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Abstract
In electromagnetic source analysis, many source localization strategies require the number of sources
as an input parameter (e.g., spatio-temporal dipole fitting and the multiple signal classification). In
the present study, an information criterion method, in which the penalty functions are selected based
on the spatio-temporal source model, has been developed to estimate the number of independent
dipole sources from electromagnetic measurements such as the electroencephalogram (EEG).
Computer simulations were conducted to evaluate the effects of various parameters on the estimation
of the source number. A three-concentric-spheres head model was used to approximate the head
volume conductor. Three kinds of typical signal sources, i.e. the damped sinusoid sources, sinusoid
sources with one frequency band and sinusoid sources with two separated frequency bands, were
used to simulate the oscillation characteristics of brain electric sources. The simulation results suggest
that the present method can provide a good estimate of the number of independent dipole sources
from the EEG measurements. In addition, the present simulation results suggest that choosing the
optimal penalty function can successfully reduce the effect of noise on the estimation of number of
independent sources. The present study suggests that the information criterion method may provide
a useful means in estimating the number of independent brain electrical sources from EEG/MEG
measurements.
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I. Introduction
The reconstruction of brain electric activity from measured electromagnetic signals, such as
electroencephalogram (EEG) or magnetoencephalogram (MEG), is referred to as the brain
electromagnetic inverse problem and generally has no unique solution [1]. It is necessary to
construct a model of electrical sources describing the brain electric activity in order to solve
this inverse problem [1], [2]. Many such source models have been reported, for example, the
point-like dipole [3]–[7], the cortical dipole layers [2], [8], [9], and the distributed model
[10], [11]. Many inverse methods based on the point-like dipole model have been developed
to reconstruct brain activity, ranging from spatio-temporal dipole source localization [12],
multiple signal classification (MUSIC) [13] and first principal vectors (FINE) [14]. However,
in these source estimation approaches, accurate estimates of dipole sources can be obtained
only if the number of dipole sources is known a priori. In order to use the aforementioned
methods, assumptions need to be made with regard to the number of dipole sources.
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Efforts have been made to rationally estimate the number of independent electrical sources
from bioelectromagnetic measurements. The information criterion (IC) method and the
threshold (TH) method had been applied to detect the number of independent signal sources
in multilead electrocardiograms [15], [16]. The merits of these two methods are that the number
of independent dipole sources can be determined by only analyzing the eigenvalues of the
covariance matrix of the measured data, thus avoiding solving the time-consuming inverse
problem. Their results suggested that the IC method is effective in identifying the number of
signal sources [16]. Knösche et al. [17] used the IC method to determine the number of
independent dipole sources of the scalp EEGs. Nine types of information criteria have been
used to estimate the number of independent dipole sources. In addition, the effects of the
number of electrodes and time points on these information criteria were also considered in their
computer simulations. However, the influence of the penalty functions on the identification of
source number has not been addressed in [17]. Another interesting study was reported by
Waldorp et al. [18], [19], in which the authors addressed the identification of dipole source
number from MEG measurements made at each time point. However, there is no treatment in
[18], [19] using the spatio-temporal dipole source model.

In the present study, we first present the spatio-temporal signal model and characteristics of
the eigenvalues of the covariance matrix of the scalp EEG. Then, we describe the principles
of the Information Criterion method and show how to implement it with five well-known
penalty functions for two widely used log likelihood functions of the Information Criterion
method. Lastly, we evaluate the proposed method for three kinds of typical signal sources, i.e.
the damped sinusoid sources, sinusoid sources with one frequency band (9.9 Hz, 10 Hz and
10.1 Hz) and sinusoid sources with two separated frequency bands (9.9 Hz, 10 Hz, 39.9 Hz
and 40 Hz) that are used to simulate epileptic sources for ictal and interictal activities.
Particularly, the optimal penalty function is chosen from five well-known penalty functions
for these typical signals for a 64-electrode system. For EEG signals with color noise, a pre-
whitening [13], [14], [17] method is used in the computer simulations.

II. Theory and Methods
A. Signal model

We assume an array of m electrodes sensing signals from K dipole sources, and denote the
received m-dimensional signal vector at time instance t by v(t). The dipole sources are related
to the scalp EEG signal vector through a gain matrix G. The head volume conductor model is
incorporated into G. The scalp EEG measurement vector can be described as a superposition
of the contributions from dipole sources and additive noise as follows:

v(t) = G(R)Q(t) + n(t), (1)

where G(R) is the m×3K gain matrix, e.g., G(R) = [g1(r1) ··· gK (rK )]. Each dipole source is
associated with an m×3 submatrix gi (ri ) in G(R). R is K×3 vector of locations of K dipole
sources:

R = r1 ⋯ rk T with ri = ri
x ri

y ri
z , (2)

Q(t) is a 3K×1 column vector that represents the moments of K dipole sources:

