs for the solution environment, where the side chains of a surface
loop, and to a lesser extent also the backbone, typically exhibit intermediate flexibility.82,83
It should be noted, however, that our optimization is carried out with respect to a single X-ray
crystal structure, where some aspects of its flexibility are only expressed by elevated B-factors.
This problem may be alleviated as high-resolution X-ray structures become available, which
enables one to extract information about side chain rotamers and their populations.84,85 Notice
also that the derivation of the ASPs is based on the minimized energies, thus ignoring the
flexibility (i.e., entropy) of the microstates. The first step to eliminate this limitation was done
in paper II, where differences in the free energy for three loops were calculated. Etot is a free
energy function that depends on the temperature (through the σi) but will be referred to as
energy. It should also be emphasized that the ASPs are derived only for surface loops that
protrude into the solvent due to strong hydrophilic interactions. Indeed, the individual sets of
ASPs optimized in papers I and II are mostly negative (hydrophilic), even those of carbon (in
contrast to the positive ASP obtained by Wesson and Eisenberg49 (see discussion in paper
II46).

From initial studies in paper II it became evident that for highly charged loops the Coulombic
interactions are too strong leading to large energy gaps (in some cases of ~20 kcal/mol);
therefore, in all calculations the charges of Arg, Lys, His, Asp, and Glu were neutralized.
Individual sets of ASPs were optimized for a diverse (“training”) group of 12 surface loops of
5–12 residues from different proteins. The extent of similarity among the optimized individual
sets enabled defining a reasonable best-fit set of ASPs, which was tested on the training group
as well as on an additional (“test”) group of eight loops. The results for eq 1 where found to
be much better than those obtained with the force field [EFF(ɛ = 2r) alone. The root mean
square deviations (RMSD) of the GEM structures from the corresponding NOS were found in
most cases better than those obtained by other methods. However, the energy gaps in many
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cases were above 3 kcal/mol, due to strong electrostatic interactions; this has motivated us to
study the GB/SA model that treats these interactions in a more rigorous way than eq 1.

Theory and methods
In this section we describe the GB/SA model and the LTD method, and provide specific details
about the methodology and the calculations.

The GB/SA solvation model
Several versions of the GB/SA model are currently available, where their parameters are
commonly optimized against properties of small molecules - experimentally determined
solvation energies or free energies obtained by the Poisson Boltzmann (PB) equation; in
general, the more complex models show better agreement with PB at the expense of an increase
in computer time.50,51,55,56,86–96 With the model of Still and coworkers50,86
(implemented in TINKER) the solvation energy Esol consists of an electrostatic polarization
energy term, Epol and a non-polar (hydrophobic) energy component, Ehyd = ∑Aiσi (compare
with eq 1), thus,

Esol = Epol +∑ Aiσi (3)

where Esol is a free energy term, which as before, in most cases will be referred to as energy.
The total electrostatic energy, Ees of the system (in kcal/mol) is

Ees = 332∑
i<j

qiq j
ɛinrij

+ Epol = 332∑
i<j

qiq j
ɛinrij

– 166( 1
ɛin

– 1
ɛw

)∑
i, j

qiq j
f GB

(4)

where

f GB = rij
2 + αiα j exp ( – rij

2 / kαiα j)
1/2,

and qi is the charge of atom i, rij is the distance (Å) between atoms i and j, αi is the Born radius
of atom i, and k is a factor that is taken as 4 in Ref. 50. Epol is the electrostatic component of
the free energy of transfer of a molecule with an interior dielectric constant, ɛin from vacuum
to a continuum medium (water) of dielectric constant ɛw. The total energy, Etot is

Etot = EFF + Epol + Ehyd (5)

where EFF is the energy of the all-atom AMBER94 force field,80 which includes the first term
of Ees (eq 4); AMBER94 is chosen to be consistent with eq 1 studied in papers I45 and II.46
Notice that in TINKER Ehyd is defined as a product of a single parameter σ and the total surface
area of the solute calculated with a spherical solvent molecule (water) of radius 1.4 Å.

The heart of the GB/SA model is the calculation of the αi‘s, which in the work of Still and
coworkers are defined by a function depending on five parameters, P1-P5 (see Ref. 50); thus,

αi = – 166 / G ′pol,i (6)

where

G ′pol,i = – 166
RvdW–i +φ + P1

+ ∑
stretch P2V j

rij
4 + ∑

bend P3V j
rij
4 + ∑

nonbonded P4V jCCF

rij
4 (7)
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and φ = −0.09 Å is a dielectric offset. rij = distance between atoms i and j(Å), Vj = volume of
atom j (Å3), RvdW-i = van der Waals radius of atom i (Å), P1 = single atom scaling factor,
P2=1,2 scaling factor, P3 = 1,3 scaling factor, P4 1,≥ 4 = scaling factor, P5 = soft cutoff
parameter, and CCF = close contact function for 1,≥ 4 interactions where,

CCF = 1.0 if ( rij
RvdW–i + RvdW– j )2 > 1

P 5 (8)

otherwise

CCF = {0.5 1.0 – cos {( rij
RvdW–i + RvdW– j )2P5π} }2

We optimize the parameters P1-P5 and σ.

