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ABSTRACT Control of organelle abundance is a fundamental unsolved problem in cell biology. Mechanisms for number control
have been proposed in which organelle assembly is actively increased or decreased to compensate for deviations from a set-point,
but such phenomena have not been experimentally verified. In this report we examine the control of centriole copy number. We
develop a simple scheme to represent organelle inheritance as a first-order Markov process and describe two figures of merit based
on entropy and convergence times that can be used to evaluate performance of organelle number control systems. Using this
approach we show that segregation of centrioles by the mitotic spindle can shape the specificity of the steady-state centriole
number distribution but is neither necessary nor sufficient for stable restoration of centriole number following perturbations. We
then present experimental evidence that living cells can restore correct centriole copy number following transient perturbation,
revealing a homeostatic control system. We present evidence that correction occurs at the level of single cell divisions, does not
require association of centrioles with the mitotic spindle, and involves modulation of centriole assembly as a function of centriole
number during S-phase. Combining our experimental and modeling results, we identify two processes required for error correction,
de novo assembly and number-limiting, and show that both processes contribute to robust and stable homeostatic control of
centriole number, yielding a system capable of suppressing biological noise at the level of organelle abundance.

INTRODUCTION

A fundamental question in cell biology is how cells regulate

organelle abundance, that is, how cells measure and control

the quantity of a given organelle. This question represents

one instance of the more general problem of biological ho-

meostasis, which has emerged as a key problem for systems

biology (1–3). For a given cell type, different organelles will

tend to be present at characteristic levels of abundance,

suggesting the set-point of the organelle abundance control

system is under genetic control. Organelle number control

raises interesting questions about mechanism. Do cells

‘‘know’’ how many of a given organelle they have? Can

cells count? Can organelle abundance be regulated following

perturbations? Does regulation take place at the level of or-

ganelle formation, segregation, degradation, or some combi-

nation of these? What role do different methods of organelle

partitioning or segregation play in number control?

Previous studies of organelle abundance have focused on

membrane-bound organelles such as chloroplasts, mitochon-

dria, endosomes, golgi, and peroxisomes. Several quantita-

tive studies measured the degree to which these organelles

are equally partitioned between daughter cells during mitosis

(4–6). The results of these studies generally suggest that

partitioning is either entirely random, governed by the bi-

nomial distribution, or else somewhat less random, such that

the variability in numbers inherited by each daughter is less

than that predicted from the binomial distribution (5). In

either case, the fact that partitioning is either entirely or

partially random suggests a need for an active mechanism to

control numbers, otherwise the number of organelles in

different lineages would gradually diverge. Birky has dis-

cussed several possible mechanisms by which number vari-

ability could be reined in (7). For instance, based on studies

of chloroplast number distributions, it has been proposed that

cells with too many chloroplasts might block chloroplast

replication for one division to bring the number down to half

its original value (5). Similarly, cells with too few chloro-

plasts might perform multiple additional rounds of chlo-

roplast replication to bring numbers back up to the desired

set-point. These elegant mechanisms would be exceedingly

interesting because they would require that cells have a way

to count the number of organelles they contain. Unfortunately,

to our knowledge these models have never been tested ex-

perimentally. This is for two reasons. First, in general, or-

ganelle abundance depends on size, shape, and number,

which tends to obscure what we mean by ‘‘abundance’’.

Second, the large number of organelles found in a given cell

makes counting difficult.

In contrast to chloroplasts or other membrane-bound or-

ganelles, centrioles present a uniquely tractable situation for

studying number control. First, centrioles in a given cell type

always have the same size and shape. Abundance can thus be

described entirely by a single integer value, namely the

number of centrioles per cell, such that centrioles represent a

discretized version of the more general organelle abundance

control problem. Second, the normal number of centrioles is

exactly two per cell (8), making any deviation from this

number extremely easy to detect. As a result, genetic screens

have already succeeded in identifying mutants with defective
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centriole number control. Abnormal centriole number is

a feature of tumor cells and may contribute to genomic in-

stability (9), further highlighting the interest in understand-

ing how number is controlled.

New centrioles form adjacent to, and at right angles with,

preexisting centrioles in a remarkable process termed du-

plication. During S-phase of the cell cycle, each centriole

duplicates to produce exactly one new centriole, which is

termed the ‘‘daughter’’. During mitosis, a mother-daughter

centriole pair joined together by connecting fibers moves to

each of the two spindle poles, so that when the cell divides,

each daughter cell receives a pair of centrioles (schematized

in Fig. 1 A). From the viewpoint of number control, all these

complex molecular events boil down to this: centriole dupli-

cation results in a net doubling of centriole number, whereas

centriole segregation during mitosis results in a net halving

of centriole number; thus the combined duplication/segre-

gation system can propagate centriole copy number from one

generation to the next.

What if something goes wrong? Regulatory mechanisms

exist to prevent multiple rounds of centriole duplication (10–

12), but whereas this reduplication block helps prevent errors

in centriole duplication, it cannot correct errors once they

have occurred. If a cell should somehow acquire too many

centrioles, or too few, and each centriole faithfully duplicates

exactly once per division, then the abnormal centriole num-

ber would be continually propagated unless a compensatory

error should occur to revert the number back to two. The

spontaneous error rate is unknown, but number errors occur

naturally in situations where centrioles form de novo, such as

during early development in some species, because de novo

assembly always leads to a random number of centrioles per

cell, as has been documented extensively in many different

cell types (13–16). We therefore anticipate that even if the

spontaneous error rate is low, organisms may have evolved

mechanisms to restore number following such errors,

In this report we explore the homeostatic control system

by which cells actively correct errors in centriole copy num-

ber so as to regulate centriole abundance.

MATERIALS AND METHODS

Experiments

Strains and reagents

All strains were obtained from the Chlamydomonas Genetic Center, Duke

University, except for the vfl2 ts100021 double-mutant strain, which we

constructed using standard genetic methods. The vfl2ts line used in our

experiments was the temperature sensitive vfl2 intragenic revertant allele

R15 described by Taillon (17). Cells were grown in TAP media (18) under

continuous light. Fla10 antibodies were a gift from Doug Cole (University of

Idaho, Moscow, ID). Centrin antibodies were a gift from Jeff Salisbury

(Mayo Clinic, Rochester, MN). IFT52 antibodies were a gift from Joel

Rosenbaum (Yale University, New Haven, CT). Acetylated tubulin anti-

bodies were purchased from Sigma (St. Louis, MO). All secondary anti-

bodies were goat anti-Mouse or goat anti-Rabbit and were obtained from

Jackson Immunoresearch (West Grove, PA).

Cell growth and imaging

Immunofluorescence was performed using standard procedures for Chla-

mydomonas (19). Temperature downshift experiments (Fig. 2, B and C)

were performed by inoculating 2mL TAP cultures at low density, growing at

34�C for 4–5 days in a roller drum in an illuminated incubator (Precision

model 818), and then transferring to 21�C, maintaining continuous illu-

mination. Cultures were maintained in continuous log phase growth by daily

checks of cell density followed by dilution when necessary, to make sure

that cell division continued throughout the course of the experiment. Single

cell pedigree analysis (Fig. 3 C) was performed by embedding cells in soft

agarose pads and imaging by phase contrast or differential interference

contrast microscopy, as previously described (14).

Computer simulations

As described in the text, steady-state solutions can be calculated directly

from the eigenvectors of the transition matrix, but to analyze short-term

dynamics of the system we used numerical simulations. Simulations of

number homeostasis were performed by representing the centriole number

distribution as a vector of real numbers representing the frequency of each

number class from zero to four. For each iteration of the simulation a column

vector representing the distribution was left-multiplied by the transition

matrix being simulated, and the resulting vector normalized so that its

elements sum to 1. This then produces a new vector corresponding to the

next generation. All simulations were implemented in MATLAB.

