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Reward expectation and reward prediction errors are thought to be critical for dynamic adjustments in decision-making and
reward-seeking behavior, but little is known about their representation in the brain during uncertainty and risk-taking.
Furthermore, little is known about what role individual differences might play in such reinforcement processes. In this study,
it is shown behavioral and neural responses during a decision-making task can be characterized by a computational
reinforcement learning model and that individual differences in learning parameters in the model are critical for elucidating these
processes. In the fMRI experiment, subjects chose between high- and low-risk rewards. A computational reinforcement learning
model computed expected values and prediction errors that each subject might experience on each trial. These outputs predicted
subjects’ trial-to-trial choice strategies and neural activity in several limbic and prefrontal regions during the task. Individual
differences in estimated reinforcement learning parameters proved critical for characterizing these processes, because models
that incorporated individual learning parameters explained significantly more variance in the fMRI data than did a model
using fixed learning parameters. These findings suggest that the brain engages a reinforcement learning process during
risk-taking and that individual differences play a crucial role in modeling this process.
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INTRODUCTION
In order to maximize rewards during decision-making,

organisms can estimate expected rewards, or value, of

various decision options and continually update their

expectations according to outcomes of their decisions.

In the past half century, reinforcement learning theory has

emerged as a powerful tool to characterize how organisms

acquire such reward expectations and how they can use

outcomes of their decisions to adjust those expectations

(Sutton and Barto, 1998; Camerer, 2003; Schultz, 2004).

In typical reinforcement learning models, ‘weights’ represent

expected outcomes of each decision option, and thus

decision options with stronger weights become preferred

and are more likely to be chosen than are decision options

with relatively weaker weights. The difference between the

expected outcome (e.g. reward) and the received outcome

is termed a prediction error, and can be used to adjust

decision option weights so they better reflect the true reward

value of the chosen decision. Thus, these two variables—

weights and prediction errors—are distinct but related,

and together form a simple mechanism by which organisms

can dynamically adjust their decision-making based on

reinforcements (Cohen and Ranganath, under review).

Neuroscientists have suggested that reward prediction

errors are encoded in structures including midbrain

dopamine regions, the cingulate cortex and ventral striatum.

In particular, phasic increases in activity are observed when

reinforcements are better than expected (a positive predic-

tion error), and phasic decreases in activity are observed

when reinforcements are worse than expected or not given

(a negative prediction error) (Schultz et al., 1997; Waelti

et al., 2001; Daw et al., 2002; Holroyd and Coles, 2002;

O’Doherty et al., 2003; Schultz, 2004; Seymour et al., 2004;

Rodriguez et al., 2005; Abler et al., 2006).

In contrast, neural representations of expected rewards

(termed ‘weights’ in reinforcement learning models) are

thought to be housed in the orbitofrontal cortex and

amygdala: activity in these regions is sensitive to the relative

preference of rewards, suggesting that these regions might

encode the expected values or relative motivational

significance of different decision options (Tremblay and

Schultz, 1999; Hikosaka and Watanabe, 2000; Hollerman

et al., 2000; Kringelbach et al., 2003). Together, these

findings suggest a neuroanatomical distinction between

prediction errors and expected rewards (Haruno and

Kawato, 2006). Thus, the first goal of this study was to test

whether a reinforcement learning model could be used

to uncover representations of expected rewards and

reward prediction errors in an environment that involved

decision-making under uncertainty.
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The second goal of this study was to test the role

of individual differences in these processes. Specifically,

reinforcement learning models have learning rates that

describe how the prediction error adjusts the weights

(equations provided in the ‘Methods’ section): a large

learning rate means that the prediction error strongly

influences the adjustment of the weight, whereas a small

learning rate (e.g. close to 0) means that the prediction error

only slightly influences the weights. These parameters

are typically selected a priori and fixed across subjects

(e.g. O’Doherty et al., 2003; Seymour et al., 2004). These

models have provided powerful insights into the neural

computations of a prediction error, although they are

traditionally tested either in passive learning or in simple

choice tasks in which there is a ‘best’ or correct response.

However, fixing these parameters to be constant across all

subjects might not be appropriate in more complex

situations, such as those that involve decision-making

under uncertainty or risk, in which different individuals

might interpret the same reinforcement in different ways.

For example, after losing a high-risk gamble, some people

might avoid another high-risk gamble, whereas others might

continue seeking high-risk gambles (Cohen and Ranganath,

2005). Reinforcement learning models with fixed learning

parameters do not capture this inter-subject variability

because fixed learning parameters assume that all subjects

interpret and use reinforcements in the same way to update

weights of decision options. However, these parameters can be

empirically estimated for each subject based on their

behavioral data and used to characterize behavioral and

neural processes (e.g. Paulus and Frank, 2006). Here, the

performance of models that used fixed or individually derived

learning rates to determine the importance of individual

differences in reinforcement learning processes are compared.