Q(t) = q1(t) ⋯ qk(t) T with qi(t) = qi
x(t) qi

y qi
z(t) T , (3)

and n(t) is m×1 vector of the additive noise at time instance t.
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Instead of considering each time point separately, the spatio-temporal model combines the
scalp EEG recordings at all the w time points to form a spatio-temporal data matrix V, V = [v
(t1 ) ··· v(tw ) ][12]. There are two types of spatio-temporal models. In the unconstrained
orientation spatio-temporal model that contains 3K + 3Kw source parameters, the moment
magnitudes and orientations can vary throughout the measurement interval while the locations
are fixed. Another spatio-temporal model, in which both the location and orientation are fixed
throughout the measurement interval, contains K×(5+w) source parameters. In the present
study, we consider the fixed location and orientation spatio-temporal model. Thus, the ith
dipole source moment vector can be represented by qi = misi(t), where mi denotes a 3×1 unit
orientation vector and si(t) is a time varying amplitude of the moment of the ith dipole source.
The fixed location and orientation spatio-temporal model can be represented as follows:

V = A(R, M)S + N, (4)

where S is a K×w scalar matrix, e.g. S = [s1 ··· sK]T , si expresses the time varying scalar moment
of the ith dipole source, si = [si (t1) ··· si (tw )]. A is the m×K transform matrix, A(R, M) = G
(R)M, where M is a 3K×K matrix consisting of orientation vectors mi, i = 1 ··· K , e.g.,

M =

m1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ mk

. (5)

N is an m×w matrix, which contains additive noise at all the w time points.

In the above spatio-temporal model, the following assumptions, which are also necessary for
subspace algorithms such as MUSIC or FINE [13], [14] to work appropriately, are made: 1)
the time series from the different dipole sources are linearly independent, i.e. less than 100%
mutually correlated; 2) the number of time samples is greater than the number of scalp
electrodes; 3) the number of dipole sources is smaller than the number of scalp electrodes; and
4) the matrix A is of full rank. [13], [14].

According to the signal processing [20] and biomedical literature [15]–[17], the problem of
detection of number of independent sources can be defined as analyzing the structure of the
covariance matrix of the observation matrix V. From the above assumptions and equation (4),
the covariance matrix C of the observation matrix V can be expressed as

C = Cs + Cn, (6)

where Cs and Cn are the covariance of the source signal AS and the noise N. It follows that
the rank of Cs is K, with the smallest m-K eigenvalues being equal to zero.

In the case of white noise, the covariance matrix Cn can be expressed as Cn = σn
2I, where

σn
2 is an unknown constant and I is the identity matrix. Therefore, equation (6) can be changed

to

C = Cs + σ2I. (7)

The eigenvalues of C can be expressed as λ1 ≥ ⋯ ≥ λK ≥ λK +1 = ⋯ = λm = σn
2. The

smallest m-K eigenvalues of C are equal to σn
2. It follows from equation (7) that the number

of sources may be determined from the smallest m-K eigenvalues of C. Unfortunately; the
exact form of covariance C is usually unknown. Instead, the sample covariance estimated from
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a finite sample set needs to be used. In this case, all eigenvalues of C are different. In order to
search the smallest eigenvalues, a better way is to determine the number of sources from the
finite measurement set, by means of the IC method [15]–[17].

In case of the color noise, the similar methods can be applied if the noise covariance is known
apart from σn

2. The noise covariance matrix is a symmetric positive definite matrix

Cn = σn
2Ψ. Then, a non-singular square matrix ψ exists such as Ψ = ψψT, where ψ is a non-

singular m×m matrix. The measurement covariance matrix can be transformed from equation
(6) to the following

ψ−1C(ψT )−1 = ψ−1Cs(ψT )−1 + σn
2I. (8)

For both the white and color noise, the eigenvalues can be calculated from the left hand sides
of equations (7) and (8), respectively, and then these eigenvalues can be analyzed by the
information theoretic criterion [16], [17] to estimate the number of independent sources.

B. Information-theoretic criteria
The information theoretic criterion consists of two parts. The first part is the likelihood function
representing the information gained from the measured data which are dependent on the
assumed number of sources. The second part is the penalty term, a function of the number of
snapshots (data points in the time domain). It increases with the number of free parameters in
the probability model and represents the penalty for the uncertainty introduced by the unknown
parameters. Thus the information theoretic criteria for the determination of the number of
signals can generally be expressed as

IC = − log f (X | Ξ∼(k)) + C f (w) ⋅ P f , (9)

where f(•) is a family of conditional probability density functions (pdf) depending on the
assumed number of signals k, X is the given set of w observations, Ξ(k) is a system function

of k parameters, Ξ
∼

(k) is the maximum likelihood estimate of Ξ(k) , Pf is the number of free
parameters in Ξ, and Cf(w), the coefficient of the penalty function, which are dependent on the
number of snapshots w [20], [21].