To simulate error correction during the temperature downshift experi-

ment (see Fig. 5 B) the distribution was initialized to equal the measured

distribution in vfl2 mutants, and the transition matrix was initialized to a

predicted wild-type matrix with de novo assembly and assuming perfect

number limiting, as follows:

0:7 0:5 0 0 0

0:1 0 0 0:5 0

0:2 0:5 1 0:5 1

0 0 0 0 0

0 0 0 0 0

This matrix was constructed by taking the probability of de novo assem-

bly producing zero, one, or two centrioles (0.7, 0.1, and 0.2, respectively) as

equal to the probabilities observed experimentally for division of centriole-

less vfl2 cells (14). This yields the first column, which corresponds to all

possible outcomes for a cell starting with zero centrioles. The remaining

columns were set equal to the matrix in Fig. 1 F to represent number limiting

and spindle-mediated segregation. The trajectory of the centriole number

distribution over time was found by iterative matrix multiplication opera-

tions, each corresponding to one generation of cell division. After each itera-

tion, the root mean-square (rms) error relative to the wild-type copy number

distribution of two per cell was calculated and plotted.

To explore the role of de novo assembly and number limiting in ho-

meostasis, we define a matrix as a function of the efficacies of de novo and

number limiting as follows. Assuming that this pathway is normally

operating at full efficiency, we would then predict that when activated the

pathway would produce de novo centrioles in the same frequency as ob-

served in pedigree analysis of vfl2 mutants (14). This rate therefore defines

the expected de novo assembly behavior if the de novo efficacy were 100%.

The actual rate of de novo assembly is therefore this maximal rate multiplied

by the de novo efficacy Pd. To model number limiting at variable efficacy,

we assume that if a cell does not execute the number-limiting process, it

would duplicate all of its centrioles at the full wild-type rate and then

segregate the mother-centriole pairs to daughter cells such that a cell with

eight centrioles distributes them 4:4, and a cell with six distributes them 2:4.

The relative proportion of outcomes is determined by the efficacy of

number-limiting Pl. With these assumptions, we can compute the transition

probability matrix for any given value of Pl and Pd as follows:
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FIGURE 1 Modeling centriole number control. (A) Centriole inheritance. A cell starts out with two centrioles in the G1 stage of the cell cycle. Each of these

gives rise to a ‘‘daughter’’ centriole before division, and then during mitosis two centrioles associate with each pole of the mitotic spindle. This spindle-

mediated segregation allows each daughter cell to inherit exactly two centrioles. (B) Markov process model for studying centriole copy-number control. At

generation k, number distribution represented by vector whose element vj represent the fraction of cells in the containing j centrioles. Changes in number from

one generation to the next are modeling using transition probability matrix whose elements amn specify the probability that a cell with n centrioles will produce

a daughter cell with m centrioles. (C) Hypothetical model of perfect duplication and segregation. Whatever number of centrioles a cell has, is propagated

exactly to both of its daughters. This system does not have a unique steady-state solution. (D) Hypothetical model including pairwise segregation of mother and

daughter centrioles. After duplication, centrioles associate in pairs as shown in the cartoon. (E) Addition of de novo assembly to the pairwise segregation

model. The changes to the first column reflect the ability of a cell with zero centrioles to produce a daughter having one centriole, as illustrated in cartoon. (F)

Model including number-limiting, de novo assembly, and pairwise segregation. Number limiting prevents cells with three or more centrioles from undergoing

duplication. (G) Model in which centriole pairs segregate randomly to daughter cells due to loss of spindle-mediated partitioning. Cartoon illustrates one

possible outcome in which a cell with three centrioles segregates all three to one daughter, producing one daughter cell lacking centrioles entirely.
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1� 0:3Pd 0:5 0 0 0

0:1Pd 0 0 0:5P1 0

0:2Pd 0:5 1 0:5 P1

0 0 0 0 0

0 0 0 0:5� 0:5P1 1� P1

We then used this matrix to study the response of the system, iterating

both Pd and Pl through the range 0–1 in intervals of 0.01 and calculating the

figures of merit FR and FS at each set of values to generate the plot in Fig. 5

C. To augment the analysis of this model, we have also calculated the

eigenvalues of this matrix in closed form as a function of the parameters Pd

and Pl. Two of the eigenvalues are constants independent of Pl or Pd and are

equal to 1 and 0, respectively. The other three eigenvalues each depend

either on Pl, or on Pd, but never on both: lL ¼ 1 � Pl, which only depends

on the efficacy of number limiting, and lD1 ¼ ½1� 0:3Pd1Sqrtð0:09P2
d�

0:4Pd11Þ�=2 and lD� ¼ ½1� 0:3Pd � Sqrtð0:09P2
d � 0:4Pd11Þ�=2, both

of which only depend on the efficacy of de novo assembly. We will be

concerned primarily with the magnitude of the second largest eigenvalue,

and it is therefore important to note that the magnitude of lD1 is always

greater than that of lD�, so that in calculating the second largest magnitude

eigenvalue we need only consider lL and lD1. We note that all three

eigenvalues vary monotonically as the probability (Pd or Pl) upon which

they depend varies from 0 to 1.

To simulate noise suppression or amplification as a function of de novo

and number limiting (Fig. 5 D), the system was repeatedly initialized to the

wild-type distribution [0 0 1 0 0]T and then subjected to perturbation by

adding a zero-mean Gaussian random variable to each element of the

distribution vector, applying a floor/ceiling operation to constrain all values

between zero and 1, and then normalizing the vector elements by scalar

multiplication to have a total summed probability of 1. A perturbation term

was used that had a standard deviation of 0.1, but we obtained qualitatively

comparable results with a range of other values. To perform the simulation,

the noise-perturbed initial state was then multiplied by a transition matrix for

the specified number of generations (two in the case of Fig. 5 D), and the

whole process repeated 3000 times with different random perturbations. The

mean-squared error relative to a distribution of two centrioles per cell was

computed before and after each simulation run, and then the average ratio of

mean-squared error after division to mean-squared error before division was

determined and plotted in Fig. 5 D. This process was repeated for each value

of Pd and Pl.

RESULTS

Representing organelle inheritance during
number regulation

We begin by representing organelle abundance exclusively

in terms of the number of individual organelles, without

keeping track of their individual sizes. This representation is

specifically motivated by our goal of using the model to

study the abundance of centrioles, whose size is invariant.

FIGURE 2 Experimental testing of

centriole copy number homeostasis.

(A) The vfl2ts mutant allows reversible

generation of centriole number errors.

Graph shows distribution of centriole

copy numbers in vfl2ts grown at 21�C

(blue) and 34�C (red). Copy-number

distribution in constitutive vfl2 mutant

is included for comparison (gold).

(Inset) Images to show recovery of

centrin fibers (34�C) on left lacks rec-

ognizable fibers when cells are stained

with anticentrin antibodies, but after one

day of growth following downshift to

permissive temperature (21�C) assem-

bly of centrin fibers has been recovered.

(B) Dynamic recovery of copy number

in vfl2ts following downshift. Copy

number determined by counting flagella

and computing rms error relative to the

nominal wild-type copy number of

two per cell. Blue diamonds indicate

measured data points. Red dotted line

indicates rms error in cells grown con-

tinuously at permissive temperature.

Graph indicates that copy number error

returns to the resting level within six

generations following restoration of

VFL2 gene function after temperature

downshift. Error bars represent 95% confidence intervals. An average of 472 cells were scored per time point. (C) Copy-number restoration confirmed by

immunofluorescence. Cells were fixed and stained with rabbit anti-FLA10 kinesin and monoclonal antiacetylated tubulin antibodies, both of which recognize

centrioles. Centrioles were detected as foci that stained with both antibodies. Plots indicate fraction of cells containing either too few centrioles (less than two per

cell, indicated by blue diamonds) or too many centrioles (more than two per cell, indicated by red circles). Gray shaded box represents the time interval during

which cells lack the centrin-based connecting fibers responsible for proper centriole segregation as judged by centrin immunofluorescence. Plot shows that

centriole number begins returning to the wild-type distribution as soon as centriole segregation is restored. An average of 212 cells were scored per time-point. (D)

Copy-number restoration is not due to selective cell death. We examined individual cell divisions and determined the frequency with which vfl2 cells produce

inviable daughter cells. Results from a total of 401 live cell divisions are reported.
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We denote the distribution of centriole numbers in a pop-

ulation of dividing cells as a vector v such that element vj of

the vector v represents the fraction of cells in the population

that contain j centrioles. We assume that changes in centriole

number over time can be modeled as a first-order Markov

process and represent the action of centriole duplication and

inheritance as a transition probability matrix A whose ele-

ments amn specify the probability that a cell with n centrioles

will produce a daughter cell with m centrioles (Fig. 1 B).