METHODS
Task
Seventeen subjects (aged 22–27 years, eight males)

were scanned while engaged in a decision-making task in

which on each trial they chose either a high-risk (40%

chance of $2.50 and 60% chance of $0.00) or a low-risk

(80% chance of $1.25 and 20% chance of $0.00) decision

option. Subjects were told the probabilities and amounts

of each decision option prior to the start of the experiment,

and they practiced for several minutes before scanning

began. This training minimized early learning and guessing

processes that may have affected performance and brain

activity during the early phases of the task. Thus, this

task is useful for studying how reinforcements are used

to adjust behavior on the trial-by-trial level rather than

examining how learning optimal response patterns occurs

over a longer time scale.

On each trial, subjects first saw a visual cue for 400ms

that indicated that the trial began. They indicted their

decision to choose the high- or low-risk decision option

either by pressing a button or withholding a response,

depending on the shape of the cue (press to indicate high-

risk decision if the cue was a square, or withhold a response

to indicate a high-risk decision if the cue was a circle).

This was done to prevent subjects from planning their

motor responses before the trial began. Results did not

differ according to this manipulation, and these conditions

were thus collapsed. Additional control trials were included

in which subjects simply made a response (i.e. no decision

was involved). These trials are not discussed in the present

article. An inter-trial interval of 2–8 s (jittered) separated

each trial. There were 300 trials spaced over eight scanning

runs. Other, nonoverlapping results from this data set are

reported elsewhere (Cohen and Ranganath, 2005).

MRI acquisition and processing
MRI data were collected on a 1.5T GE Signa scanner at

the UC Davis Research Imaging Center. Functional imaging

was done with a gradient echo planar imaging (EPI)

sequence (TR¼ 2000, TE¼ 40, FOV¼ 220, 64� 64 matrix,

voxel size¼ 3.475� 3.475� 5mm3, 22 oblique axial slices).

Coplanar and high-resolution T1 weighted images were

acquired from each subject. EPI data were realigned to the

first volume, coregistered with the anatomical scan, spatially

normalized to Montreal Neurological Institute (MNI) space

(Brett et al., 2002) resampled to 3.5mm isotropic voxels, and

spatially smoothed with an 8mm FWHM kernel using

SPM99 software.

Model
The model contains the following components: (1) Weights

for each decision option (whigh-risk and wlow-risk for high- and

low-risk decision options). Weights are thought to index

expected rewards or subjective values, but are here termed

weights for consistency with the machine learning literature

(Sutton and Barto, 1998); (2) A prediction error signal (�)
generator. The prediction error node takes as input the

weight of the chosen decision option and the actual reward

received, and sends the difference between these two as

output back to the weights (equation in the following

paragraph). Thus, outcomes that are ‘better than expected’

yield positive prediction errors and increase the weight of

the chosen decision option, and outcomes that are ‘worse

than expected’ yield negative prediction errors and thus

decrease the weight of the chosen decision option.

The model adjusts its weights as follows: The weight

on trial tþ 1 is the weight on trial t plus the prediction

error on trial t : w(tþ 1)¼ ��w(t)þ �� �(t). Thus, when
the prediction error is positive (which occurs after a reward

is received), the weight on the next trial (w (tþ 1)) increases.

Importantly, the weight is scaled by �, a discount parameter

(sometimes called a ‘forgetting’ parameter), and the predic-

tion error is scaled by �, the learning rate. These parameters

can be estimated based on subjects’ behavioral data (see the

following text). The learning rate associated with each
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weight can take on one of three values on each trial: 0 when

the decision option was not chosen, and, when the decision

option was chosen, �reward and �non-reward for trials in which

subjects received or did not receive a reward, respectively.

Having separate parameters provides flexibility for the model

to respond to different outcomes in different ways. In other

words, high-risk wins need not be treated as equal to

low-risk wins. Values of 1.25, 2.5 and 0 were used to

represent low-risk rewards, high-risk rewards and non-

rewards, respectively. Although the relative scaling of the two

rewards is important (because the magnitude of the high-

risk reward is twice as much as that of the low-risk reward),

the actual numerical values are arbitrary with respect to the

fMRI analyses, and the results would not be different if

reward values were, for example, 125 and 250.

Three models were compared: a model in which all

parameters were estimated individually for each subject

(the ‘individual differences’ model), a model that used the

average parameters across all subjects (the ‘group’ model)

such that parameters were empirically estimated but were

fixed across all subjects (parameters were: high-risk/reward:

0.033; high-risk/nonreward: 0.213; low-risk/reward: 0.201;

low-risk/nonreward’: 0.137; discount: 0.753); finally,

a model that used fixed, a priori selected parameters for all

subjects (the ‘fixed’ model). For the fixed model, � was set

to 0.99 and � was set to 0.7. These parameters have been

used previously (O’Doherty et al., 2003). The purpose

of comparing these models was to evaluate the results that

would be obtained if one used the model in different ways.