While some different log likelihood functions in (9) have been studied to determine the number
of independent sources [17], in the present study, we selected two widely used log likelihood
functions for detecting the number of brain electrical sources. Wax and Kailath [22] proposed
an approach based on the information and the minimum descriptive length (MDL) criterion to
detect the number of independent signal sources. The number of sources can be determined by
analyzing the eigenvalues of covariance matrix of observation set. In the Wax and Kailath’s
proposal, the measured data X = {x1, ··· ,xw} obtained from w observations and m channels can
be described in the following model

X = YZ + N (10)

where Y is a m×K transfer matrix, Z is the K×w signal matrix and N is the m×w matrix of
Gaussian noise. The covariance C of X has K largest eigenvalues and m-K smallest eigenvalues
μ1 ≥ ⋯ ≥ μK ≥ μK +1 = ⋯ = μm = σn

2,  which represent K signal sources and m-K noise
sources, respectively. The problem is changed to determine the number of largest eigenvalues.
The IC value (10) can be represented by (11)
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IC = − w
2 ( log | C(k)| + tr(C(k))−1C) + d(k, m)C f (w) (11)

where C(k ) is the covariance of model of k signal sources, k is the number of assumed signal
sources and d(k,m) is the number of free parameters of model of k signal sources. As shown
in [22], the first term of (11) can be expressed completely in terms of estimated eigenvalues
of C. Comparing (4) with (10), it is noted that the model functions, the structure of covariance
of observation matrix are similar. A, Y and S, Z are equivalent respectively. The identification
of number of dipole sources can thus be equivalent to the identification of signal sources. The
dipole source with fixed location and orientation can be equivalent to single signal source, and
dipole source with only fixed location can be equivalent to three signal sources.

Based on the signal model (4), the IC value derived by Wax and Kailath [22] can be obtained
from eigenvalues λi of C as follows [17,22]

IC = w(m − k) log 1
m − k ∑

i=k+1

m
λ1 − w ∑

i=k+1

m
log λ1 + 2d(k, m)C f (w), (12)

where d(k, m) = k(2m − k+1)/2, k is the number of assumed dipole sources. Here, the noise
level σn

2 is unknown and is estimated from the eigenvalues of sample covariance matrix.
Reference [17] extended this approach and proposed a criterion that is based on the distribution
of the noise eigenvalues. Based on the signal model (4), the IC value can also be obtained from
eigenvalues λi of C as follows [17]

IC = − (w − 1 − k − 2(m − k)2 + m − k + 2
6(m − k) + ∑

i=1

k λ̄m−k
2

(λi − λ̄m−k)2 ).
log (λ̄m−k

−(m−k) ∏
i=k+1

m
λi) + 2d(k, m)C f (w − 1)

(13)

where d(k, m) = k(m − k+2)(m − k − 1)/2, k is the number of assumed dipole sources, λ̄m−k  is
the average of the m-k smallest eigenvalues. Knösche et al [17] suggested, based on their
computer simulations, that if the noise information is accurate, it is better to use (12); and if
the noise information is not accurate, the good candidate is (13). In 1969, Akaike [23] proposed
the AIC, a statistic incorporating Kullback-Leibler information with the use of maximum
likelihood principles and negative entropy. Several penalty functions based on AIC have also
been reported [24]. In the present study, we consider the penalty function Cf(h) (h = w or w −
1) as one of the following:

1. C1 = 2 ;

2. C2 = 2log(log(h)) ;

3. C3 = log(h) ;

4. C4 = 2log(h) ;

5. C5 = 3log(h) .

C. Detection algorithm
The proposed algorithm for detecting the number of independent sources from EEG or MEG
involves the following steps:

1. Calculating the covariance matrix C from the measured data matrix V.
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2. Using SVD to decompose the covariance matrix C, and get all eigenvalues such as,
λ1 > … > λm.

3. Calculating the information criterion value with eigenvalues of the covariance matrix
C. The information criterion (ICk) can be calculated using equations (12) and (13).

4. According to the rule of the IC method, the number of sources with minimum
information criterion IC is selected as the estimated number of sources.

III. Computer simulation
The performance of the present method in determining the number of sources was assessed via
computer simulations. In the forward procedure, a three-concentric-spheres head model
consisting of three compartments with an outer radius of 10 cm and standard thickness (8.7 cm
and 9.2 cm) was used to approximate the head volume conductor [25]. Recent studies suggest
that the brain-skull-conductivity ratio ranges from 15 [26] to 25 [27]. In the present study, a
brain-to-skull conductivity ratio of 20 is used. The corresponding conductivity values for the
various tissue types are 0.33s/m, 0.0165s/m, and 0.33s/m, respectively.

The scalp potentials were simulated over the outermost sphere at 64 electrode sites, which were
uniformly distributed over the upper hemisphere. The number of sources was varied from one
to five in a row. For each set of sources, 500 samples were generated. Some restrictions were
placed for the locations, moment magnitudes and orientations of the source dipoles as follows.

• The locations were generated randomly under the constraint that the distance between
any two dipoles was larger than 1.0cm.

• The orientations were generated randomly.
• The moment magnitudes were less than 0.8.