This matrix can be empirically determined by measuring

centriole numbers before and after cell division (see experi-

ments below), or it can be derived theoretically to represent

any hypothetical model for centriole number control. The

matrix A indicates how the distribution of centriole copy

numbers v will change in a population of cells after one

round of cell division. The distribution v(k) of centrioles at

generation k will give rise to a new distribution of centrioles

v(k 1 1) at the next generation, according to the simple rela-

tion v(k 1 1) ¼ Av(k).
The steady-state number distributions are given by the

eigenvectors of the matrix A for which the corresponding

eigenvalue is 1. For stochastic matrices the theorems of Perron

and Frobenius (20) guarantee all eigenvalues have magni-

tude of 1 or less, and that at least one eigenvalue is equal to 1.

In principle, however, the matrix A could have multiple

eigenvalues of 1, corresponding to multiple steady-state

solutions. In this case, any linear combination of steady-state

solutions will also be a steady-state solution, hence the sys-

tem will have a continuum of steady states and will not be

able to restore a unique state following a perturbation.

We note for completeness that because the elements of

vectors in our model represent probability distributions, their

FIGURE 3 Error correction still occurs when centrioles are dissociated

from spindle. (A) Modeling restoration without segregation. A matrix de-

scribing inheritance with de novo assembly and number limiting but ran-

dom segregation (Fig. 1 G) was used to simulate recovery in cells lacking

centriole association with mitotic spindle. Initial distribution was set either to

a uniform distribution (black line), all cells containing zero centrioles (red

line) or all cells containing four centrioles (green line). Successive rounds of

matrix multiplication were used to simulate changes in distribution per

generation of cell division. At each generation, the distribution was compared

to the measured distribution in vfl2 mutants and the difference in calculated

and measured distributions was computed using the variational distance

measure. (B) Restoration of steady-state vfl2 centriole distribution following

perturbation. Mutant vfl2 cells have a variable number of centrioles per cell,

with numbers found in a characteristic distribution (see Fig. 2 A). Individual

vfl2 cells, having zero, one, or two centrioles, were seeded into wells of 96-

well microtiter plate and allowed to undergo multiple rounds of division. At

regular time points, cells were observed and the motility of all cells in a well

scored to determine the number of centrioles present. For each well, at each

generation observed, the distribution of numbers in the well was compared

with the normal population-level distribution seen in vfl2 and the difference

characterized by the x-squared statistic. Results for each generation were

averaged and plotted. Results were obtained from a total of 176 individual

cells (116 with zero centrioles, 27 with one, and 33 with two) tracked from 0 to

4 days. (C) Error correction detected during division of living cells. Individual

vfl2 cells were embedded in agarose and were observed before and after

division. Graph shows average number of new centrioles (represented on the

vertical axis by DNc, the change in the number of centrioles) made in a single

division plotted versus centriole copy number (Nc) of the parent cell. Only

successful cell divisions resulting in viable progeny (as judged by cell

morphology and ability to continue dividing at least once more) were included

in the plot. Gray line shows prediction for ideal duplication in which each

centriole produces exactly one new centriole (hence a line with a slope of 1).

Values falling above the line for low Nc and below the line for Nc indicate

modulation of duplication in response to centriole copy number. Error bars

represent standard error of the mean. Data based on observation of 254

successful cell divisions. Inset illustrates how DNc is calculated, by indicating

all observed outcomes for division of a cell with two flagella and therefore two

centrioles, and showing the calculated value for DNc in each case, found by

summing the total number of centrioles (as judged by flagella) in both

daughters and subtracting the number of centrioles in the mother.
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elements v0–v4 should sum to 1, hence they must lie on a

hyperplane v0 1 v1 1 v2 1 v3 1 v4 ¼ 1. However, when

computing the eigenvectors of these matrices, the values of

the elements of the vector need not sum to 1, and therefore

they do not directly represent a probability distribution.

However, because a scalar multiple of an eigenvector is also

an eigenvector, it is always possible to normalize the eigen-

vectors so that their elements sum to 1. All eigenvectors

reported in this article will be in this normalized form.

Experiments have demonstrated that centrioles, once formed,

are stable and do not turn over (21). Hence, an implicit as-

sumption throughout all our modeling work is that the only

process by which centriole number can decrease is the

partitioning of centrioles into daughter cells during cell

division. For some organelles, number control may involve

active degradation of extraneous copies when the number

becomes too high, by processes such as autophagy (22–24).

Such changes can easily be incorporated into the model if

necessary.

We note that an alternative scheme has recently been

employed to model centriole inheritance in the specific case

of Drosophila spermatogenesis (25) following a modeling

procedure used to model plasmid copy number control (26).

Because plasmids cannot form de novo, the specific model of

Seneta and Tavaré is not directly applicable to centriole

inheritance, requiring the authors of the previous centriole

inheritance study to assume, incorrectly, that de novo as-

sembly never occurs. Our model can easily incorporate de

novo formation of random numbers of centrioles, such as

have been clearly shown to occur in many cell types in-

cluding mammalian cells (14–16), by appropriately popu-

lating the first column of A.

Centriole segregation and duplication are not
sufficient for number control

Using the conceptual framework outlined above, we con-

sider how centriole number may be controlled. When we say

that organelle number is controlled, we mean that the cell

is able to maintain the number of organelles within some

narrow distribution, without drifting over time, and such that

the mean can be restored following a perturbation. The

concept of number homeostasis thus involves two separate

aspects, which we term ‘‘specificity’’ and ‘‘restoration’’. By

‘‘specificity’’ we mean the narrowness of the distribution

around a single unique number, and by ‘‘restoration’’ we

mean how rapidly, if at all, the system is able to return to the

correct organelle number following a perturbation. We want

to ask, within the context of the simple model described

above, what features of organelle inheritance, as expressed in

the form of the inheritance transition probability matrix A,

can contribute to specificity and restoration.

This task requires us to define figures of merit for spec-

ificity and stability. Specificity refers to the degree to which

one, or possibly more than one, copy numbers are prefer-

entially emphasized in the steady-state probability distribu-

tion. We therefore seek as a figure of merit for specificity

some measure of how far away the steady-state distribution

is from a uniform distribution in which all numbers are

equally likely. Using the Entropy Normalized Kullback-

Leibler Divergence (26) to measure distance from a uniform

distribution, we obtain a figure of merit for specificity

Fs ¼ log2N 1 S
N

i¼1vi log2vi

� �
=log2N; (1)

where N is the dimension of matrix A and vi is the probability

of having i centrioles in the steady-state distribution. The

second term in the numerator will be recognized as being

proportional to the Shannon Entropy. The specificity can

thus be interpreted as a measure of how much information is

needed to explicitly distinguish the actual number distribu-

tion from a uniformly distributed random distribution. The

expression is normalized so that a system in which all

centriole numbers are equally likely (i.e., completely lacking

specificity) would have Fs ¼ 0, whereas a system that forces

all cells to have the same number of centrioles (i.e., perfect

specificity) would have Fs ¼ 1. In the case of multiple

eigenvalues of 1, we take an average of the corresponding

steady state distributions and use this averaged distribution

to compute Fs. We find (data not shown) that qualitatively

similar results are obtained using an alternative figure of

merit based on the Bhattacharyya distance (27).