To estimate these parameters for each subject, an iterative

maximum likelihood minimization procedure (Luce, 1999;

Barraclough et al., 2004; Cohen and Ranganath, 2005) was

implemented in MATLAB. On each iteration, the model

takes the behavioral choices and outcomes for each subject

and computes the probability of the subject choosing the

high-risk decision on each trial as the difference of the

logarithm of the weights:

pðtÞhigh-risk ¼
expðwðtÞhigh-riskÞ

expðwðtÞlow-riskÞ þ expðwðtÞhigh-riskÞ
:

The procedure uses the nonlinear, unconstrained

NelderMead simplex method (Lagarias et al., 1998) to find

values of the learning parameters that maximize the sum of

p(t)high-risk or p(t)high-risk across the experiment (depending

on the decision made by the subject on trial t). Learning

parameters are adjusted on each iteration until further

iterations and adjustments do not improve the model.

Weights are each set to 1 at the start of each iteration, and 0.5

is used as starting values for all parameters, although the

initial values had negligible effects on their final estimates.

There was an average of 479.2 iterations (SD: 259.8,

range: 218–1034) until convergence. Note that the criteria

for optimizing learning rates does not involve directly

comparing weights or prediction errors and actual decisions

made by the subjects, and is completely orthogonal to the

fMRI data, and so comparing results from the models is not

redundant with how the parameters were estimated.

FMRI analyses
To examine putative neural representations of prediction

errors and weights, each model was fed the unique history

of decisions and reinforcements from each subject, and

calculated a reward prediction error and difference in the

weights for the two decision options on each trial of

the experiment.1 In this study, the difference between the

weights, rather than the weights themselves, is used because

decision options were not associated with unique behavioral

responses, and the brain likely does not house separable

representations for ‘high-risk’ and ‘low-risk’ decision

options. Because the two decision options have equal

mathematical expected values (i.e. the magnitude of

reward times the probability of reward is one dollar for

each option), this difference term may correspond to trial-

by-trial changes in relative subjective value or motivational

significance of the two decision options. These vectors of

model outputs were then convolved with each subject’s

empirically derived hemodynamic response function

(obtained from a separate visual-motor response task)

(Aguirre et al., 1998; Handwerker et al., 2004) to produce

a unique expected blood oxygenation-level dependent

(BOLD) response to these terms for each subject. The

procedure is illustrated in Figure 1. To the extent that the

BOLD response in a particular voxel correlates with this

independent variable, the voxel covers tissue in which

activity may reflect or be modulated by prediction errors

as defined by the model. This method has been previously

used to study the putative neural correlates of prediction

errors (O’Doherty et al., 2003; O’Doherty et al., 2004;

Seymour et al., 2004; Tanaka et al., 2004; Glascher and

Buchel, 2005; Haruno and Kawato, 2006).

In the analysis, all of the task variables (combinations

of high- and low-risk rewards and nonreward and a

no-decision control condition) and the vectors calculated by

the model were included as independent variables. The task

variables were included to remove any possible shared

variance between normal task covariates and the prediction

error and weight regressors. All variables were centered on a

mean of zero. Separate general linear models (GLMs) were

conducted for each model. Results of single-subject analyses

were maps of statistical values, where the value at each voxel is

the parameter estimate (unstandardized �) of the relation

between the BOLD response in that voxel and the

independent variable (e.g. prediction error). In the present

analyses, two maps were of interest: the prediction error

and difference in weights. Group-level analyses were

conducted by entering these maps into a one sample t-test,

1 It would be ideal to separate the hemodynamic response from the decision and feedback phases of the

trial, as prediction errors may be differentially represented during these phases. Unfortunately, the rapid

event-related design combined with the sluggishness of the hemodynamic response precludes such a

distinction from the present analyses. Thus, each trial was treated as a single event.
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in which the �-estimate at each voxel across subjects was

tested against zero, and subject was treated as a random

variable. Significant activations were identified with a two-

tailed threshold of P< 0.001 and a cluster threshold of five

contiguous voxels. In the fMRI behavior correlation, one

subject was removed from analyses because the behavior

�-value was over three SDs above the mean (Figure 2c).

However, results with this subject included were very similar.

Behavioral analyses
To examine the correspondence between the model and

subjects’ behavioral choices, behavioral responses were

compared with prediction errors and weights generated

by the individual differences and fixed models. Responses

were coded as 0 (safe decision) or 1 (risky decision)

and were smoothed with a running-average filter with

a 10-trial kernel to produce a continuous vector that reflects

the local fraction of choices selected. Such methods are

often used to examine correspondence between model

predictions and behavioral selections (Sugrue et al., 2004;

Bayer and Glimcher, 2005; Samejima et al., 2005). Because

of autocorrelations induced by the smoothing, data were

analyzed with autoregression, which estimates both the

autocorrelation coefficient [using AR(1)] and the regression

parameters that are independent of autocorrelation present

in the data. Greenhouse–Geisser corrections to degrees

of freedom were used in ANOVAs of behavioral fits.