The LTD method
The local torsional deformation (LTD)60,69 method has been described in detailed before.
Here we only discuss its main features. This is a conformational search procedure for cyclic
molecules and protein loops modeled by a force field with flexible bond lengths and angles.
An LTD simulation starts from an arbitrary energy minimized loop structure, i, with energy
Ei

0; i is then distorted by a single or several local torsional rotations along the chain followed
by energy minimization. The resulting conformation j (with minimized energy Ej

0) is accepted
according to the Metropolis transition probability, pij,

pij = min (1, exp – (E j
0 – Ei

0) / kBT * ) (9)

where the accepted structure is deformed again and the process continues. This Monte Carlo
minimization procedure97, is a “selection procedure” that efficiently directs the search towards
the low energy region in conformational space. Notice that T* is not a usual temperature but a
parameter that affects the efficiency of the process98. In most of our runs T* was changed every
50 Monte Carlo (LTD) steps by 10 K from 200 K to 1000 K and vice versa. The coordinates
and energies of all the energy minimized structures (including those which were rejected
through eq 9), were stored in a file for further analysis.60

The local backbone rotations are described elsewhere.60,69 Typically, in each LTD step
several independent but significant such rotations (determined randomly) are carried out along
the chain, and therefore energy barriers are crossed efficiently. These local conformational
changes are especially important in a dense protein environment to reduce the chance for
creating undesired loop-template entanglements. Notice that together with the backbone
angles, side-chain dihedrals are randomly selected as well, and they are changed at random
(but not locally). Thus, the whole loop is treated at once, in contrast to procedures used by
others and discussed in papers I and II. The present implementation of LTD is exactly the same
as that applied to the cyclic hexapeptide described in detail in Ref. 60. LTD has been found to
be significantly more efficient than simulated annealing.69

It should be pointed out that while Monte Carlo Minimization (thus LTD) is a stochastic
procedure, the chance of finding the GEM is higher if the search starts from a conformation
that is similar to the GEM structure than from a distant conformation. Therefore, we start all
the LTD runs from the native loop structures (NOS), which are not expected to differ
significantly from the corresponding GEMs. This choice would lead to the expected increase
in the search efficiency only if the loop does not get trapped in the starting microstate, which
was verified by the relatively large RMSD values (up to ~6 Å) obtained for the trajectories of
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the generated loops (meaning that a significant part of conformational space was sampled) and
the fact that in many cases the energy was decreased significantly. Finally, the energy is
minimized by the L-BFGS procedure,99 which (as the LTD program) has been incorporated
in TINKER.

The Loops Studied and Modeling Issues
It should first be pointed out that the backbone structure of a stretched loop will be predicted
correctly by all conformational search methods (see discussion in paper II). Therefore, as in
papers I and II we obtained for each loop the ratio, R=[length of a completely stretched
(extended) loop/distance between its ends], where these lengths are calculated between the
Cα atoms of the first and last residues of the loop. The length (in Å) of the extended structure
is calculated using the expressions, 6.046(n/2−1)+3.46 and 6.046(n−1)/2 for an even and odd
number, n of residues, respectively; the factors 6.046 and 3.46 Å are taken from Flory100
(Chapter VII, p. 251). To a large extent, R reflects the conformational freedom of the loop
backbone and partially also of the side chains, the larger is R the higher the flexibility (which
is also determined by the surrounding template and sequence of residues).

To be able to compare the performances of GB/SA and eq 1 we have chosen the same training
group of loops studied in paper II, besides the two loops of BPTI [(6–12) and (18–24)] and the
loop (119–125) of myoglobin that are extremely stretched (R=1, 1, and 1.1, respectively). We
added to this group the loop (64–71) of RNase A (loop 1) and for each of the nine loops of this
group an individual set of parameters were optimized. Again, as in paper II, for each of these
loops an individual set of parameters were optimized; the extent of similarity among these sets
enabled us to define a reasonable best-fit set of ASPs, which was tested on the training group
as well as on an additional test group of seven loops that were also studied in paper II; these
groups of loops, the related proteins, and template sizes appear in Table 1.

The 3D structures of the proteins of the training group (taken from the PDB) were all
determined with 2 Å resolution or less, except for that of the antibody McPC603 that was
obtained with 2.7 Å resolution. These loops range in size from five to twelve amino acid
residues, and all of them are predominantly hydrophilic, i.e., polar or charged. It should be
pointed out that the coordinates of the side chain atoms of the highly charged loops of acidic
FGF (2 charged residues) and AK (3 charged residues) were obtained with elevated B-factors,
47–88 for AK, and 50–100 for chain B of acidic FGF (see detailed discussion in paper II).
These large B-factors suggest that the side chains might populate several rotamers, but no
analysis of such populations is available [Müller and Schulz do not determine dihedral angles
if the B-factors of the involved atoms are 60 and above101 while others adopt even a smaller
value of 40 (J. Rosenberg, private communication)]. Obviously, this uncertainty in the
coordinates of the loops will be reflected in the reliability of the corresponding optimized sets
of parameters. The optimized parameters might also be affected by the existence of more than
one molecule in the unit cell as is the case for AK and acidic FGF, which have two and four
molecules in the unit cell, respectively. Indeed, in paper II we have found that for FGF the B-
factors and energy gaps of loop 90–94 in molecules B and C are different due to different
environments. In the present study we have taken into consideration molecule B only. The
optimized parameters might also be affected by close molecules in neighbor cells. However,
we have not investigated this point.

The number of atoms (including hydrogens) of the training group ranges from 84 (acidic FGF)
to 175 (the 12-residue loop of the antibody; see Table 1). The template is defined by the
following procedure. First, hydrogen atoms are added to the PDB X-ray structure by the
program TINKER. In the second step, to remove possible atomic overlaps, the energy of the
protein is minimized using the AMBER potential [EFF(ɛ=1), eq 1] with an additional harmonic
restraint of 5 kcal/mol/Å2 applied to each atomic position. This minimized structure is the
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native optimized structure (NOS), mentioned earlier which can deviate from the PDB structure
by an all-heavy-atom RMSD of no more than ~0.15 Å. Most templates include any non-loop
atom with a distance smaller than 10 Å from at least one loop atom (in NOS) together with all
the other atoms belonging to the same residue. However, for some of the larger proteins
distances smaller than 10 Å were used to keep the template size manageable. The smaller cutoff
distance is justified in light of our finding (paper II) that decreasing the distance from 10 to 7
changed the energy only slightly (≤ 1 kcal/mol), suggesting that the effect on energy
differences between two structures would be small. The template sizes in Table 1 range from
700 (acidic FGF) to 1492 (antibody, loop 2), which are larger than their counterparts in paper
II due to larger radii.