To develop a figure of merit for ‘‘restoration’’, we start by

identifying the second eigenvalue (taken in decreasing order

of magnitude) of the transition probability matrix A, denoted

l2, which is a standard indicator of the convergence time of a

Markov process (see, for example, (28)). The smaller the

magnitude of l2, the more rapid the exponential decay of the

distribution component defined by its corresponding ei-

genvector, hence the more rapidly the state of the system

will converge to the steady-state distribution. Eigenvalues

smaller than l2 will lead to even faster decay, hence the

convergence rate is limited by l2. From this, we define a

figure of merit for restoration as

FR ¼ lnjl2j=ðlnjl2j � 1Þ: (2)

The fact that A is a stochastic matrix guarantees that jl2j is
in the range (0,1). From the way we define FR we can see that

if the matrix has more than one eigenvalue of 1, in which

case the system cannot return to a unique steady-state value

as discussed above, we obtain FR ¼ 0, indicating a zero rate

of restoration. At the other extreme, as l2 approaches 0, FR

approaches 1, which is reasonable since l2 ¼ 0 implies there

is a single eigenvalue of 1 and all others are zero, in which

case the steady state will be achieved in a single division,

thus representing ‘‘perfect’’ restoration. We note that both

FR and FS are generic in the sense that they describe system

performance independent of the actual set point. The fact that

the normal number of centrioles per cell happens to be 2 is

not used in their evaluation, hence they can be applied in
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principle to evaluate performance of any organelle number

control system.

With these figures of merit in hand we can evaluate the

performance of hypothetical organelle number control sys-

tems. First we consider a hypothetical situation (Fig. 1 C) in

which the only mechanisms at work are perfect duplication

(such that each centriole duplicates once per cell cycle) and

perfect segregation (such that centrioles are passed on to

daughter cells in a maximally equal way). This would pre-

sumably require the mitotic spindle to equalize the numbers

associated with each pole, a mechanism that may function

for other organelles besides centrioles (29). In the following

discussion we restrict our model to a range of 0–4 centrioles

per cell but the approach can be easily extended to any

maximum number. With these considerations in mind, the

corresponding transition matrix would just be the identity

matrix I, since a cell with any particular number of centrioles

would exactly double the number, and then distribute exactly

half to the two daughter cells, resulting in no net change in

number. Such a system obviously cannot reach a unique

steady-state number. Applying the definitions above we

obtain figures of merit FS ¼ 0 and FR ¼ 0, showing the

system completely lacks specificity or restoration.

In fact, centriole segregation cannot be entirely equal be-

tween daughter cells. Newly formed mother-daughter centriole

pairs remain associated with each other, and are segregated

in pairs to the daughter cells. This pairwise cosegregation

leads to the modified inheritance matrix shown in Fig. 1 D.

The first column indicates that cells lacking centrioles cannot

make new ones. The second column, which describes the

outcomes for a cell with one centriole, indicates that this one

centriole will duplicate to form a single mother-daughter

pair, which will then be inherited by one daughter cell, the

other daughter inheriting none. The third column describes

the outcome for a cell with two centrioles, and indicates that

each will duplicate to produce a mother-daughter pair, and

then each daughter cell will inherit a mother-daughter cen-

triole pair, such that each daughter cell will contain two

centrioles. The fourth column describes the outcome for a

cell with three centrioles, and indicates that after all three

duplicate, one daughter cell will inherit two mother-daughter

centriole pairs, to have a copy number of four, whereas the

other will inherit just one pair and have a copy number of 2.

The final column indicates that in a cell with four centrioles,

all four will duplicate, and the four mother-daughter pairs

then segregate 2:2 to the two daughter cells, giving each

daughter cell four centrioles. The values of 1 on the diagonal

indicate that a cells with 0, 2, or 4 centrioles will produce

only daughters with 0, 2, or 4 centrioles. The eigenvalues of

this matrix are, in order of magnitude, (1,1,1,0,0) and the

eigenvectors corresponding to the three eigenvalues of 1,

which denote steady-state solutions, are [1 0 0 0 0]T, [0 0 1 0

0]T, and [0 0 0 0 1]T, that is to say, distributions consisting

entirely of zero centrioles, two centrioles, or four centrioles.

Any linear combination of these distributions will also be a

steady state. This simple inheritance system is therefore

unable to attain a unique steady state. In terms of our pre-

viously defined figures of merit, the pairwise cosegregation

of mother-daughter centriole pairs yields FS ¼ 0.32 and

FR ¼ 0. Mother-daughter association increases specificity

but does not improve restoration.

This idealized model neglects the well-established fact

that centrioles can form de novo (13–16,30). If we now in-

troduce de novo assembly, for instance, by supposing that a

cell with no centrioles will produce a single new centriole per

generation and then pass it to one of its two daughters, we

obtain the revised matrix shown in Fig. 1 E, which now has

eigenvalues (1, 1, 0.81, �0.31, 0). De novo assembly

eliminates the eigenvalue of 1 that corresponded to a dis-

tribution of zero centrioles per cell. However the system still

has multiple steady states corresponding to all linear com-

binations of [0 0 1 0 0]T and [0 0 0 0 1]T. Under these

assumptions, FS ¼ 0.6 and FR ¼ 0, showing an increase in

specificity but a continued lack of restoration.

Prior studies of chloroplast number control have lead to a

proposal that when the organelle number exceeds a thresh-

old, production of new organelles is downregulated (5). We

will refer to a block of organelle duplication when number

exceeds a fixed threshold as ‘‘number limiting’’. If we add

number limiting to the previous matrix, so that cells with

more than two centrioles do not make any new centrioles but

simply distribute their preexisting centrioles to their daugh-

ters, we get the further revised matrix shown in Fig. 1 F,

which has eigenvalues (1, 0.81, 0.31, 0, 0). The single

eigenvalue of 1 corresponds to an eigenvector representing

two centrioles per cell, just as is seen in actual cells. For this

system, FS ¼ 1 and FR ¼ 0.17. Therefore, addition of de

novo assembly and number limiting convert the system into

a globally stable system in which any initial distribution will

eventually evolve into a distribution in which all cells have

the correct copy number. Note that even in this highly

idealized case, FR , 1, indicating that multiple generations

will be required for restoration.

Nonrandom segregation is dispensable for
number control

The foregoing argument suggests that pairwise segregation

mediated by the mitotic spindle is not sufficient for number

control. We next ask if segregation is even necessary. By

assuming de novo and number limiting as above, but random

segregation of mother-daughter pairs, we obtain the matrix

shown in Fig. 1 G. This matrix has eigenvalues (1, 0.5,

�0.05 6 0.23i, �0.21) with a predicted steady-state distri-

bution of [0.377, 0.22, 0.3, 0.023, 0.08]T. The figures of

merit for this system are FS ¼ 0.16 and FR ¼ 0.60. Com-

pared to the hypothetical situation described above of perfect

mother-daughter pairwise segregation in the absence of de

novo or number limiting, this random-segregation system

has a worse selectivity figure, but actually shows a somewhat
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better restoration figure. This suggests that segregation is not

necessary for restoration of number following perturbation,

but may be necessary for precise specificity of the steady-

state number distribution. The steady-state distribution cal-

culated from the first eigenvector of this matrix predicts that

in a mutant in which centrioles lose their association with the

mitotic spindle, centrioles with zero, one, or two centrioles

should be observed with frequencies roughly 40%, 20%,

30%, with three or four centrioles being much less frequently

observed. This type of number distribution is in fact observed

in mutants that lose centriole-spindle associations (14).

To summarize these simple models, we find that number

control requires de novo assembly and number limiting that

actively correct errors. Such process may seldom be observed

in normal cells since the process of centriole duplication and

segregation normally operates with very high fidelity. How-

ever, we predict that if centriole number could be exper-

imentally perturbed in living cells, they would be able to

restore the proper number distribution after several gener-

ations. The model also predicts that although mitotic spindle

association-mediated segregation is important for specificity

of the number distribution, it is not necessary for restoration

following perturbation, so if perturbations could be applied

to mutant cells with centrioles dissociated from the mitotic

spindle, restoration of some steady-state distribution should

still be observed even if the final distribution shows less

specificity than in wild-type cells. We next test these predic-

tions experimentally.

Centriole number can be corrected
following perturbation

To test for homeostatic restoration of centriole number, it is

necessary to generate cells with copy-number errors, and ask

whether the normal number distribution can be restored.

For this purpose, we employed mutants of the unicellular

green algae Chlamydomonas reinhardtii, which is a well-

established genetic system for the study of centrioles (31).