The sampling rate was 1,000 Hz and 100 time samples (=100ms) were obtained in the forward
simulations [14], [16], [17]. Three simulations with different time functions were performed
to consider the influence of the temporal dynamics of sources. The three kinds of sources shown
in Fig. 1 include the damped sinusoid sources (Case A), sinusoid sources (Case B) with one
frequency bands (9.9 Hz, 10 Hz and 10.1 Hz), and sinusoid sources (Case C) with two separated
frequency bands (9.9 Hz, 10 Hz, 39.9 Hz and 40 Hz) [28]–[30]. The correlation coefficients
(CC) of two adjacent time series in each Case were used to assess the performance of
identification of the source number. Here, the CC ρ is denoted as follows:

ρg,h =
| ∑i=1

w
sg(i)sh (i) |

∑
i=1

w
sg

2(i) ∑
i=1

w
sh

2(i)
, (14)

where w represents the number of the time samples, sg and sh are the gth and hth time series
respectively. This equation implies that when two time series are orthogonal, they are
uncorrelated and ρgh is 0; when two time series are identical or only different by a scalar; they
are completely correlated and ρgh is 1. For three cases, some CCs are chosen as follows,

• Case A: four groups (ρ12, ρ 23, ρ34, ρ45) were used, e.g., (0.42, 0.42, 0.42, 0.42), (0.52,
0.52, 0.52, 0.52), (0.62, 0.62, 0.62, 0.62) and (0.72, 0.72, 0.72, 0.72).

• Case B: three groups (ρ12, ρ23) were used, e.g., (0.5, 0.5), (0.5, 0.6) and (0.5, 0.7).
• Case C: four groups (ρ12, ρ 23, ρ 34) were chosen, e.g., (0.4, 0.02, 0.4), (0.5, 0.02, 0.5),

(0.6, 0.02, 0.6) and (0.7, 0.02, 0.7).
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In Fig. 1, CCs of three cases are (0.62, 0.62, 0.62, 0.62) (Case A: Fig. 1(a)), (0.5, 0.6) (Case
B: Fig. 1(b)) and (0.6, 0.02, 0.6) (Case C: Fig. 1(c)), respectively.

For each of the three source models, effects of the white and color noise were assessed. For
the white noise, we used three sets of normally distributed noise with different noise levels
(5%, 10% and 20%), where the noise level was defined as the percentage ratio of the root mean
square value of the noise to that of the potential data in single time slice (w time points) [14].
For the color noise, the white noise was generated in the same way as described above. It was
then multiplied by an m×m matrix T. For the white noise, this matrix T is diagonal and its
elements are uniformly equal to 1. For the spatially correlated noise, when i is equal to j, Tij =
1; when i is not equal to j; the elements of T are Tij = 0.5 for all electrodes adjacent to the
electrode of interest, and Tij = 0 for all non-adjacent electrodes [17]. In the Case A, B and C,
for (12), it is assumed that the noise covariance matrix is known exactly. All simulations were
performed with this accuracy noise information for the pre-whitening; for (13), all simulations
were performed with inaccurate noise information for the pre-whitening. To simulate
inaccurate noise information, a certain amount of Gaussian noise Dij is added to each element
of the noise covariance matrix Tij. The noise inaccuracy κi of each row of the noise covariance
matrix is defined as

κi = ∑
i=1

m
Dij / ∑i=1

m
Tij × 100 % (15)

Two κi values, e.g., 1% and 7% were used in the computer simulation using (13) in the Case
A, B and C [17].

IV. Results
A. Case A - Damped sinusoid sources

Fig. 2 shows the eigenvalues of the covariance matrix of EEG data generated by three sources
for both the 20% white noise and color noise (ρ12, ρ 23, ρ 34, ρ 45 are 0.62, 0.62, 0.62, 0.62.).
Fig. 2(a) shows that the elbow of the eigenvalue curve is clear, suggesting that one can
determine the number of independent sources from the eigenvalue curve. On the contrary the
elbow point is not clear in the case with color noise [Fig. 2(b)]. Therefore it becomes difficult
to identify the number of independent sources from visual inspection of the eigenvalue curve.
Fig. 3(a) shows the IC values of the aforementioned example of source configuration adding
20% white noise using (12). According to the rule of the IC method, the detected dipole source
numbers of the five curves are 3, 3, 3, 2 and 2 for C1 to C5 in Fig. 3(a). The estimated source
number with C4 and C5 are incorrect. Figs. 3(b) and (c) show the IC values of the
aforementioned example of source configuration (20% color noise) with pre-whitening using
(12), where it is assumed that the exact noise variances are known. According to the rule of
the IC method, the detected source number using the five penalty functions can be different,
e.g., 3, 2, 2, 2 and 2 for C1 to C5, respectively. The estimated source number with C2, C3, C4
and C5 are incorrect. Fig. 3 suggests that the penalty function plays an important role in the IC
method.