RESULTS
Behavioral results
If subjects chose the decision option with the stronger

weight, as reinforcement learning theory suggests, the

model’s calculated weights should correlate with subjects’

trial-to-trial choices. This was tested by computing the

autoregression with each subject’s local fraction of high-risk

choices and the model’s calculated weight of the high-risk

option for each trial. This �-coefficient was significantly

greater than zero across subjects (average �¼ 0.20, t16¼ 2.6,

P¼ 0.01) (Figure 2a and c). The average � for the analysis

with the fixed model was smaller, although still significant

across the group (average �¼ 0.09, t16¼ 2.5, P¼ 0.01).

The average � for the analysis with the group model was not

different from zero (average �¼�0.08, t16¼ 2, P¼ 0.054).

A repeated-measures ANOVA on these �-values using

‘model’ as factor revealed that these fits were significantly

different (F1.4,22.8¼ 7.04, P¼ 0.008), such that the individual

differences model yielded greater �-values than those of the

group model (P¼ 0.01) and the fixed model yielded greater

�-values that those of the group model (P¼ 0.01).

It was further predicted that prediction error signals are

used to guide decision-making (Cohen and Ranganath,

under review). In particular, if negative prediction errors

indicate that reinforcements are worse than expected,

these negative prediction errors might signal a need for

adjustments in behavior; larger prediction errors should

therefore signal greater need for behavioral adjustments.

If this is the case, the model’s calculated prediction error

on each nonreward trial should predict subjects’ choices

in the subsequent trial. This was operationalized as whether,

following each nonreward, subjects chose the same vs the

opposite decision option on the following trial as on the

current one (e.g. when not receiving a high-risk reward on

trial n, does the subject choose another high-risk reward or

a low-risk reward on trial nþ 1?). The �-coefficient between
this trial-to-trial strategy and the model’s calculated

prediction error on each of these trials was not significantly

different from zero across subjects (average �¼ 0.78;

t16¼ 0.32). This occurred because for some subjects the

Fig. 1 Illustration of prediction error independent variable used in fMRI GLM. (a) shows the unit-length prediction errors across the entire experiment for one subject calculated
by the model. This vector of prediction errors is then convolved with the subject’s hemodynamic response HRF; (b) to create a vector of an expected hemodynamic response to
prediction errors (c). This vector is entered into the GLM analysis as an independent variable (see ‘Methods’ section). (d) shows an enlarged section of the expected BOLD response
to reward prediction errors.
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�-coefficient was positive and for other subjects this

�-coefficient was negative (Figure 2b and c). That is, for

some subjects, larger prediction errors following nonrewards

were associated with an increased probability of behavioral

switches, whereas for others the opposite was the case.

This seemingly counterintuitive variability is significantly

related to individual variability in the neural correlates of

the prediction error, as described in the following section.

The fixed model also showed no significant �-coefficient

across subjects (average �¼�0.0003; t16¼�0.0008).

The group model, however, showed a significant

�-coefficient across subjects (average �¼ 0.581; t16¼ 4.26,

P¼ 0.001). A repeated-measures ANOVA revealed that these

fits were significantly different (F1.3,21.4¼ 5.8, P¼ 0.017)

such that the group model yielded greater �-values than

those of the individual differences model (P¼ 0.037), and

of the fixed model (P< 0.001).

FMRI results
Neural correlates of value (i.e. difference of
weights). For the individual differences model, activations

were observed in the right amygdala extending into

the hippocampus, right orbitofrontal cortex extending

into the ventral striatum, bilateral caudate, bilateral

thalamus/putamen, bilateral dorsolateral prefrontal cortex

and cerebellum (Figure 3d). Figure 4a displays an example

BOLD time course and weight vector (convolved with

a hemodynamic response) to illustrate the correlation.

No deactivations (i.e. more activity for the weight of the

low-risk option compared to the high-risk option) were

observed. Table 1 lists activation foci for this and all other

analyses reported here.

The group model yielded activations that were largely

overlapping with those observed for the individual differences

model: bilateral posterior orbitofrontal cortex/subgenual

cingulate (BA 11/25) as well as anterior orbitofrontal

cortex (BA 11), right ventrolateral prefrontal cortex (BA 47),

bilateral thalamus, bilateral dorsal prefrontal cortex (BA 44/45)

and parietal cortex (BA 39) (Figure 3e).

Finally, for the fixed model, activations were observed

in right temporal cortex and left dorsolateral prefrontal

cortex (BA 46) and right middle temporal gyrus and

superior parietal gyrus.

Next, the performance of the models is formally compared

by testing whether the difference between �-values at each
voxel produced by different models (e.g. group model

results� fixed model results) was significantly greater or

less than zero. There were no differences between the

individual differences and group maps. Comparing the

individual differences and fixed maps revealed regions with

significantly higher �’s in the left cerebellum and right

thalamus. Comparing the group and fixed models revealed

several regions with higher �-values for the group model,

including bilateral caudate, posterior orbitofrontal cortex,

cerebellum, thalamus and bilateral prefrontal cortex

(Figure 5a).

Fig. 2 Model outputs predict behavioral choice data. Plotted are the local fraction of choosing the high-risk option (a) and choosing the opposite decision following nonrewards
(b) represented as the solid black line, and the difference in the model’s high- vs low-risk decision option weights (a) and the prediction error on each trial (b) represented as the
dotted gray line. Results are displayed from six separate subjects. (c) Displays the �-coefficients for each subject.