The test group (see Table 1) includes seven of the eight loops studied in paper II, where loop
1 of RNase A was transferred to the training set. All of them are un-stretched solvent-exposed
surface loops with B-factors smaller than 40, except for the loop of ser-proteinase, where all
the coordinates are given but seven outer atoms of side chains have zero electron density. For
all these loops the templates have been defined with a radius of 9 Å.

More details about the optimization procedure
TINKER assigns the hydrogen atoms to the PDB structure by a prescription that does not
optimize their positions with respect to the energy; therefore, in paper I it was found necessary
to optimize the orientations of the OH and NH vectors of NOS and the template. This is carried
out by a Monte Carlo minimization procedure, where the polar vectors are rotated by LTD
while each non-rotatable atom is restrained to its NOS position by a harmonic potential of
0.15–0.40 kcal/mol/Å2 (see Appendix C of paper I). These optimizations of the polar hydrogen
networks [using EFF(ɛ=10)], carried out in paper II46 and here, lead to NOS structures that
deviate by RMSD ~0.2 Å from the PDB loop structures; these structures, denoted NOS1 (to
be distinguished from NOS2 defined later), are considered to be the correct (experimental)
ones against which the RMSD of structures is calculated.

As for the ASPs, in the GB/SA optimizations the charges of Arg, Lys, His, Asp, and Glu, and
the end groups of the protein are neutralized to decrease the effect of the electrostatic
interactions (see details in paper II); notice, however, that these interactions are still significant
due to large dipole moments. Also, for all the loops we carry out LTD runs based on Still’s
original (standard) parameters with neutralized as well as charged Arg, Lys, His, Asp, and Glu.

The optimization of the parameters is based on a multi-stage search for low energy minimized
structures carried out with LTD, as described in detail in Appendix B of paper I. In short, for
each loop the first stage is a conformational search run of ~3000 energy minimizations based
on Still’s original set of parameters (denoted P1- P5). From this sample we define a subgroup
of 500–800 significantly different structures (according to the variance criterion that at least
one dihedral angle differs by 60° or more) with minimized energies within a ~7 kcal/mol range
above the GEM (assumed here to correspond to the lowest minimized energy structure
generated). NOS1 is added to this group as well. At this stage the parameter P1 is optimized
(P2 –P5 are kept fixed) by changing its value and minimizing the energy of the above group
of structures to find the value (P1′) that leads to the smallest energy gap between GEM and the
minimized NOS1 (eq 2). P1′ is a temporary optimized value which is kept constant when P2
is optimized in the same way. However, the subgroup of structures might not remain of low
energy for the set P1′, P2′, P3 - P5. Therefore, a new LTD run based on the latter values is
performed and a new subgroup is determined, which is used in the optimization of P3, etc.
After optimizing P5 a new round of optimizations based on P1′- P5′ is started until convergence
of the parameter values is attained. The entire optimization requires typically 20,000– 30,000
LTD minimizations.
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After completing the optimization, an LTD run consisting of at least ~3000 minimized
structures (with the optimal set of parameters) is carried out (in some cases longer runs up to
9000 structures were generated). These simulations always start from NOS, which is not a
limitation as discussed earlier. The computer time required for the two components of the
optimization procedure (i.e., LTD and minimizations of the partial group) depends on the size
of the loop and the template. For example, an LTD run of 3000 minimizations of the (shortest)
loop of acidic FGF (5 residues) and loop 2 of the antibody (8 residues and a large template)
require ~70 and ~354 h CPU on an AMD Athlon 2.6 GHz processor, respectively. It should
be pointed out that NOS1 undergoes further optimization during this procedure which might
lead to a conformational change; this optimized NOS1 is denoted NOS2. Thus, NOS2 is used
in the calculation of the final energy gaps, while the RMSD is calculated with respect to NOS1.
It is important to verify that NOS2 does not differ significantly from NOS1.

Results and discussion
Optimization of the GB/SA parameters and the energy gaps of the training group

GB/SA is expected to model the electrostatic interactions better than eq 1; therefore, it was not
clear a priori whether in the GB/SA parameter optimization the charges of Arg, Lys, His, Asp,
and Glu should be neutralized as in paper II. To answer this question we first applied Still’s
standard parameters (P1- P5, and σ) with charged and neutralized residues to the training group,
i.e., for each loop we carried out an LTD run of ~3000 minimizations [using Etot (eqs 3–5)
where EFF is defined by the all-atom AMBER force field]. The corresponding energy gaps
appear in Table 2 under “Still’s set” where for each loop the results in the upper and lower
rows are for the neutralized and charged residues, respectively. The table shows that overall
the two sets of results are comparable with average gaps that are equal within the statistical
errors. However, because for five out of the nine loops the neutralized set of results exhibit the
lowest energy gaps, we decided to optimize the GB/SA parameters with neutralized charges
on the loop and template. Notice also that according to our criterion both sets of gaps are too
large, as they exceed the 3 kcal/mol value, except for peptidase (neutralized). However, overall
Still’s results should be considered better than those obtained in paper II for EFF(ɛ=2r) (eq 1)
that are provided as well. The EFF gaps from paper II are smaller than Still’s neutralized and
charged gaps only for three and two loops, respectively. Again, the average gap value obtained
by EFF(ɛ=2r) does not provide a reliable measure of performance (even though it is slightly
larger than those of Still’s set) because of its large error bars, which reflect the strong scatter
of the individual results. For most loops the RMSD between NOS1 and NOS2 is small (less
than 0.5 Å) except for proteinase and AK where the RMSD is 1.6 and 0.98 Å (for both the
charged and neutralized loops), respectively. Therefore, the results for these loops should be
evaluated with caution.