Note that the noise level may affect the eigenvalue curve [see Section II-A]. Hence, it can also
influence the identification of source number. To consider the effect of the noise level, we
obtained the accuracy of identification for the five penalty functions. Fig. 4 summarizes the
corresponding identification results of (12) for the color noise with pre-whitening (ρ12, ρ23,
ρ34, ρ45 are 0.62, 0.62, 0.62, 0.62.): (a) 5% noise; (b) 10% noise; and (c) 20% noise, where it
is assumed that the exact noise variances are known. The accuracies (in %) in the cases from
one to five dipoles are shown, where the accuracy is defined as the percentage of the correctly
estimated samples in all the samples. It shows that the detected source number is not affected
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by the choice of different penalty functions when the real source number is equal to or smaller
than three. If the real dipole sources are equal to or more than four, the number of the detected
dipole sources may depend on the choice of the penalty function. Fig. 4 suggests that using
C1 for (12) obtains the best results. When the number of the detected dipoles is five or fewer,
the accuracy is 97% in 10% color noise with pre-whitening.

The accuracies of C1 with (12) are summarized in Table 1, where source activities are shown
in Fig.1a and different correlations of each two source activities are used. These results indicate
that accuracies are not affected by the change of the noise level and the CC (ρ12, ρ23, ρ34,
ρ45) when the real dipole number is equal to or smaller than three. When the number of real
sources is up to four, the corresponding identification accuracies reduce if the CC (ρ12, ρ23,
ρ34, ρ45) or the noise level increases. The accuracies of the four-source and five-source cases
can be up to 88% for 10% color noise (ρ12, ρ23, ρ34, ρ45 are 0.72, 0.72, 0.72, 0.72) and 85%
for 10% color noise (ρ12, ρ23, ρ34, ρ45 are 0.52, 0.52, 0.52, 0.52), respectively. Only when the
noise level and the CC are over 10% and 0.52, the accuracies of the five-source case are lower
than 80% under the color noise with pre-whitening.

Considering the effect of the noise information inaccuracy, equation (13) was used to test the
identification accuracy with different penalty functions for Case A. Two different noise
inaccuracies κ, e.g., 1% and 7%, were used in the simulations. Fig.5 summarizes the
corresponding identification results of (13) for the color noise with pre-whitening (ρ12, ρ23,
ρ34, ρ45 are 0.42, 0.42, 0.42, and 0.42.): (a) 5% noise; (b) 10% noise; and (c) 20% noise, and
noise inaccuracy κ : 1%. Fig.6 summarizes corresponding identification results of (13) for the
noise inaccuracy κ : 7% and other conditions are the same as Fig.5. Comparing Fig.5 with Fig.
6, the accuracy of C1, C2 and C3 for one and two sources decreases significantly when the
noise information is inaccurate. The accuracy of C1 for three sources also shows a small
decrease. Fig.5 and Fig.6 suggest that using C4 for (13) can provide the best performance and
robustness again the noise. The accuracies of C4 with (13) are also summarized in Table 1.
The results indicate that the accuracies with C4 are not affected by the change of the noise
inaccuracy for different dipole-cases, but are affected by the variation in the noise level and
the CC (ρ12, ρ23, ρ34, ρ45) when the real dipole number is equal to or larger than three. When
the number of real sources is equal to three or four, the corresponding identification accuracies
are sensitive to the CC (ρ12, ρ23, ρ34, ρ45) or the noise level. The accuracies of the four-source
and five-source cases for 7% noise inaccuracy can be up to 85% for 10% color noise (ρ12,
ρ23, ρ34, ρ45 are 0.52, 0.52, 0.52, 0.52) and 94% for 5% color noise (ρ12, ρ23, ρ34, ρ45 are 0.42,
0.42, 0.42, 0.42) respectively.

B. Case B
In this simulation, the frequencies of the sinusoid sources were 9.9 Hz, 10 Hz and 10.1 Hz. If
the sources are more than three or the CC ρ of any pairs of two dipole sources is greater than
0.7, it will be difficult to identify the source number by the present method. Therefore, we
placed at most three sources in the simulations. We found that C1 is the optimal functions with
(12) for the color noise with pre-whitening. The accuracies of C1 with (12) are summarized in
Table 2, where source activities are shown in Fig. 1(b) and different correlations of every two
source activities are used. The results show that the accuracies of identification are not affected
by the noise level and the CC (ρ12, ρ23) when the source number is equal to or smaller than
two. The accuracies for one- and two- dipole cases are 99%. When the source number is three,
the identification accuracies became sensitive to the noise level. The best performance for 10%
and 20% color noise with pre-whitening, with correlation coefficients of (0.7, 0.5) and (0.5,
0.5), can be up to 94% and 80%, respectively, for three sources.