Fig. 3 Group activation maps depicting brain regions in which activity correlated
with the prediction error term (a–c) and difference in weights (d,e) for the model
using individual differences in learning parameters (a,b,d) or group-defined
parameters (c,e). Insets in (b) show precise location of midbrain activation.
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Neural correlates of reward prediction error
signal. For the individual differences model, activity in

several regions was significantly positively correlated with

the reward prediction error signal, including the left

midbrain (anatomically consistent with a source in the

substantia nigra), dorsal cingulate cortex, bilateral

prefrontal cortex (BA 6) and right cuneus (BA 18/19)

(Figure 3a and b). Figure 4b displays an example BOLD

time course and reward prediction error vector

(convolved with a hemodynamic response) to illustrate

the correlation. In addition to activations (i.e. positive

correlations with the reward prediction error signal), there

were also deactivations (i.e. inverse correlations with

the reward prediction error signal) in the head of the

right caudate, left middle temporal gyrus (BA 21) and left

angular gyrus.

For the group model, activations were observed in

bilateral amygdala, ventral striatum extending in the

caudate in the left hemisphere, anterior cingulate and

medial supplementary motor cortex, posterior cingulate

and anterior prefrontal cortex (BA 10) (Figure 3c).

Finally, the fixed model produced no significant activa-

tions, but a deactivation was observed in ventrolateral

prefrontal cortex (PFC) (BA 47).

Next the performance of the models was directly

compared. There were no differences between the individual

differences and group maps. However, comparing the

individual differences and fixed maps revealed regions with

significantly higher �’s in the dorsal cingulate and

ventrolateral prefrontal cortex (Figure 5c). Comparing the

group and fixed models yielded largely similar results,

although additional regions exhibited higher �-values for the
group model including the right ventral striatum and

orbitofrontal cortex (Figure 5b).

The variability in the relationship between prediction

errors and behavioral strategies (Figure 2c) suggests that

individuals differed in how they used the prediction error

signal to guide decision-making. Thus, these individual

differences might reflect differences in the neural representa-

tion of the prediction error signal. To test this, the �-value
is used between the prediction error term and the local

fraction of stay/switch choices of the subjects (e.g. the

relationships depicted in Figure 2b) as an independent

variable in a regression with the statistical brain activation

maps of correlates of the prediction error. Cross-subject

variability in each of these analyses reflects differences in

the representation and use of prediction errors during

the task, and thus significant brain activations in this

analysis indicate that differences in how prediction errors

guide behavior predict differences in how prediction errors

might be represented in the brain. As seen in Figure 6,

the behavioral correlation significantly predicted the

model’s fit to the fMRI data in bilateral ventral striatum,

orbitofrontal cortex and prefrontal cortex.2

Fig. 4 BOLD responses from a single subject correlate with variables predicted by the individual differences model. (a) Correspondence between BOLD signal from the maximally
significant voxel in orbitofrontal cortex (OFC; solid black line) and the difference of the high- and low-risk weights calculated by the model (dotted gray line). (b) The BOLD
response from the maximally significant voxel in dorsal cingulate cortex (dCC; solid black line) and the model’s prediction error, convolved with a hemodynamic response function
(dotted gray line). Cross-hairs in the T1 display the position of the voxel (MNI coordinates displayed under the T1). BOLD responses are low-pass filtered for illustration purposes.

2 This relationship could not be explained by the use of a win/stay–lose/switch strategy, because the

probability of using this strategy did not correlate with any of the learning parameters (all P> 0.05), nor did

it correlate with activation in any of the regions identified in this analysis (all P> 0.5).

Individual differences and reward prediction SCAN (2006) 25



Next, this individual differences correlation analysis was

run using �-coefficients between the group model’s predic-

tion errors and subjects’ stay/switch behaviors. In contrast

to the findings obtained from the individual differences

model, no activations were observed, even at a liberal

threshold of P< 0.01, uncorrected. Finally, no significant

activations were observed for the fixed model.

DISCUSSION
Here, evidence is provided suggesting that, during decision-

making under uncertainty, two variables predicted by

reinforcement learning theory and estimated using

Table 1 List of activation clusters

Region X, Y, Z t Brodmann
Area (BA)

Difference of weights
Individual differences model
R. amygdala/hippocampus 24, �13, �12 4.60
R. posterior orbital gyrus 14, 14, �12 5.01 11
L. putamen �24, �20, 12 4.90
R. putamen 21, �14, 13 5.97
L. caudate �17, 3, 14 4.28
R. caudate 13, �14, 19 4.47
R. dorsal cingulate 7, �27, 33 4.06 23
L. superior frontal gyrus �43, 15, 43 4.67 9/44
R. superior parietal gyrus 23, �64, 57 4.53 7
L. superior parietal gyrus �26, �65, 53 4.50 7
R. cerebellum 24, �70, �28 4.78
L. cerebellum �24, �74, �34 4.60
R. middle temporal gyrus 46, �58, �8 4.61 37