The table reveals that the optimized P1- P5 for the individual loops lead to a significant decrease
in the energy gaps as compared to those obtained with Still’s standard parameters and
neutralized charge, and that with the optimizing both P1- P5 and σ these values decrease further.
Thus, for six of the loops, the gaps (bold-faced in the table) are smaller than 3 kcal/mol;
correspondingly, the average gaps decrease significantly. However, for AK and proteinase the
RMSD values between NOS1 and NOS2 are relatively large, 1.3 and 1.6 Å (for both optimal
sets), respectively. The energy gaps obtained with the optimized (P1- P5) and the optimized
(P1-P5 plus σ) are comparable to the energy gaps obtained with the optimized ASPs in paper
II (see Table 2), which is reflected also by the average gap values. To reduce the gaps further,
we attempted for several loops to optimize the parameter k (=4) of eq 3, and ɛin, and ɛw of eq
4; however, we could not find parameter values that would lead to lower gaps.

The individual sets of optimized P1- P5 and σ that appear in Table 2 constitute the basis for
calculating the best-fit (bf) set. While no definite prescription exists for such a derivation, a
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guiding principle would be to average the individual values, excluding parameters that deviate
strongly from the others or reducing their absolute values. Thus, the best-fit P1 and P5 are exact
and approximate averages over all the nine individual values, respectively. Best-fit P3 and
P4 are averages over the individual values of eight loops, ignoring the strongly deviating values,
−14.0 and −5.0 of AK, respectively. In the averages defining best-fit P2 and σ the
moderately deviating values, −3.0 of proteinase and −0.025 of peptidase were increased to
−0.26 and −0.0002, respectively. Overall, the bf parameters are systematically lower than the
corresponding Still’s original values, where smaller P1 leads to smaller αi while smaller P2 –
P4 lead to larger αi (eq 7).

It should be noted that for the bf parameters the RMSD values between NOS1 and NOS2 are
all smaller than 0.85 Å (the value obtained for loop 1 of the antibody). The table shows that
the energy gaps obtained with Still(bf) parameters are significantly better (lower) than the
corresponding values based on Still’s standard set for both neutralized and charged residues.
There are two exceptions, namely proteinase, where the values are 5 vs, 3.2 kcal/mol,
respectively, and acidic FGF (8.1 vs. 4.9 kcal/mol) for charged residues. One must note,
however, that the reliability of the results obtained for proteinase with Still’s standard
parameters is somewhat questionable due to the large RMSD between NOS1 and NOS2
mentioned above. Also, the energy gaps for Still’s(bf) are slightly better than those obtained
by ASPs(bf), where four and three gaps are smaller than 3 kcal/mol, respectively (the average
gaps are comparable).

RMSD for the training group
The RMSD between the GEM structure and NOS1 is calculated with respect to the heavy atoms
and without superposition on NOS1 (the same applies to RMSD between NOS1 and NOS2
discussed earlier). An accepted criterion for a successful prediction of the loop backbone (BB)
structure is that the RMSD from the correct structure is not larger than 1 Å;34,35 notice,
however, that RMSD values smaller than 0.4 Å are actually insignificant because the two
structures belong to the same microstate.

RMSD results (between NOS1 and GEM) for the training set of loops are summarized in Table
3, which is structured similarly to Table 2. In particular, two sets of results are presented in the
column “standard Still” where for each loop the first and second row contains results obtained
with neutralized and charges residues, respectively. The RMSD values are given for the
backbone (BB), the side chains (SC) and the total loop (TOT). The general observation is that
for all methods and optimizations the BB results are quite satisfactory. Thus, for each of Still’s
standard sets (i.e., charged and neutralized), only three RMSD values (bold-faced in the table)
are larger than 1 Å, where they do not exceed 1.4 Å. The same tendency with minor changes
characterizes all Still’s results, where the largest RMSD(BB) values occur for proteinase with
1.4 Å for all approximations and loop 1 of antibody and AD with maximal values of 1.8 Å
(P1-P5) and 2.8 Å (bf), respectively. It is evident that Still’s(bf) results are slightly inferior to
the other sets of Still(BB) values but they are comparable to results based on the force field
alone [EFF(ɛ=2r)], where also four deviations larger than 1 Å occur. On the other hand, the
RMSD(BB) values for the optimized ASPs and ASPs(bf) are all within the range of 1 Å and
thus are better than any of Still’s sets; these trends are also reflected by the averages of the
optimized ASPs and ASPs(bf) that are slightly lower than the other averages.