The accuracies of C4 with (13) are also summarized in Table 2 for sinusoid sources, where two
noise inaccuracies κ : 1% and 7% are used in the pre-whitening. Table 2 suggests that the

Bai and He Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2007 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



accuracies of identification using C4 for (13) are stable when the noise inaccuracy is lower
than 7%. The simulation results also indicate that the accuracies of identification are not
affected by the noise level and the CC (ρ12, ρ23) when the source number is equal or smaller
than two (the accuracies for one- and two- dipole cases are 100%). When the source number
is three, the identification accuracies are sensitive to the noise level. The best performance for
5% color noise with pre-whitening and noise inaccuracy 7%, with CC of (0.7, 0.5) and (0.5,
0.5), can be up to 89% and 95%, respectively.

C. Case C
In the present simulation, four sources with two different frequency bands (9.9 Hz, 10 Hz, 39.9
Hz and 40 Hz) were used. The corresponding results with the color noise are summarized in
Table 3, where source activities are shown in Fig. 1(c) and different correlations of each two
source activities are used. C1 is found to be the optimal functions of (12) for the color noise.
For all four cases, the influence of correlation coefficients is negligible. When the noise level
and the CC (ρ12, ρ23, ρ34) are up to 20% and (0.7, 0.02, 0.7), the accuracies for four-dipole
case still remain at 99%.

The accuracies of C4 with (13) are also summarized in Table 3 for two types of sinusoid sources.
When the noise level and the dipole number are up to 20% and three respectively, the CC is
the most important factor influencing the accuracies of identification. When the CC (ρ12,
ρ23, ρ34) and noise inaccuracy are up to (0.7, 0.02, and 0.7) and 7%, the accuracy for the four-
dipole case is up to 81%.

V. Discussion
In order to detect the number of equivalent dipoles from EEG and MEG, Waldorp et al. [19]
suggested using the Bayes information criterion and Wald test to determine the dipole number
for the multiple-equivalent dipoles inverse problem from MEG signals measured at a single
time point. Our previous work [31] extended the information criterion method to select optimal
penalty functions for increasing the identification accuracy and robustness against noise.
Recently, Waldorp et al. [32] extended these methods to the spatio-temporal head model.
However, the inverse problem must be solved for detecting the number of dipoles by these
methods [19], [31], [32]. In the present study, we have developed a noninvasive method to
determine the number of independent sources in the spatio-temporal model by means of the
Information Criterion method. We have also searched for the optimal penalty function for both
white and color noise. The present simulation results are promising, suggesting that the present
method can estimate the number of sources by only analyzing the eigenvalues of the covariance
matrix of observation data without solving the inverse problem. This is an important
improvement over our previous work [31] in which a multiple equivalent dipole inverse
problem has to be solved.

Knösche et al. [17] compared nine log likelihood functions about the detecting accuracy and
robustness against noise. Knösche et al. suggested that if the noise information is accurate, it
is better to use (12), and if the noise information is not accurate, the good candidate is (13).
Based on the results of [17], we selected two widely used log likelihood functions (Eq. (12)
and (13)) with five penalty functions for detecting the number of EEG sources.

Our main results of numerical simulations are as follows. Firstly, the choice of penalty
functions in the IC method can affect markedly the identification accuracy for multi-source
cases. The optimal penalty functions in the IC method can be determined by the simulations,
given the forward model and the electrode configuration. Secondly, the source configuration
also affects the accuracy of identification substantially. For the damped sinusoid sources (Case
A), the sinusoid sources (Case B) and the sinusoid sources (Case C), the number of independent
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dipole sources can be up to five, three and four, respectively. Lastly, we found that the optimal
penalty function of (12) and (13) for the 64-electrode configuration is C1 and C4, respectively,
for the source configurations studied. Knösche et al. [17] used 8 different dipole combinations
with 2, 3, or 5 independent components in the simulation. Their results suggested that C1 in
(12) is useful with stronger noise levels and relatively accurate estimations of the covariance
matrix and C3 in (13) is better when the noise level is not so high or the covariance estimate
is quite inaccurate. For these three types of source activities and 64-electrode configuration,
the present study indicates that C1 for (12) is still optimal penalty function, but C4 for (13) is
better than C3.

Note that the present results are based on the use of a simplified spherical head model. Further
investigations using realistic geometry head models would improve the accuracy of the
identification. However, since the identification of source number is essential involved with
the inverse algorithm, but it is anticipated that the results would not be significantly changed.

While three source configurations used in the present simulation are designed to attempt to
represent a wide range of brain electrical sources, it is not intended to serve as an exhaustive
list of possible sources within the brain. Rather, the purpose of the present study is to
demonstrate the applicability and performance of the present method in representative source
configurations.

Due to the large number of simulations involved, we have limited our simulation to a particular
number of scalp electrodes, i.e. 64. The reason to choose this number is because of its wide
use in EEG systems. Therefore, if different numbers of scalp electrodes are to be used, then
exploration of the optimal penalty function should be conducted with respect to the specific
number of scalp electrodes. However, the present method as demonstrated in the present
simulation study shall be applicable to any number of scalp electrodes.