Group model
L. posterior orbital gyrus �28, 11, �20 4.62 38
R. posterior orbital gyrus 18, 12, �18 6.90 11
R. caudate 10, 2, 7 4.07
R. collateral sulcus 38, �56, �14 5.41 37
R. inferior frontal gyrus 42, 50, �5 7.04 46
R. anterior insula 29, 19, 7 6.66 48
L. thalamus �11, �24, 12 5.17
R. posterior cingulate 10, �44, 26 5.36 23/26
R. medial frontal gyrus 36, 30, 34 4.83 46
L. medial frontal gyrus �46, 19, 36 4.88 44/46
R. superior frontal gyrus 21, �4, 66 5.36 6
L. precuneus/angular gyrus �36, �64, 53 4.57 7
R. precuneus/angular gyrus 38, �56, 53 5.24 40
R. cerebellum 27, �77, �34 5.51
L. cerebellum �21, �78, �31 4.43

Fixed model
R. middle temporal gyrus 45, �54, �16 4.59 37
L. middle frontal gyrus �46, 50, 4 4.60 46
R. superior parietal gyrus 26, �64, 58 5.67 7

Individual differences–fixed
R. thalamus �12, �19, 14 5.11
R. cerebellum 38, �65, �35 5.78

Group–fixed
R. cerebellum 14, �79, �33 5.55
Cerebellar vermis 0, �54, �17 5.10
R. posterior orbital gyrus 18, 12, �17 7.34 11
L. posterior orbital gyrus �19, 8, �19 4.16 48
R. middle frontal gyrus 42, 51, �6 6.19 46
L. middle frontal gyrus �46, 50, �4 5.42 46
R. collateral sulcus 42, �56, �12 5.04 37
R. anterior insula 33, 22, 4 4.93 47/48
R. caudate 10, �2, 12 5.95
L. thalamus �14, 9, 12 5.55
R. posterior cingulate 11, �48, 26 4.91 23
L. middle frontal gyrus �36, 12, 40 6.77 44
R. middle frontal gyrus 34, 9, 47 4.40 6
L. precuneus/angular gyrus �35, �69, 55 5.09 7
R. precuneus/angular gyrus 35, �61, 52 5.28 7/40

Prediction error
Individual differences model
L. substantia nigra/midbrain �10, �18, �9 4.73
L. dorsal cingulate �10, �24, 54 4.63 4/6
L. middle frontal gyrus �40, �9, 54 4.94 6
R. middle frontal gyrus 40, �11, 49 5.16 6
R. superior frontal gyrus 14, �9, 71 4.67 6
R. cuneus 15, �86, 19 4.53 18/19

R. caudate 17, �16, 23 �4.49
L. middle temporal gyrus �56, �44, �5 �5.43 21
L. angular gyrus �46, �70, 33 �4.55 39

Group model
L. hippocampus/amygdala �21, �13, �26 4.86 36
R. amygdala 21, 0, �23 5.53 28
R. ventral striatum 8, 2, �4 5.94
L. ventral striatum �10, 3, �5 5.86
R. middle occipital gyrus 39, �87, �11 5.16 19
L. medial orbital gyrus �8, 36, 0 4.77 11
L. middle occipital gyrus �38, 91, 5 4.58 18
Posterior cingulate 5, �52, 28 5.11 23
L. cingulate sulcus �7, 32, 29 5.08 32
L. precentral sulcus �39, �13, 35 4.86 3
L. superior frontal gyrus �10, 45, 47 6.25 9
R. superior frontal gyrus 15, 35, 40 5.55 32/9

Fixed model
L. middle frontal gyrus �48, 43, 1 �5.94 45

Individual differences�fixed
L. dorsal cingulate �7, �27, 49 4.89 23
L. middle frontal gyrus �45, �13, 55 4.37 6
L. anterior insula �36, 22, 9 4.81 48
L. superior frontal gyrus �7, 1, 61 5.05 6
L. cuneus �13, 82, 16 4.29 19
R. cuneus 14, �85, 19 4.17 18/19

Group–fixed
L. posterior orbital gyrus �24, 17, 18 4.12 48
L. middle temporal gyrus �62, �51, �18 4.91 37
L. ventral striatum �10, 3, �4 5.51
L. middle frontal gyrus �46, 9, 36 4.61 44
L. superior frontal gyrus �21, 11, 66 6.88 6
R. caudate 14, �5, 21 5.54
R. angular gyrus 37, �78, 34 4.88 19
R. superior frontal gyrus 8, 25, 46 7.10 8

Individual differences correlation with prediction error
Individual differences model

L. lateral orbitofrontal cortex �31, 28, �23 5.97 47/11
R. lateral orbitofrontal cortex 21, 25, �21 8.40 11
R. ventral striatum 12, 19, 1 5.26
L. ventral striatum �17, 26, �2 5.50
L. thalamus �3, �16, 1 6.20
R. superior frontal gyrus 17, 60, 22 7.84 10
L. superior frontal gyrus �3, 63, 19 6.01 10
Posterior cingulate 3, �27, 26 8.97 23
R. middle frontal gyrus 27, 23, 55 7.37 8
R. superior parietal gyrus 18, �78, 57 5.68 7
L. superior parietal gyrus �25, �68, 64 6.43 7
R. caudate 17, 8, 18 4.37
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computational modeling—reward prediction errors and

decision option weights—are encoded in a network of

cortical and subcortical brain structures and used to guide

decision-making. Consideration of individual differences

proved central to elucidating the behavioral and neural

correlates of reinforcement learning because the individual

differences and group models explained significantly more

variance in the fMRI data than did the fixed model.