Most of the RMSD(SC) results are larger than 1 Å, and for standard Still the charged and neutral
results are almost comparable (for four out of seven loops the neutral RMSD(SC) results are
smaller than the charged values while the averages are actually identical). The RMSD(SC)
results for the optimized P1-P5 and optimized P1- P5 plus σ are comparable and are slightly
better (for five out of eight loops) than the standard Still values (neutral and charged). As is
shown clearly in the table, Still(bf) results for RMSD(SC) are inferior to those of the other

Szarecka and Meirovitch Page 10

J Phys Chem B. Author manuscript; available in PMC 2007 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Still’s approximations and even to those obtained by the force field [EFF(ɛ=2r)]; this is also
reflected by the relatively high average of 2.9 Å for Still(bf). The best results are obtained for
the optimized ASPs and ASPs(bf), where the average RMSD(SC) values are 1.5 and 1.6 Å,
respectively; however, notice that within the error bars these values are equal to those obtained
for Still’s set, with optimized P1-P5, and optimized P1- P5 plus σ.

Energy gaps for the test group
The energy gaps obtained by various methods for a test group of 7 loops are summarized in
Table 4. As in Tables 2 and 3, for each loop results presented in the upper and lower rows of
the second column were calculated with Still’s standard parameters with neutralized and
charged amino acids, respectively; we start by discussing these results. It should first be noted
that the R-values of the last four loops are relatively small (1.3–2.7; see Table 1), suggesting
that these loops are only moderately flexible. This is probably reflected in the comparable
energy gaps obtained for each pair, even though the loops of RNase H and antibody consist of
a relatively large number of charged amino acid residues, i.e., 3 and 2, respectively (as pointed
out earlier, even after charge neutralization these residues still have significant dipole
moments). Notice also that for the last loop (of antibacterial protein) the gap obtained with
standard Still(neutralized) is zero, meaning that the GEM structure = NOS2, where for Still
(charged) this gap is small, 1.2 kcal/mol. All these results are reliable in the sense that for each
loop the RMSD between NOS1 and NOS2 is smaller than 0.56 Å obtained for RNase H.

The first three loops in Table 4 are the longest (9, 9, and 10 residues), are characterized by
relatively large R-values (4.9, 4.5, and 4.3, see Table 1), and they contain one, two, and three
charged residues, respectively. The energy gaps obtained for these loops with Still’s standard
parameters and charged residues are always significantly smaller than those obtained with the
neutralized charge. While such large differences are not unexpected for these potentially
flexible loops, part of these results might not be reliable due to large RMSD values between
NOS1 and NOS2. For ser-proteinase these RMSD values are small, 0.27 and 0.23 Å for the
neutralized and charged residues, respectively, however, they are large for loop 188–196 of
proteinase (1.51 and 0.86 Å, respectively), and very large (2.39 Å) for the loop 128–137 of
proteinase (charged). In this respect, Still’s bf gaps are more reliable because the RMSD values
between NOS1 and NOS2 are smaller than 0.66 Å. As expected, the bf energy gaps are smaller
than their counterparts obtained with Still’s standard parameters and neutralized charges,
except for loop (188–196) of proteinase where the reliability of 7.4 kcal/mol obtained with
Still’s standard parameters is questionable, as discussed above.

The gaps obtained with Still’s best-fit parameters are also smaller than those obtained by the
force field alone [EFF (ɛ=2r)] in paper II, which are also presented in the Table; the only
exception occur for ser-proteinase. On the other hand, for the first four loops the gaps obtained
with ASPs(bf) in paper II are significantly smaller than those obtained with Still(bf), while for
the last three loops Still(bf)’s gaps are slightly smaller. This again demonstrates that the
simplified model (eq 1) is better than the more sophisticated GB/SA model. This is also
demonstrated by the average value for ASPs(bf), 5.1 ±1.1 kcal/mol that is smaller than most
of the other averages in the table, where it is only equal (within the error bars) to 7.5 ± 1.7 kcal/
mol obtained for Still’s standard parameters (charged).

RMSD for the test group
RMSD results for the test group appear in Table 5, and as for the training group, we discuss
them first for the backbone [RMSD(BB)]. For Still’s standard parameters most of the RMSD
are smaller than 1 Å besides RMSD=1.5 Å obtained for loop 128–137 of proteinase (charged
residues). A relatively large value, 1.5 Å, is also shown for RNAse H (neutralized), where this
value decreases to 0.8 Å for Still(bf); the other RMSD(BB) results remain the same for Still
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(standard) and Still(bf). The RMSD(BB) values for the force field alone [EFF (ɛ=2r)] are larger
than those of Still(bf) for ser-proteinase (2.1 vs. 0.2 Å) and for loop 128–137 of proteinase (1.3
vs. 1.1 Å); for the rest of the loops the force field results are predominantly the lowest and they
are smaller than 1 Å. However, the lowest set of RMSD(BB) is again that of ASPs(bf) where
all are smaller than 1 Å. However, all the averages are below 1 Å and they are equal within
the error bars.

The RMSD(SC) results obtained for Still’s standard parameters, as expected, are larger than
the corresponding RMSD(BB) values and in most cases are larger than 1 Å. However, these
values (for the neutral residues) are not worse (and in three cases they are actually better) than
the corresponding values obtained for Still(bf); the same applies to the total RMSD values
[RMSD(TOT)]. In paper II results were presented for RMSD(TOT) but not for RMSD(SC),
which therefore do not appear in Table 5. The table reveals that in five out of seven cases the
RMSD(TOT) values obtained with the force field alone or with ASPs(bf) are equal or smaller
(better) than those of Still(bf). For Still(bf) the largest RMSD(TOT) is 3.4 Å (proteinase, 128–
137), where the largest values obtained with the force field and ASPs(bf) are smaller, 2.4 Å
(ser-proteinase), and 2.2 Å (peptidase), respectively. Notice that for five loops the ASPs(bf)
TOT values are not larger than 1.1 Å! The averages of RMSD(TOT) follow the above trends
but statistically they are all equal.