In summary, the present promising results suggest that the proposed IC method can provide a
convenient means of estimating the number of sources in brain source localization from the
scalp EEG. The method should also be applicable to MEG source localization.
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Fig 1.
Examples of source waveforms (three sources) used in the present simulation. (a) Case A: the
damped sinusoid sources, (b) Case B: sinusoid sources with one frequency band (9.9 Hz, 10
Hz and 10.1 Hz), (c) Case C: sinusoid sources with two separated frequency bands (9.9 Hz, 10
Hz, 39.9 Hz and 40 Hz). The CCs of three cases are (a) ρ12, ρ23, ρ34, ρ45: 0.62, 0.62, 0.62, 0.62;
(b) ρ12, ρ23: 0.5, 0.6; (c) ρ12, ρ23, ρ34: 0.6, 0.02, 0.6, respectively.
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Fig 2.
Eigenvalues of the covariance matrix of the scalp EEG data simulated from three dipole
sources. (a) Case A and 20% white noise. (b) Case A and 20% color noise. The CCs among
the three sources are 0.62.
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Fig 3.
IC values of the data shown in Fig. 2 using (12). (a) Case A and 20% white noise. (b) Case A
and 20% color noise with pre-whitening, (c) enlarged display of (b) for C1, C2 and C3. The
estimated source number with the five penalty functions (C1, C2, C3, C4, C5) are (a) 3, 3, 3, 2
and 2; (b) 3, 2, 2, 2 and 2, respectively.
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Fig 4.
Identification accuracies of five cases with the proposed method with (12) for Case A and the
color noise with pre-whitening, where it is assumed that the exact noise information is known.
The accuracy (%) is a percent ratio between the correct samples and all of samples, where the
correct sample refers to the situation where the estimated number of dipole sources is the same
as the number of real sources. (a) 5% color noise, (b) 10% color noise, (c) 20% color noise.
The CCs ρ12, ρ23, ρ34 and ρ45 are 0.42.
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Fig 5.
Identification accuracies of five cases with the proposed method with (13) for Case A and the
color noise with pre-whitening, where 1% inaccuracy noise information is added. The accuracy
(%) is a percent ratio between the correct samples and all of samples, where the correct sample
refers to the situation where the estimated number of dipole sources is the same as the number
of real sources. (a) 5% color noise, (b) 10% color noise, (c) 20% color noise. The CCs ρ12,
ρ23, ρ34 and ρ45 are 0.42.
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Fig 6.
Identification accuracies of five cases with the proposed method with (13) for Case A and the
color noise with pre-whitening, where 7% inaccuracy noise information is added. The accuracy
(%) is a percent ratio between the correct samples and all of samples, where the correct sample
refers to the situation where the estimated number of dipole sources is the same as the number
of real sources. (a) 5% color noise, (b) 10% color noise, (c) 20% color noise. The CCs ρ12,
ρ23, ρ34 and ρ45 are 0.42.
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TABLE 1
The accuracy (in %) of identification by the IC method with the optimal penalty function C1 for (12) and C4 for
(13). The EEG signals under the color noise with pre-whitening are used with Case A of source configuration
(Fig. 1(a)): the damped sinusoid sources. The CCs: ρ12, ρ 23, ρ 34 and ρ45 are used from four groups, e.g., (0.42,
0.42, 0.42, 0.42), (0.52, 0.52, 0.52, 0.52), (0.62, 0.62, 0.62, 0.62) and (0.72, 0.72, 0.72, 0.72). In the simulations
of (12), the noise information is accuracy. In the simulations of (13), two noise inaccuracy values are considered,
e.g., κ = 1% and 7%. NL: Noise level.

Accuracy (%): (12) and C1

NL 5% 10% 20%  

One Dipole 99 99 99  

ρ12, ρ23, ρ34, ρ45 0.42, 0.42, 0.42, 0.42 0.52, 0.52, 0.52, 0.52 0.62, 0.62, 0.62, 0.62 0.72, 0.72, 0.72, 0.72

NL 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

Two Dipoles 99 99 99 99 99 99 99 99 99 99 99 99
Three Dipoles 99 99 99 99 99 99 99 99 99 99 99 97
Four Dipoles 99 99 98 99 99 93 99 99 79 99 88 51
Five Dipoles 99 97 76 99 85 36 88 49 7 56 8 2

Accuracy (%) : (13), C4 and κ =1%

NL 5% 10% 20%  

One Dipole 100 100 100  

ρ12, ρ23, ρ34, ρ45 0.42, 0.42, 0.42, 0.42 0.52, 0.52, 0.52, 0.52 0.62, 0.62, 0.62, 0.62 0.72, 0.72, 0.72, 0.72

NL 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

Two Dipoles 100 100 100 100 100 100 100 100 100 100 100 100
Three Dipoles 100 100 96 100 98 94 100 98 90 100 96 77
Four Dipoles 100 98 66 100 85 34 98 66 17 78 27 3
Five Dipoles 94 56 7 69 11 1 20 2 0 3 0 0