We generate cells with copy number errors by using a condi-

tional allele of the VFL2 gene, which encodes the conserved

EF-hand protein centrin (17,32,33). Centrin forms fibers that

link centrioles to the spindle poles in green algae during

mitosis (34), and constitutive vfl2 mutants show errors in

centriole segregation, presumably due to this loss of spindle

association, such that cells in a population of vfl2 mutants

show a variable number of centrioles, between zero and six

per cell (35). Conditional vfl2ts mutants (17), when grown at

the permissive temperature (21�C), have normal centrin fibers

joining the centrioles to the spindle poles, and a normal cen-

triole copy number (two per cell). The normal copy number

demonstrates that centriole duplication functions properly in

these cells when they are growing at the permissive tempera-

ture. However, when grown at the nonpermissive tempera-

ture (34�C), the centrin fibers linking centrioles to the spindle

are lost, and the cells display a random number of centrioles

per cell comparable to a constitutive allele of vfl2 (Fig. 2 A).

We therefore asked whether this randomization of copy

number seen at 34�C can be corrected once the wild-type

VFL2 gene function is restored by shifting the cells back to

the permissive temperature.

We grew vfl2ts cells at the nonpermissive temperature until

they developed the variable centriole number phenotype

seen in Fig. 2 A. We then shifted the cells back to the per-

missive temperature and asked whether the correct copy

number (two per cell) could be restored. As shown by centrin

immunofluorescence in Fig. 2 A (inset), we first verified that

within one generation after the shift back to permissive tem-

perature, centrin function was restored as judged by restored

assembly of centrin into fibers connecting the centrioles with

the nucleus. Having thus verified that gene function has been

restored, we asked whether the perturbation in number can

be corrected. To track the distribution of centriole copy

number over multiple generations, we took advantage of the

fact that in vfl2 mutants during G1, all centrioles are active as

basal bodies to produce flagella, hence one can measure the

number of centrioles in a vfl2 cell simply by counting flagella

(14). Using this method, we found that within several gen-

erations following downshift the centriole number error was

corrected (Fig. 2 B). Similar kinetics of recovery were mea-

sured, without relying on flagella as a marker, by using im-

munofluorescence imaging of centrioles in cells fixed at time

points following the downshift (Fig. 2 C). We conclude from

these data that a population of cells containing variable

centriole numbers per cell is able to restore the correct copy

number.

This result raises the possibility that Chlamydomonas cells

may contain an error-correction mechanism for centriole

copy number. It is formally possible that the results of Fig. 2,

B and C, which were obtained on populations of cells, could

be explained by selective death of cells with incorrect copy

number, rather than by active modulation of centriole as-

sembly during cell division. It is unclear a priori whether

centriole number would have much impact on viability. The

complete removal of centrioles from cells appears to have no

effect on their ability to divide or progress through the cell

cycle (36), and the presence of multiple centrioles does not

generally produce multipolar spindles due to a clustering

mechanism (37). In Chlamydomonas, mutants in which cen-

trioles are either highly reduced (38) or missing altogether

(39) are fully viable. In fact, we did not find any marked

change in the number of viable progeny as a function of

initial centriole number (Fig. 2 D), suggesting that selective

cell death cannot account for the observed kinetics of re-

covery. We will revisit this question below when we present

experimental evidence that modulation of centriole assembly

as a function of preexisting centriole number occurs during

individual cell divisions. First, however, we will consider

how the known aspects of centriole segregation and dupli-

cation may contribute to number restoration.
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Centriole number control still occurs in a mutant
with random segregation

The theoretical analysis presented in the first part of this

report suggested that mitotic spindle-based segregation would

not be necessary for restoration. To further refine this pre-

diction, we estimate the time course of restoration expected

in such a mutant by iterative matrix multiplication with a

transition matrix described above (Fig. 1 G) that represents

random segregation but normal de novo and number limit-

ing. Results of this simulation, plotted in Fig. 3 A, lead to a

quantitative prediction that not only should number resto-

ration occur in mutants lacking spindle-associated segrega-

tion, it should take place on the timescale of roughly four

generations.

To test these predictions we employ a constitutive vfl2
mutant, in which centriole segregation is random due to lack

of attachment of centrioles to the mitotic spindle poles (40).

The ability of vfl2 cells to restore their steady-state distribu-

tion has previously been suggested by experiment of Jarvik

and co-workers (35), who showed that when a vfl2 culture is

streaked out to single colonies on plates, and then the number

distribution within each colony is measured, all colonies

attain the same steady-state number distribution despite the

fact that they arose from single cells that presumably had

different numbers of centrioles. However those prior results

did not establish the kinetics with which the number was

restored, nor did they directly measure the number of cen-

trioles in the founding cells for each colony.

We therefore measured the ability of vfl2 cells to restore

their steady-state centriole number distribution, by distrib-

uting a liquid culture of cells at high dilution to wells of 96-

well microtiter plates. We observed each well to locate wells

that contained single cells, and then analyzed the swimming

motion of the cells to distinguish those that were nonmotile

(and therefore lacked flagella), those that spun in place (and

therefore had a single flagellum), and those that swam nor-

mally (and therefore had two flagella). Since, as discussed

above, vfl2 mutant centrioles are all competent to make fla-

gella, we can infer that the cells with zero, one, or two flagella

contained zero, one, or two centrioles, respectively. We could

not, with this analysis, distinguish cells with more than two

flagella from those that had two, however such cells are

exceedingly rare in the population; although it is formally

possible that we misclassified a cell with, for example, three

flagella, as having only two, this would have only a slight

statistical effect on the measured results.

Once individual cells in the microwells were classified

based on swimming type, we then allowed them to grow for

4 days, periodically observing each well and counting the

cells in each swimming class. We then calculated, as a

function of the number of generations elapsed, the deviation

in the individual distributions, measured as a x-squared sta-

tistic using the vfl2 steady-state distribution for comparison.

The results, plotted in Fig. 3 B, show that the steady-state vfl2

number distribution is restored over a period of roughly five

to eight generations, a rate comparable to the recovery ki-

netics seen in the experiments of Fig. 2, B and C, when seg-

regation was normal. This experimentally measured recovery

is, strictly speaking, of a similar order of magnitude as the

predicted rate for a segregation defective mutant (Fig. 3 A),

but it does take one to three generations longer than the

prediction. This discrepancy is likely a result of the fact that

the hypothetical random segregation model used to generate

Fig. 3 A assumed for expository convenience that 100% of

centriole-less cells form a new centriole by de novo forma-

tion, and that duplication is completely blocked when the

number of centrioles exceeds two, whereas as we shall see

below, real de novo assembly is less efficient. Thus the

comparison between Fig. 3 A and Fig. 3 B should be limited

to general features and not numerical specifics.

At any rate, the recovery of number distribution in mutants

with centrioles dissociated from the mitotic spindle confirms

the theoretical prediction that segregation of centrioles by the

mitotic spindle poles is not required for homeostatic restora-

tion of a steady-state number distribution even though, as

with the theoretical prediction, the actual distribution seen at

steady state lacks the specificity of wild-type cells.

Experimental test of number-limiting mechanism

Having found that centriole number is under homeostatic

control even in the absence of spindle-mediated segregation,

we next asked whether this homeostatic process demon-

strates de novo assembly and number limiting as predicted

by the model. To this end, we monitored division of indi-

vidual vfl2 mutant cells embedded in agarose pads and

measured the number of centrioles present before and after

division as previously described (14,35). By comparing the

number of centrioles present in the two daughter cells

following cell division to the number of centrioles present in

the parent cell, we calculated the total number of new cen-

trioles made per division (Fig. 3 C). We found that cells with

one or two centrioles make one or two new centrioles on

average. Cells lacking centrioles make roughly 0.5 new cen-

trioles per cell by de novo synthesis, as previously reported

(14–16), satisfying the requirement for de novo assembly

predicted above in our simple model. Strikingly, cells with

three or four centrioles make very few new centrioles, im-

plying that cells have a centriole copy-number proofreading

mechanism that can detect the presence of supernumerary

centrioles and shut off duplication. This confirms the pre-

diction of the simple model presented above, in which a

‘‘number-limiting’’ mechanism was predicted as a way to

eliminate an undesired steady-state solution at n ¼ 4. The

key features of number control, namely de novo production

and number limiting, are therefore confirmed by this single-

cell imaging data. Because these data show that error cor-

rection occurs at the level of single cell division as judged by

live-cell imaging of cells that divided successfully to produce
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two viable progeny, we argue that the error correction seen in

Figs. 2 B and 3 B is not trivially explained by selective death

of cells with incorrect copy number (see also Fig. 2 D), but

actually involves an active modulation of centriole assembly

as a function of centriole number. These data thus reveal a

control system that can restore centriole number in individual

cells following transient perturbations.