Neural representation of value
Activity in several regions including the amygdala,

orbitofrontal cortex/ventral striatum and caudate nucleus

correlated with the model-derived estimate of the differ-

ence in weights. Neurons in these regions are known to

encode the relative value of rewards as well as expectations

of rewards. For example, orbitofrontal and amygdala

neurons show increased firing rates to preferred rewards

compared to less preferred rewards (Everitt et al., 1991;

Tremblay and Schultz, 1999; Hikosaka and Watanabe,

2000; Baxter and Murray, 2002; Gilbert et al., 2003).

Thus, these regions may compute online assessments of the

relative value of competing decision options, and may guide

behavior by indicating which option is the most valuable or

worthy of pursuit. Consistent with this interpretation,

patients with damage to orbitofrontal cortex and amygdala

have impairments in reward-based decision-making and

often continue to prefer risky decision options even

when this behavior leads to long-term losses (Bechara

et al., 1997, 2000, 2003). Among their impairments may

be inability to compute or utilize computations of relative

value to guide their decision-making.

In this study, the difference between the weights of

the high- and low-risk decision options is used, rather

than the weights themselves, because in this study there

were no unique behavioral responses associated with

choosing high- vs low-risk decision options, and so specific

motor representations of the high- and low-risk decision

options could not be formed. Thus, what is represented by

the difference vector, and what the brain activations may

reflect, is not representations of decision options or value

per se but of the difference in value or motivational

significance between two competing decision options.

Other studies have demonstrated that when specific

decisions are linked with specific behaviors (e.g. eye move-

ments or left- vs right-hand button presses), activity in

neural structures that represent those behaviors is influenced

Fig. 6 The model fit to behavior predicted the model fit to brain activity in striatum and prefrontal cortex. The top row displays a selection of brain regions in which this
correlation was significant. Scatter plots depict the relationship between model fit to behavior (unstandardized �-coefficient between model’s prediction errors and subjects’ stay/
switch decisions; X-axis) and model fit to brain activity (average unstandardized parameter estimates from all voxels in the indicated region; Y-axis) in selected regions. Note that
the X- and Y-axes display unstandardized �-coefficients and are thus their magnitudes are not directly comparable. L, left; R, right; V, ventral; str., striatum; OFC, orbitofrontal
cortex; PFC, prefrontal cortex.

Fig. 5 Regions in which the group (a–b) and individual differences (c) models
provided significantly higher parameter estimates than did the fixed model for neural
correlates of a reward prediction error (b–c) and the weights (a). Black circles enclose
activations for ease in viewing.
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by the value of that decision option (Schall, 1995; Gold and

Shadlen, 2000; Sugrue et al., 2004; Samejima et al., 2005;

Cohen and Ranganath, under review). Thus, value might

be encoded in the brain both as strength of action

representations and as relative activation of neurons in

orbitofrontal cortex and amygdala, among other regions.

Neural representation of prediction errors
The prediction errors generated by the model correlated with

activity in the midbrain, dorsal cingulate cortex and

prefrontal cortex for the individual differences model,

and the ventral striatum, amygdala, dorsal cingulate cortex

and prefrontal cortex for the group model. These activations

confirm those reported in previous studies (Schultz et al.,

1997; Waelti et al., 2001; Daw et al., 2002; Holroyd and

Coles, 2002; O’Doherty et al., 2003; Schultz, 2004; Seymour

et al., 2004; Rodriguez et al., 2005; Abler et al., 2006).

Although precise localization of activation in the midbrain

is difficult, this activation appears to be centered in the

substantia nigra, the origin of the nigrostriatal dopamine

pathway. The location of this activation is also consistent

with coordinates reported in previous fMRI studies of

reinforcement learning processes (Seymour et al., 2004;

O’Doherty et al., 2006) and with direct recordings of

single unit activity in monkeys (Schultz, 1998; Bayer and

Glimcher, 2005).

In the individual differences model, a deactivation

(i.e. inverse correlations with the prediction error) was

observed in the caudate nucleus. Although such deactiva-

tions have not been previously reported, previous investiga-

tions of the neural bases of reward prediction error signals

did not test for deactivations, instead using one-tailed

statistical tests that would only reveal positive correlations

with the prediction error signal (O’Doherty et al., 2003;

Seymour et al., 2004). Thus, deactivations would not have

been identified even if they were present in the data.