Overall evaluation of the different models
The above discussion of results already demonstrates some advantage of eq 1 over the GB/SA
model. To evaluate these models further, we present in Table 6, averages calculated over the
entire group of 16 loops for the energy gaps and the RMSD values as well as their standard
deviations (divided by 16½ = 4). As expected, for the three Still’s models, the lowest average
energy (6.15 kcal/mol) is obtained with the bf parameters; this value is significantly smaller
(i.e., beyond the statistical errors) than 9.75 obtained by Still’s original parameters with
neutralized residues and 8.4 kcal/mol obtained by the force field alone [EFF(ɛ=2r), eq 1].
However, 6.15 is equal within the statistical errors to the slightly larger gap, 7.06 kcal/mol
obtained for Still’s original parameters with charged residues. The lowest gap, 5.0 kcal/mol
(with the lowest statistical error) is observed for ASPs(bf); however, within the error bars, this
value should be considered equal to 6.15. Correspondingly, the backbone RMSD of ASPs(bf),
0.46 Å, is significantly lower than the values obtained with the other models, where the latter
results are equal within the error bars. Also, the RMSD(TOT) result, 1.18 Å for ASPs(bf) is
the lowest, however, its error overlaps those of Still’s(standard).

Thus, while the advantage of eq 1 with ASPs(bf) over Still’s results is in most cases statistically
significant, the distinction between the performance of Still’s models would require results
from a larger sample of loops. However, the trend shown in the table is that Still(bf) provides
the lowest average energy gap (among Still’s models) while its RMSD values are somewhat
inferior to those of the other models. In retrospect the fact that comparable results obtained for
Still’s models is perhaps not surprising because the standard and best-fit sets of parameters are
in most cases not very different, where the four best examples are P3, P4, P5 and σ that are
6.211 vs. 5.30, 15.236 vs. 13.90, 1.254 vs. 1.10, and 0.0049 vs. 0.0030 for Still(standard) and
Still(bf), respectively (see Table 2). This should be compared to the more drastic changes
occurred in the optimization of the ASPs in paper II, where the optimized (and bf) value of
carbon (which is the most frequent atom) has been found to be negative (hydrophilic) versus
its positive value (hydrophobic) in the sets of Wesson and Eisenberg,49 and Ooi et al.,77 for
example. This may suggest that the original (standard) optimization of Still’s parameters
against PB results for small molecules is reasonable, a fact that could not have been gathered
a-priori. However, our hope that GB/SA would provide better results than the theoretically
inferior eq 1 has not been materialized to our surprise (and disappointment); the reason for this
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unexpected behavior remains unclear. Still, it is possible that other GB/SA versions would
provide better results for loops than the present model.

Attempts to improve eq 1
In view of the above discussion, it would be of interest to check whether eq 1 can still be
improved. As has already been pointed out and discussed in more detail in paper II, the
dielectric function, ɛ=nr with n=2 used for optimizing the ASPs does not provide the necessary
screening of the Coulombic interactions for a loop consisting of several charged residues (even
if neutralized), while increasing the screening to ɛ=3r made eq 1 insensitive to conformational
changes and thus did not allow optimization of the ASPs. To overcome this problem we decided
to replace the ɛ=nr function by more complex dielectric functions and study their performance.
The first function, used by Mehler and collaborators is,102,103

ɛ(r) = (ɛw + 1) / (1 + k exp – λ(ɛw – 1)r ) – 1 (10)

where ɛw=80, and k and λ are parameters to be optimized. The second function, proposed by
Warshel is,104

ɛ(r) = { 16.55 r < 3A
˚

1 + 60(1 – exp( – 0.1r) r ≥ 3A
˚}, (11)

where both functions have been implemented within TINKER. eq 10 was applied to loop 3 of
RNase A and the loop of acidic fibroblast, where both ɛ0 and λ, and the ASPs were optimized.
eq 11 was applied to loop 3 of RNase A and the second loop of proteinase (of the test group).
Here no parameters exist and thus only the ASPs were optimized. However, in both cases we
could not obtain better energy gaps than those obtained with ɛ=2r.

Other recent studies of loops
Still’s GB/SA model with the AMBER force field has been applied recently to loops by de
Bakker et al.52,53 who treated 385 loop targets (length 2 to 12) collected previously by Fiser
et al.44 For each target a set of 1000 decoy structures were generated using the RAPPER and
SCRWL search procedures for the backbone and side chains, respectively. The energies of
these decoys were than minimized with the GB/SA/AMBER function and for comparison also
by the AMBER force field (with ɛ=1) alone, using the program TINKER. As in our studies,
they have found in general a better performance with GB/SA/AMBER than with AMBER
alone. Later, an extensive study of loops was carried out by Jacobson et al.54 who used the
Surface Generalized Born and a nonpolar solvation model (SGB-NP)56 with the latest version
of the OPLS force field.102 They have treated a full set of 788 target loops (length 4 to12) and
a filtered set of 514 loops, where for each loop 200–1400 decoys have been generated by an
elaborate conformational search procedure. Very recently Zhang et al.58 have tested their
knowledge-based statistical potential, DFIRE (distance-scaled, finite ideal gas reference state)
by applying it to these three loop sets and comparing its performance to those of GB/SA/
AMBER and SGB-NP/OPLS. From these results one can obtain some information about the
relative performance of the above models.