Centriole number correction acts by modulating
duplication during S-phase

We next asked when this control system acts relative to the

timing of normal centriole duplication. Centrioles duplicate

during S-phase in Chlamydomonas, just as in other species

(10,14). Thus we can use double mutants of the vfl2 mutation

and the temperature-sensitive S-phase arrest cell cycle block

mutant ts100021 (41) to generate a population of S-phase

arrested cells with varying centriole copy number. We then

wish to count the number of newly formed centrioles versus

the number of preexisting centrioles by staining cells with

antibodies that can distinguish the preexisting centrioles

from the new ones that have formed during S-phase to cal-

culate the duplication efficiency as a function of preexisting

number. As a marker for preexisting centrioles, we employ

the intraflagellar transport protein IFT52, which localizes to

the transitional fibers of mature centrioles (42). These tran-

sition fibers are not present on centrioles when they form

during S-phase, but instead these fibers only assemble when

centrioles mature during mitosis (43). The same is true of the

corresponding fibers (the distal appendages) in mammalian

centrioles (44), and indeed proteins localized to these distal

appendages in centrioles are well known to act as specific

markers for mother centrioles (45,46). Electron microscopy

and immunofluorescence studies showed that these distal

structures remain stably attached to the mother centriole once

they form, and are still attached at the time of centriole

duplication in the following S-phase (43,44).

Since IFT52 localizes to a structure that is only assembled

on new centrioles after entry into mitosis, and which is miss-

ing when centrioles first form during S phase, we reasoned

that IFT52 would be a marker for mature versus immature

centrioles that would allow us to distinguish the centrioles

initially present upon entry into S-phase (which had there-

fore formed in the previous cell cycle) from those that might

accumulate during successive rounds of centriole duplication

during prolonged S-phase arrest. We verified this prediction

experimentally, by growing the temperature sensitive S-phase

arrest mutant (41) ts100021 at 34�C for 24 h. This mutant has

the normal wild-type centriole copy number of two per cell,

but during S-phase arrest, it has been shown that multiple

centrioles accumulate in these cells (14). As illustrated in

Fig. 4 A, staining with the FLA10 antibody, which recog-

nizes both newly formed and preexisting centrioles, shows

that almost half of the cells contained at least five centrioles

(in some cases, as many as 12 centrioles) by 24 h of arrest. In

FIGURE 4 Centriole number correction occurs during S-phase. (A) IFT52

antibody only recognizes preexisting centrioles during S-phase. ts100021
mutants were grown at 34�C for 24 h, during which time most cells accumulated

at least three, and in some cases many more, new centrioles as detected by

FLA10 immunofluorescence, as indicated by the colored regions of the first bar

in the graph. In contrast, all cells only showed two foci of transition-fiber

specific IFT52 staining, confirming that this antibody only recognizes the two

centrioles that a cell had when it entered S-phase, and not the newly formed

ones, as predicted from the fact that transition fibers, the locus of IFT52

recruitment, do not assemble onto new centrioles until mitosis. (B) Centriole

number is not corrected before S-phase. (Blue) Centriole copy-number distri-

bution in vfl2 cells during G1. (Red) Copy-number distribution of preexisting

centrioles during S-phase arrest in vfl2 ts100021 as judged by localization of

IFT52p. Inset shows typical images in which additional centrioles detectable by

centrin immunofluorescence accumulate during S-phase arrest but do not stain

with antibodies to IFT52. Graph indicates that the distribution of number at

onset of S (as judged by preexisting centrioles) is the same as that seen during

G1, indicating that error correction did not occur before the G1-S transition. (C)

Duplication efficiency during S-phase is modulated by centriole copy number.

Plot shows duplication efficiency, as determined by the number of new

centrioles made during a 24-h S-phase arrest, per preexisting centriole, nor-

malized to 1 for cells with two centrioles, plotted on log scale versus initial

centriole number. Plot indicates increased duplication for cells with too few

centrioles relative to correct copy number, and decreased duplication for cells

with too many centrioles. Error bars are standard deviation.
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contrast, when the same cells were stained with IFT52

antibodies, they all showed exactly two centrioles per cell.

We infer that these were the two parental centrioles that the

cell first contained when it entered S-phase. This result

confirms the prediction, based on the localization of IFT52 to

transition fibers that only form during mitosis, that IFT52

immunofluorescence localization is specific for preexisting

centrioles during S-phase arrest, and does not localize to the

newly formed daughters.

We next used this system to ask about the timing of num-

ber control. One possible model one might imagine would be

for cells to adjust number before centriole duplication to

avoid duplicating errors. To test this model, we asked whether

number correction occurs before S-phase, the normal time of

centriole duplication. Using the IFT52 antibody specific for

mature, preexisting centrioles, we counted the number of

preexisting centrioles present in vfl2 ts100021 cells that had

undergone S-phase arrest for 24 h (Fig. 4 B). The vfl2
mutation was used to introduce number errors to allow for

testing of restoration. Although new centrioles still formed as

judged by the more general FLA10 staining, the number of

preexisting centrioles in vfl2 ts100021 S-phase arrested cells,

as judged by IFT52 staining, matched the number in vfl2
cells during G1, showing that error correction had not taken

place before S-phase entry.

A second possibility is that number control might act at the

level of centriole assembly, with new assembly modulated as

a function of preexisting centriole number. To address this

possibility, we compared the total number of centrioles fol-

lowing arrest (by using an antibody that recognizes all centri-

oles including both preexisting and newly formed centrioles

during S-phase arrest) to the number of preexisting centrioles

(as judged by IFT52 antibody staining) to determine the total

number of new versus old centrioles. From this, we calcu-

lated the efficiency with which preexisting centrioles give

rise to daughters during S-phase arrest. The results of this

analysis, plotted in Fig. 4 C, show that centriole duplication

efficiency appears to be altered as a function of copy number,

such that duplication efficiency is reduced as the number of

preexisting centrioles increases. These results roughly mirror

the results seen during live cell divisions as plotted in Fig. 3

C, suggesting that modulation of centriole duplication during

S-phase may be a primary mechanism for achieving centriole

copy number control.

Direct comparison of model predictions with
experimental results

We next wanted to use our simple model to explore varia-

tions on the number control system. First, however, we tested

whether the simple first-order Markov model as we have

described is sufficient to account for observed behaviors. In

the best-studied instance of biological number control, namely

plasmid copy-number regulation in bacteria, it has been

found that a more complex branching process model is needed

to represent observed behaviors (26). The same branching

process model used for plasmids has recently been applied

to centrioles (25) although, as discussed above, that study

neglected de novo assembly. Nevertheless the fact that the

only published mathematical model of centriole segregation

used a much more complex framework than our simple

Markov model, raised the serious possibility that our model

may somehow not be adequate to account for actual behav-

ior. Indeed, our model makes many simplifications, includ-

ing the assumption that the duplication and segregation of

centrioles at any given generation depends only on the

number of centrioles initially present at that generation, and

not on prior numbers, thus restricting us to a first-order

Markov process. From a practical standpoint, the tremendous

simplifications in computation and intuition that result from

the use of such a model clearly justify its application, but

only if the simplification is not bought at the expense of

failure to model real behavior.

First we asked whether our simple model could predict the

centriole number distribution in the vfl2 mutant. As described

above, a purely theoretical model of a segregation-defective

mutant gave a good match to the centriole number distribu-

tion seen in vfl2 mutants. But as a further test, we wanted to

check whether the model, when given experimentally mea-

sured data as an input, would produce a consistent predic-

tion. We took the single-cell pedigree data from vfl2 cells

embedded in agarose pads obtained in the experiment of Fig.