However, this finding seems consistent with the pre-

sumed role of the caudate as the ‘actor’ in actor–critic
models of reinforcement learning (Montague et al., 1996;

O’Doherty et al., 2004). Specifically, the ‘critic’ (thought to

be the ventral striatum or midbrain) uses prediction errors

to associate reinforcements with events or actions that

preceded them, and the ‘actor’ uses prediction errors to

guide appropriate behavioral responses. Thus, the actor may

use an inverse prediction error term to help motivate

behavior (i.e. larger negative prediction errors means more

motivation to adjust behavior) (Joel et al., 2002; Worgotter

and Porr, 2005).

The variance in the relation between the prediction

errors and stay/switch strategies following losses suggested

that different subjects used or calculated the prediction

error differently. This seems counterintuitive because

reinforcement learning theory suggests that larger prediction

errors signal a greater need to change behavior. In other

words, it appears as if in some cases, observed behavior

is ‘opposite’ to what the model suggests behavior should be.

Given that there is no optimal policy or correct strategy,

it is possible that some subjects viewed choosing a

nonrewarded decision a second time as a strategy ‘switch’,

which would mean they actually were using prediction errors

as reinforcement learning suggests, but that their concep-

tualization of strategy was different from how it was

modeled. This could occur, for example, if some subjects

thought that when a decision option did not provide a

reward in the current trial, it would in the next trial.

Regardless, this variance proved to be meaningful because

the prediction error–behavioral strategy �-coefficients
explained variance in the prediction error–brain activation

correlations. Such relationships were observed primarily

in the ventral striatum and orbitofrontal cortex, consistent

with previous reports that these regions are sensitive to

prediction errors (McClure et al., 2003; O’Doherty et al.,

2003; Abler et al., 2006; Haruno and Kawato, 2006; Jensen

et al., 2006). There were no similar correlations with the

group and fixed models, even at more liberal statistical

thresholds. This dissociation suggests that models incorpor-

ating individual differences provide maximal sensitivity to

uncovering further individual differences. Interestingly, the

regions that exhibited significant correlations with the

individual differences model overlapped considerably with

the regions identified in the group analysis, in particular the

ventral striatum.

The importance of individual differences naturally leads

to the question of their origins. Differences in risk-taking

preferences have been linked to a number of neuro-

biological and psychosocial factors such as the concentration

of dopamine D2 receptors in the limbic system (Noble, 1998,

2003), socioeconomic status (Diala et al., 2004), or

personality (Craig, 1979; Zuckerman and Kuhlman, 2000;

Petry, 2001). Lee and colleagues (Barraclough et al., 2004;

Lee et al., 2005) found that reinforcement learning

parameters in monkeys are highly stable over many testing

sessions of the same experiment, suggesting that these

learning parameters reflect stable individual differences.

Stability of learning parameters across multiple settings

and over time is especially relevant to the present study,

because the same individuals might have different learning

rates in different tasks, such as those in which some strategies

provide a greater cumulative reward in the long run.

Regardless of their origins and generalizability, however,

characterizing how individual differences modulate these

processes may prove critical to elucidating the neural

mechanisms of reinforcement learning and decision-making.

However, it is not suggested that choosing learning

parameters a priori to be the same for all subjects is

incorrect or inappropriate. Indeed, without measuring

choice behavior over time it is impossible to empirically

estimate learning parameters how they were estimated here.

Fixed parameters might be appropriate in passive learning

experiments or in simple decision-making situations in

28 SCAN (2006) M. X Cohen



which the optimal response is always to maintain rewarded

behaviors and avoid punished behaviors. However, in more

complex situations in which different individuals evaluate

and utilize reinforcements in different ways, models with

a priori chosen parameters may not adequately characterize

reinforcement learning processes.

Relations to other reinforcement learning models
Nearly all reinforcement learning models contain the

same basic components: representations of each decision

option or stimulus (weights, in this study), and a means to

adjust those representations (typically a prediction error).

Many variants of reinforcement learning models exist and

could be related to behavioral and neuroimaging data, but

differences between different models are typically minor and

more related to the experimental paradigm than to the

interpretation of model parameters and output (see Sutton

and Barto, 1998, for an extensive comparison of the

similarities and differences between various reinforcement

learning models). The model used in the present study is

of course not the only possible model that could be

applied to this data set; indeed, one could propose a

new model specifically designed to capture behavior in this

task. However, the model used here was selected because

(1) it is widely used in neuroscience to study reinforcement

learning (see Montague and Berns, 2002, for a review) and

(2) it has a proposed biological basis and is used to

investigate neuroanatomical correlates of reinforcement

learning and decision-making (Schultz et al., 1997;

Barraclough et al., 2004; Montague et al., 2004). Typical

uses of such models typically involve passive learning

(Seymour et al., 2004) or very simple decision-making

situations in which one response is optimal and another

suboptimal (O’Doherty et al., 2004). The fact that this

simple reinforcement learning model is capable of modeling

behavior and brain activity during more complex situations

that involve risk and uncertainty with no optimal response is

a strength of the reinforcement learning model approach to

understanding dynamic changes in brain activity.
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