Thus, in the section “Minimized” of Table S2 of the supplemental material provided by Zhang
et al.58 the average RMSD results obtained by GB/SA/AMBER and DFIRE for different loop
length are presented. Dividing the provided standard deviation values by n½ where n is the
number of loops of certain length studied, show that only for three loop sizes, 3, 4, and 6 the
values of GB/SA/AMBER are smaller than those of DFIRE, while in all other cases the
corresponding results are equal within the error bars. On the other hand, in the section “Full”
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of Table S4 OPLS/SGB-NP leads to smaller RMSD values than DFIRE for six loop lengths
(from 4 to 9), where for the longer loops (10–12) the results are equal within the statistical
errors. For the filtered set, OPLS/SGB-NP leads to the smallest RMSD values for five loop
lengths (4 to 8) where for the longer loops (9–12) the results are equal results within the
statistical errors.

Thus, OPLS/SGB-NP performs better with respect to DFIRE than does AMBER/GB/SA,
suggesting that OPLS/SGB-NP is the more reliable model among the two at least for loops.
Clearly, this conclusion should be taken with some caution because the RAPPER set is smaller
and different from Jacobson’s sets, and from our experience, the number of decoys used in
these studies is insufficient. In our studies, for example, 3000–9000 conformations are
generated for each loop in a search process (LTD) that directs the loop towards its GEM
structure. Also, it is not clear what is the relative contribution of the force fields to the
performance of these models. In paper I we have found AMBER to be better than OPLS for
loops but the torsional potentials of OPLS have been recently improved105 and used in the
OPLS/SGB-NP study.

This discussion is closely related to recent performance studies of GB/SA solvation models.
It has been found that some combinations of force fields and GB/SA models are better than
others and can lead to results that are close to those obtained in the experiment or by explicit
solvation models. A well-studied example is the (caped) C-terminal polypeptide from the B1
domain of protein G, a 16-residue peptide that has been found experimentally to fold to a β-
hairpin in aqueous solutions.106–,108 Folding simulations based on different explicit water
models (TIP3P, SPC) and force fields have all found the β-hairpin state the most populated.
109–112 On the other hand, simulations of Zhou and Berne,113 Zhou,112 and Levy’s
group114 have shown that only few of the implicit models studied predict the β-hairpin state
to be the most stable.

Conclusions
All of the solvation models studied here [including EFF(ɛ = 2r)] are considerably better than
using the force field with ɛ = 1 [ EFF(ɛ = 1)] as has been discussed in papers I and II. Based
on results for 16 loops, we have not found significant differences in performance among the
three GB/SA models studied. All of them, however, have been shown to be somewhat inferior
to eq 1, which itself is unsatisfactory, leading to too high energy gaps of ~5 kcal/mol. We have
also concluded (indirectly) about differences in the performance of DFIRE58 and the models
of de Bakker et al.52,53 and Jacobsen et al. However, these differences (based on the average
behavior) are not very large as well, and for certain individual loops are reversed. It should be
pointed out that for loops shorter than 8 residues RMSD(BB) obtained by all these models is
satisfactory.

Implicit solvation models are very convenient for studying loops due to their relative simplicity
and the fact that they are amenable to efficient conformational search techniques. The problem
is whether they can be improved significantly further. In this context it should be emphasized
again that most of the loop studies (excluding DFIRE) are based on minimized energy
structures, where RMSD differences of 0.1–0.5 Å are insignificant because the corresponding
structures belong to the same microstate. Neglecting the conformational entropy also hampers
the search for correlation between RMSD and the free energy gap. Preliminary calculations in
paper II have shown, however, that the contribution of the entropy has led to an insufficient
decrease in the free energy gaps, i.e., only by ~0.6 kcal/mol. Entropic effects have been included
successfully in the colony free energy.59,115 Better agreement with the experimental data can
expected to be achieved by taking into account the crystal environment and the effect of ions,
and by selecting loops with low B-factors.54,116

Szarecka and Meirovitch Page 14

J Phys Chem B. Author manuscript; available in PMC 2007 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



An important factor which affects the quality of loop modeling is an optimal match between
a given implicit solvation model and the force field used. To be consistent with papers I45 and
II46 we have applied here GB/SA with AMBER94; however, extensive studies of the C-
terminal polypeptide from the B1 domain of protein G by Zhou using AMBERx/GBSA,109
where x=94, 96, and 99 discovered that only AMBER96 (Ref. 117) with GB/SA gave a
reasonable free energy profile (but one erroneous salt bridge); therefore, optimizing eq 1 with
AMBER96 or other new optimized force fields might have improved this model further. One
perhaps might choose GB models which maximally mimic of the Poisson Boltzmann (PB)
equation; however, Lee and coworkers118,119 have argued recently that PB itself has its
limitation and one has to resort to explicit-implicit hybrid models. Thus, developing the optimal
implicit solvation model in general and for loops in particular still remains an open problem.
120
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Table 1
The proteins and the corresponding loops and templatesa

Protein Loop Sequence R # atoms (loop) # atoms (template) Radius (Å) (template)

Training Group
RNase A (1rat) Loop 3, 89–

97 (9)
SSKYPNCAY 2.8 133 726 10

RNase A (1rat) Loop 1 64–
71 (8)

ACKNGQTN 3.2 107 745 10

Acidic fibroblast (FGF)
(2afg)

90–94 (5) EENHY 2.3 84 700 10

Adenylate kinase (AK)
(4ake)

73–80 (8) AQEDCRNG 2.1 112 856 10

Peptidase (5cpa) 205–213 (9) PYGYTTQSI 3.5 138 1109 10
Antibody, McPC603 (1mcp) Loop 1,

L26-L37
(12)

SQSLLNSGNQKN 2.5 175 893 9

Antibody, McPC603 (1mcp) Loop 2,
H102-H109
(8)

YYGSTWYF 3.7 139 1492 9

Penicillopepsin (3app) 129–137 (9) INTVQPQSQ 2.7 139 999 9
Proteinase (2apr) 202–210 (9) ATVGTSTVA 4.8 112 804 9