3 C, arranged the experimentally measured outcome prob-

abilities into a matrix (Fig. 5 A, inset), and computed the

steady-state solution. The eigenvalues of this matrix were 1,

0.48, 0.08, and 0.009 6 0.027i, with a predicted steady-state

distribution plotted in Fig. 5 A. This matrix gave figures of

merit FS ¼ 0.35 and FR ¼ 0.42. As indicated by the

experimental data plotted alongside the predicted distribu-

tion in Fig. 5 A, the prediction correctly matches the steady-

state copy number distribution that is actually seen in vfl2
mutants.

We next tested whether the model can predict the kinetics

of number restoration seen in our temperature downshift

experiments, by using numerical simulations (see Materials

and Methods), and again found a remarkable agreement with

the experimental data (Fig. 5 B). For comparison, we also

simulated recovery using transition matrices with reduced

efficacy of de novo assembly and number limiting. We define

the quantities Pdenovo (abbreviated Pd) and Plimiting (abbrevi-

ated Pl), to describe the probability of activating the de novo

assembly and number-limiting processes, as follows. We

interpret Pd as the probability that a cell that has the oppor-

tunity to form a centriole de novo (because it lacks centrioles)

actually activates the de novo assembly pathway. Similarly,

we interpret Pl as the probability that a cell potentially eligible

for number limiting, because it has too many centrioles,

actually limits duplication in response to the number cue.

As illustrated by the red, magenta, and green lines in Fig.

5 B, we found that decreasing efficacy of these two control
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processes led to slower rates of recovery, with a complete

loss of recovery when Pd ¼ Pl ¼0. The model assuming

full efficacy of de novo and number limiting (Pd ¼ Pl ¼1)

gave a numerically close fit to the experimental data as

judged by a mean-squared residual fitting error of 0.012.

The alternative models with de novo and number-limiting

efficacies of 0.5, 0.25, and 0, gave substantially higher

mean-squared residual fitting errors of 0.15, 0.36, and

0.76, respectively.

We note that the inheritance matrix used for the simulation

of recovery in Fig. 5 B did not correspond to the matrix

measured for mutant cells, but rather to an idealized wild-

type matrix as discussed in Materials and Methods. This was

because recovery took place after the conditional mutation

was rescued by shift to growth at the permissive temperature,

where our own studies have shown centrin assembly is

visibly restored. Therefore, number control is not simply a

byproduct of the reduced centrin levels caused by the vfl2

FIGURE 5 Role of de novo assembly and number limiting in homeostatic control. (A) Model correctly predicts steady-state vfl2 copy-number distribution.

Graph plots prediction of centriole number distribution in vfl2 mutants based on eigenvalue analysis of a transition matrix (inset) derived from experimental

outcome probabilities measured in the live-cell pedigree analysis of Fig. 3 C. (Gold) Measured centriole copy number distribution in vfl2 cells. (Gray) Predicted

centriole copy-number distribution obtained from the eigenvector corresponding to the predicted steady-state solution. (B) Model correctly predicts recovery

kinetics in vfl2ts after downshift. (Blue solid line) Results of simulation as described in Materials and Methods, in which the centriole number distribution is

initialized to the actual experimentally observed vfl2 distribution (A, gold bars) and then simulated through multiple rounds of cell division by multiplication

with a transition matrix that includes templated duplication, de novo assembly, and number limiting. (Black dotted line with squares) Experimental data taken

from Fig. 2 B. (Red, magenta, and green lines) Simulation results for models with reduced probabilities Pdenovo (Pd) and Plimiting (Pl) of activation of de novo

assembly and number-limiting, respectively, in cells for which these processes would normally be active. (Red) Pd ¼ Pl ¼ 0.5, (magenta) Pd ¼ Pl ¼ 0.25,

(green) Pd ¼ Pl ¼ 0. (C) Contributions of de novo assembly and number limiting to ‘‘restoration’’. Graph of the restoration figure of merit FR as a function of

the probabilities Pdenovo (Pd) and Plimiting (Pl). Graph is color coded with separation of 0.02 between contour lines. Darker green indicates slower predicted

restoration of the steady state following a perturbation. (D) Role of de novo assembly and number limiting in noise suppression. Graph plots change of mean-

squared centriole copy number error during computer simulation of two rounds of cell division following transient random perturbation of the initial

distribution. Axes correspond to Pdenovo and Plimiting as in panel C. Graph is color coded according to the ratio of mean-squared error after cell division to that

before cell division. Contour lines give values of the ratio and define distinct regions of parameter space. Regions with a ratio greater than one indicate noise

amplification (red and dark red), whereas regions with a ratio less than one indicate noise suppression.
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mutation but occurs in cells that are effectively wild-type

with regard to their centrin content.

These results suggest the first-order Markov model presented

here adequately encapsulates the phenomenological behavior

of the homeostatic control system for centriole abundance.

Stability and robustness of centriole
copy-number homoeostasis

Next we used this model to analyze the importance of de novo

assembly and number limiting for centriole homeostasis. To

ascertain the relative contributions of de novo assembly and

number limiting, we computationally generated a series of

hypothetical transition matrices characterizing a range of

efficiency of these two processes as a function of Pd and Pl

(see Materials and Methods for details of the simulation). For

this analysis it was assumed that spindle-mediated segrega-

tion was fully active. We then calculated the performance of

the system in terms of the restoration figure of merit FR. Note

that only FR was plotted because FS does not change unless Pd

or Pl becomes zero. This is because unless Pd or Pl is zero, the

matrix always has just one eigenvalue equal to 1 and this

always corresponds to a steady-state distribution of two cen-

trioles per cell giving FS ¼ 1. Unless Pd or Pl becomes zero,

this will be the only eigenvalue of 1, hence for any nonzero

values of Pd and Pl, the steady-state solution will always be

[0 0 1 0 0]T, i.e., two centrioles per cell.

The outcome of this analysis is that FR varies from 0 to

0.21, taking its maximum value when Pd¼ Pl¼ 1 (Fig. 5 C).

We note that FR decreases smoothly as Pd and Pl are

reduced, and does not show a catastrophic breakdown in

restoration until either de novo or limiting is completely

eliminated. If both parameters are zero, the matrix becomes

equivalent to the nonrestoring matrix of Fig. 1 D.

The overall features of this graph can be readily inter-

preted in terms of the eigenvalues of the transition matrix. As

discussed in Materials and Methods, the second eigenvalue

of the transition matrix, which determines FR, will always

be either lL ¼ 1 � Pl, which only depends on the efficacy

of number limiting, or lD1 ¼ ½1� 0:3Pd1Sqrtð0:09P2
d�

0:4Pd11Þ�=2, which only depends on the efficacy of de novo

assembly. Whichever is larger in magnitude will determine

the second eigenvalue and hence determine FR according to

Eq. 2. The fact that FR depends on only one of the two

eigenvalues for any particular value of Pd and Pl explains the

straight edges seen in the contour lines for the following

reason. For any value of Pd, there is a corresponding value

for Pl given by the expression Pl� ¼ 1� ½1� 0:3Pd1

Sqrtð0:09P2
d � 0:4Pd11Þ�=2 at which lL and lD1 are equal.

Increasing Pl beyond this point reduces lL below lD1, so

that the latter now determines FR. Further increasing Pl

beyond this equivalence point has no effect on FR since lD1

is independent of Pl, giving rise to a straight horizontal line

in the contour plot. Similarly, increasing Pd beyond the point

at which the two eigenvalues are equal decreases lD1 so that

now FR is determined only by lL, hence the contour follows

a vertical line. This accounts for the rectangular shape of the

contour lines.