Accuracy (%): (13), C4 and κ= 7%

NL 5% 10% 20%  

One Dipole 100 100 100  

ρ12, ρ23, ρ34, ρ45 0.42, 0.42, 0.42, 0.42 0.52, 0.52, 0.52, 0.52 0.62, 0.62, 0.62, 0.62 0.72, 0.72, 0.72, 0.72

NL 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

Two Dipoles 100 100 100 100 100 100 100 100 100 100 100 100
Three Dipoles 100 99 96 100 99 94 100 98 90 100 97 81
Four Dipoles 100 98 67 100 85 35 98 68 18 79 29 4
Five Dipoles 94 59 8 68 10 1 22 1 0 3 0 0
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TABLE 2
The accuracy (in %) of identification by the IC method with the optimal penalty function C1 for (12) and C4 for
(13). The EEG signals under the color noise with pre-whitening are used with source configuration of Case B
(Fig. 1(b)): sinusoid sources with close frequency band (9.9 Hz, 10 Hz and 10.1 Hz). Three groups (ρ12, ρ23) are
used, e.g., (0.5, 0.5), (0.5, 0.6) and (0.5, 0.7). ). In the simulations of (12), the noise information is accuracy. In
the simulations of (13), two noise inaccuracy values are considered, e.g., κ = 1% and 7%. NL: Noise level.

Accuracy (%): (12) and C1

NL 5% 10% 20%  

One Dipole 99 99 99

ρ12, ρ23 0.5, 0.5 0.6, 0.5 0.7, 0.5

NL 5% 10% 20% 5% 10% 20% 5% 10% 20%

Two Dipoles 99 99 99 99 99 99 99 99 99
Three Dipoles 99 96 80 99 95 75 99 94 67

Accuracy (%) : (13), C4 and κ= 1%

NL 5% 10% 20%  

One Dipole 100 100 100  

ρ12, ρ23 0.5, 0.5 0.6, 0.5 0.7, 0.5

NL 5% 10% 20% 5% 10% 20% 5% 10% 20%

Two Dipoles 100 100 100 100 100 100 100 100 100
Three Dipoles 95 62 18 95 57 12 90 52 9

Accuracy (%): (13), C4 and κ = 7%

NL 5% 10% 20%  

One Dipole 100 100 100  

ρ12, ρ23 0.5, 0.5 0.6, 0.5 0.7, 0.5

NL 5% 10% 20% 5% 10% 20% 5% 10% 20%

Two Dipoles 100 100 100 100 100 100 100 100 100
Three Dipoles 95 68 31 94 66 26 89 57 18
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TABLE 3
The accuracy (in %) of identification by the IC method with the optimal penalty function C1 for (12) and C4 for
(13). The EEG signals under the color noise with pre-whitening are used with source configuration of Case C
(Fig. 1(c)): sinusoid sources within two separated frequency bands (9.9 Hz, 10 Hz, 39.9 Hz and 40 Hz). Four
groups (ρ12, ρ23, ρ34) are chosen, e.g., (0.4, 0.02, 0.4), (0.5, 0.02, 0.5), (0.6, 0.02, 0.6) and (0.7, 0.02, 0.7). ). In
the simulations of (12), the noise information is accuracy. In the simulations of (13), two noise inaccuracy values
are considered, e.g., κ= 1% and 7%. NL: Noise level.

Accuracy (%): (12) and C1

NL 5% 10% 20%  

One Dipole 99 99 99

ρ12, ρ23, ρ34 0.4, 0.02, 0.4 0.5, 0.02, 0.5 0.6, 0.02, 0.6 0.7, 0.02, 0.7

NL 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

Two Dipoles 99 100 100 99 99 99 99 99 99 99 99 99
Three Dipoles 100 99 99 99 99 99 100 99 99 99 99 99
Four Dipoles 99 99 99 99 99 99 99 99 99 99 99 99

Accuracy (%) : (13), C4 and κ= 1%

NL 5% 10% 20%  

One Dipole 100 100 100  

ρ12, ρ23, ρ34 0.4, 0.02, 0.4 0.5, 0.02, 0.5 0.6, 0.02, 0.6 0.7, 0.02, 0.7

NL 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

Two Dipoles 100 100 100 100 100 100 100 100 100 100 100 100
Three Dipoles 100 100 99 100 100 99 100 100 99 100 100 97
Four Dipoles 100 100 98 100 100 95 100 100 90 100 100 87

Accuracy (%): (13), C4 and κ= 7%

NL 5% 10% 20%  

One Dipole 100 100 100  

ρ12, ρ23, ρ34 0.4, 0.02, 0.4 0.5, 0.02, 0.5 0.6, 0.02, 0.6 0.7, 0.02, 0.7

NL 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

Two Dipoles 100 100 100 100 100 100 100 100 100 100 100 100
Three Dipoles 100 100 99 100 100 99 100 100 99 100 100 97
Four Dipoles 100 100 97 100 100 93 100 100 90 100 100 81
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