Test Group
Ser-Proteinase (2ptn) 143–151 (9) NTKSSGTSY 4.9 117 809 9
Proteinase (2apr) 188–196 (9) IDNSRGWWG 4.5 143 1270 9
Proteinase (2apr) 128–

137 (10)
DTITTVRGVK 4.3 158 1145 9

Peptidase (5cpa) 244–250 (7) ITTIYQA 2.7 114 1010 9
RNase H (2rn2) 57–63 (7) EALKEHC 1.6 110 929 9
Antibody (1mcp) 56L-62L (7) GASTRES 1.3 93 1007 9
Antibacterial protein (1noa) 25–30 (6) GLQAGT 1.3 74 536 9

a
R is the ratio between the length of the stretched (extended) loop and the distance between the Cα of the first and last residues of the loop. The charged

residues are bold-faced.
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Table 4
Energy gaps for the test group of loopsa

Protein, Loop Energy Gaps (kcal/mol)
Standard Stillb Best-fit, Still EFF(ɛ=2r) eq 1 Best-fit, ASPs

eq1

Ser-proteinase 143–151(9) 17.6 13.7 6.9 3.9
12.0

Proteinase 188–196 (9) 7.4 9.3 10.0 4.7
1.8

Proteinase 128–137 (10) 25.4 13.4 14.8 3.3
10.6

Peptidase 244–250 (7) 9.9 6.1 9.0 3.4
9.7

RNase H 57–63 (7) 11.9 7.5 14.0 9.4
11.7

Antibody 56L-62L (7) 8.0 6.6 9.8 8.8
5.6

Antibacterial pro. 25–30 (6) 0.0 0.0 0.5 1.7
1.2

Averages 11.5 ± 3.1 8.1 ±1.8 9.3 ± 1.8 5.0 ± 1.1
7.5 ± 1.7

a
Energy gaps between NOS2 and the GEM were obtained by at least 3000 LTD minimizations. The energy gaps denoted EFF, and best-fit ASPs are taken

from paper II. The errors in the averages are one standard deviation divided by n½ where n=7.

b
Energy gaps obtained with Still’s standard set of parameters, where the charge of Arg, Lys, Asp, Glu, and His is neutralized (upper row) and kept intact

(lower row).

C
Energy gaps for optimized P1-P5.
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Table 5
Results for the RMSD between NOS1 and the GEM structure for the test group of loopsa

Protein/loop RMSD (Å)
Standard Still Best-fit, Still EFF(ɛ=2r) eq 1 Best-fit ASP’s eq

1
BB SC TOT BB SC TOT BB TOT BB TOT

Ser-Proteinase 143–
151 (9)

0.2 1.0 0.7b 0.2 1.7 1.1 2.1 2.4 0.6 0.6
0.2 0.9 0.6

Proteinase 188–196 (9) 0.7 2.3 1.7 0.7 2.3 1.8 0.3 1.5 0.2 0.9
0.3 1.9 1.4

Proteinase 128–
137 (10)

1.1 2.8 2.1 1.1 4.8 3.4 1.3 2.3 0.8 1.0
1.5 2.9 2.4

Peptidase 244–250 (7) 0.7 1.5 1.2 0.7 1.6 1.3 0.7 1.3 0.6 2.2
0.8 2.0 1.5

RNase H 57–63 (7) 1.5 3.7 2.8 0.8 2.8 2.1 0.2 1.5 0.2 1.9
0.9 1.9 1.5

Antibody 56L-62L (7) 0.8 1.4 1.1 0.8 1.3 1.0 0.1 0.7 0.7 1.1
0.8 0.9 0.8

Antibacterial prot.25–
30 (6)

0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 0.1 0.7
0.2 0.2 0.2

Averages 0.7 1.8 1.4 0.6 2.1 1.5 0.7 1.5 0.5 1.2
0.7 1.5 1.2

SD/n½ 0.2 0.5 0.4 0.1 0.6 0.4 0.3 0.3 0.1 0.2
0.2 0.3 0.3

a
BB, SC, and TOT denote RMSD results for the backbone, side chains, and the total loop, respectively. The different columns are defined in the caption

of Table 2. Backbone RMSD values larger than 1 Å are bold-faced. The corresponding errors in the averages appear in the bottom; SD is the standard
deviation and n=7. In paper II results for SC are not provided.

b
RMSD results obtained with Still’s standard set of parameters, where the charge of Arg, Lys, Asp, Glu, and His is neutralized (upper row) and kept intact

(lower row).
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Table 6
Average energy gaps and RMSD values for the 16 loops of the training and test groupsa

Standard Still (neutralized)b Standard Still
(charged)c

Best-fit, Still EFF(ɛ=2r), eq 1 Best- fit ASP’s

Average Energy Gaps (kcal/mol)
9.75 ± 1.73 7.06 ± 1.08 6.15 ± 1.04 8.40 ± 1.15 5.00 ± 0.87

Average RMSD (Å)
BB d 0.75 ± 0.11 0.77 ± 0.11 0.87 ± 0.17 0.80 ± 0.15 0.46 ± 0.07
SC 2.02 ± 0.30 1.86 ± 0.23 2.51 ± 0.45
TOT 1.51 ± 0.21 1.43 ± 0.17 1.88 ± 0.33 1.55 ± 0.17 1.18 ± 0.13

a
The errors in the averages are one standard deviation divided by n½ where n=16.

b
Calculated with Still’s standard parameters with neutralized charge for Arg, Lys, Glu, Asp, and His.

c
Calculated with Still’s standard parameters with charged residues.

d
BB=backbone; SC=side chains; TOT=total.
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