These considerations also explain why FR attains a maxi-

mum of ;0.21. Both lL and lD1 attain their minimal values

when Pd and Pl equal 1. For these values of the parameters, lL

becomes zero while lD1 drops only to 0.765. This value is

thus the smallest value possible for the second eigenvalue,

hence it determines the upper bound on FR. Substituting 0.765

into Eq. 2 gives 0.211 as the value for this upper bound. Since

the upper bound on FR is set by a function of Pd rather than Pl,

it means that de novo assembly is the limiting factor con-

straining the rate of restoration. If cells could form centrioles

de novo more efficiently, they could restore the number

distribution more rapidly. We also note that in contrast to

recovery by de novo assembly, which is limited to a finite

rate of correction, lL can become zero when Pl becomes 1,

indicating that number limiting can eliminate supernumerary

centrioles within a single generation. This presumably

accounts for the fact that mutants lacking spindle-mediated

segregation (which can be interpreted as causing an intrinsi-

cally high error rate in number) are much more likely to have

too few centrioles versus too many (see for example Fig. 5 A).

A similar argument accounts for the fact that FR depends

more strongly on Pl than on Pd. Differentiating the expres-

sions for lL and lD1 given above, we find that jdlL/dPlj ¼ 1,

whereas jdlD1/dPdj # 0.25, and since FR is always deter-

mined by one or the other of these eigenvalues, we conclude

that the variation in FR as a function of Pl to the left of the

curve lL¼ lD1 should be steeper than the variation in FR as

a function of Pd to the right of the curve.

Small variations in centriole number distributions can be

interpreted as a type of noise, and restoration as the suppres-

sion of this noise. To explore this effect numerically, we

simulated a population of cells with a resting distribution of

two centrioles per cell, subjected the distribution to a random

perturbation (noise), and then compared the mean-squared

error in centriole number, relative to the nominal value of

two per cell, before and after two generations of cell division

as simulated by repeated multiplication by the transition

matrix. For each set of parameters, Pd and Pl, we asked

whether the noise, measured as mean-squared error in copy

number, is increased or decreased after division.

As illustrated in Fig. 5 D, we find that both processes make

a clearly measurable contribution to noise suppression.

When de novo assembly and number-limiting efficiencies

are reduced below a threshold, the resulting defective error

correction system actually makes the noise worse, as indi-

cated by the red zones on the plot. As the efficacy of the two

processes improves, a point is reached at which the noise

decreases after division, and progressive reduction in noise is

seen as the efficiency of the two processes increases.

We can now consider the related questions of stability and

robustness. We define stability in the following sense: a

number control system will be called stable if the steady-state
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number distribution can be restored in the limit of infinite

time following a perturbation to some other distribution.

Stability in this sense is therefore equivalent to saying that

the steady-state copy number distribution is attractive. This

definition of stability (which is one of several standard defi-

nitions used to describe stability of dynamical systems) makes

no assertions regarding the transient behavior of the system

and is therefore to be distinguished from Liapunov stability.

In the context of centriole homeostasis, stability describes

the ability of the system to return to the correct copy number

following any transient perturbation in the distribution. The

rate of this return is measured by the ‘‘restoration’’ figure of

merit FR. The simulation of Fig. 5 B shows that our current

model is sufficient to produce a stable steady-state solution to

which the system will return following a perturbation, as

predicted a priori by eigenvalue analysis of the inheritance

matrix.

In contrast to stability, which describes the response to a

perturbation in the centriole number distribution, robustness

describes the qualitative behavior of the system following

small changes in the parameters of the system itself. In this

sense robustness can be interpreted as structural stability. To

be more specific, we will define robustness in the following

way: a number control system is robust if it remains stable (in

the above sense) and retains a single unique steady-state

solution, when parameters of the system are subjected to small

perturbations. As discussed above, for any nonzero values of

Pl and Pd, the matrix will have a single eigenvalue of 1, and

this will always correspond to a single steady-state solution,

namely, two centrioles per cell. Thus, any variation of Pd or Pl,

as long as they remain greater than zero, will preserve the

existence of a unique steady state. Similarly, Fig. 5 C shows

that FR . 0 (indicating stability) for all nonzero values of Pd

and Pl. Hence we conclude the system is robust. We note that

these definitions of robustness and stability make no guaran-

tees concerning transient behavior of the system. It is possible

for the number distribution to become farther away from the

desired set point, at least for a few generations, although

ultimately it will always return to two per cell. Fig. 5 D
provides a view of the transient response to a perturbation, and

indicates that when the operating point reaches the point at

which noise suppression becomes noise amplification (indi-

cated by the contour line labeled 1.0), the system may tran-

siently increase the error relative to its ultimate steady state.

Overall, however, these results demonstrate that the home-

ostatic control of centriole number is a robust process that can

tolerate quantitative changes in internal parameters and still

stably restore itself to a unique steady state.

DISCUSSION

Biological significance of centriole homeostasis

The importance of homeostasis as an error-correction system

depends on the rate of spontaneous error. Therefore we

expect homeostasis to have its biggest biological effect in

cases where centriole number is likely to become random-

ized. The two situations where this may occur are tumor pro-

gression and early development.

Tumor cells often show abnormal numbers of centrioles,

and there has been considerable debate about whether the

centriole abnormality might play a causal role in genomic

instability. The fact that some tumor cells having chromosome

loss or other genomic aberrations can be found in which the

centriole number appears normal appears to cast doubt on

centriole abnormalities playing a universal causal role. How-

ever, our results suggest that this argument needs to be re-

examined. Because of centriole homeostasis, it is possible for

a centriole abnormality to occur at some point during tumor

progression, persist long enough to cause genomic instability

due to multipolar spindles, and then become corrected. Indeed,

one would imagine that for a tumor cell to grow robustly and

propagate, it would need a way to compensate for the dele-

terious effects of abnormal centriole number. Although a

compensation mechanism involving centriole clustering has

been proposed (37,47), the centriole homeostasis system iden-

tified in this report might provide an alternative mechanism.

Centriole errors are also anticipated during development

in species that rely on de novo centriole formation during

their normal life cycle (30). Unlike normal centriole dupli-

cation, which has a high intrinsic fidelity, it is well estab-

lished that de novo centriole assembly results in production

of a random number of centrioles (13–16). The high variance

in the number of centrioles that form during a round of de

novo assembly is reminiscent of the high variance in bac-

teriophage burst size during single-step growth experiments,

and is probably a fundamental characteristic of a self-assembly

process. This variability becomes a potential problem when-

ever de novo centriole assembly occurs in development. For

example, in the mouse, it has been reported that centrioles

are absent from the early cleavage divisions (48,49), im-

plying that the centriole present during later development

must form de novo in individual blastomeres. Similarly, de

novo centriole formation is a general feature of parthenoge-

netic development in many animal species from inverte-

brates to mammals (50,51). Development of embryos that

start out with a variable number of centrioles in different blas-

tomeres due to de novo assembly will require a mechanism

to restore the correct copy number of two centrioles per cell

following the initial burst of de novo assembly. In the mouse,

normal centriole pairs are consistently detectable by the 32–

64 cell stage (48). If de novo assembly began at the four-cell

stage, this would mean that the embryo has three to four gen-

erations to restore the correct copy number. This is roughly

consistent with the rates of restoration observed in our ex-

periments and simulations (Fig. 5 B).

Implications for other organelles

It is interesting to consider whether the general scheme for

number control presented here could serve as a paradigm for
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controlling abundance of other organelles. Most other organ-

elles have variable sizes and shapes, and it is unclear whether

one might be able to ignore these variations and simply count

the number of separate individuals present in the cell, in

which case the same type of model could be applied. Al-

though centrioles are probably unique in their highly precise

duplication process, some organelles do appear to arise from

preexisting ones by some sort of discrete duplication (52).

Moreover, simple fission of an organelle is equivalent to

duplication if one simply considers organelle numbers and

ignores their sizes. If such a model were to prove adequate

for other organelles, our results with centrioles predict that

robust copy number control for other organelles should

require: a), a de novo assembly pathway that is activated

when the organelle is missing (for example, by construction

of a new organelle precursor out of endoplasmic reticulum-

derived vesicles) and b), downregulation of organelle fission

when the copy number becomes too high. Such a model has

previously been proposed for number control of chloroplasts

(5), however to our knowledge this model was never tested

experimentally but instead was inferred based on the sta-

tistical distribution of copy numbers in cells. It will be of

great interest to test these predictions for membrane-bound

intracellular organelles.
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