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Epigenetically silent transposons and repeats constitute a

substantial proportion of eukaryotic genomes, but their

impact on cellular gene function remains largely unex-

plored. In Arabidopsis, transposons are silenced by DNA

methylation, and this methylation is often abolished

by mutations in a chromatin-remodeling gene DDM1

(DECREASE IN DNA METHYLATION 1). The ddm1 muta-

tion induces various types of developmental abnormalities

through de-repression of transposons and repeats. Here,

we report a novel mechanism for a ddm1-induced syn-

drome, called bonsai (bns). We identified the gene respon-

sible for the bns phenotypes by genetic linkage analysis

and subsequent transcriptional analysis. The bns pheno-

types are due to silencing of a putative Anaphase-

Promoting Complex (APC) 13 gene. The BNS gene

silencing was associated with DNA hypermethylation,

which is in contrast to the ddm1-induced hypomethylation

in the other genomic regions. This paradoxical BNS hy-

permethylation was reproducibly induced during self-pol-

lination of the ddm1 mutant, and it was mediated by a long

interspersed nuclear element (LINE) retrotransposon

flanking the BNS gene. We discuss possible molecular

mechanisms and the evolutionary implications of transpo-

son-mediated epigenetic changes in the BNS locus.
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Introduction

Methylation of cytosine is a heritable epigenetic mark in-

volved in several important biological processes, including

genomic imprinting and transposon silencing (Jaenisch and

Bird, 2003; Rangwala and Richards, 2004; Chan et al, 2005;

Zilberman and Henikoff, 2005). Transposons are methylated

in diverse organisms, and loss of cytosine methylation leads

to activation of transposons (Yoder et al, 1997; Walsh et al,

1998; Miura et al, 2001; Singer et al, 2001; Kato et al, 2003;

Selker et al, 2003). Genome-wide mapping of DNA methyla-

tion in the flowering plant Arabidopsis demonstrated that a

majority of cytosine methylation is concentrated in hetero-

chromatic regions, where transposons and repetitive se-

quences accumulate (Lippman et al, 2004; Zhang et al,

2006; Zilberman et al, 2007). Unexpectedly, however, recent

high-resolution mapping studies revealed that B20–30% of

expressed genes have methylation within their transcribed

regions, although the methylation level is generally lower

than that in transposons (Zhang et al, 2006; Zilberman et al,

2007). Interestingly, the proportion of those methylated genes

increases toward heterochromatic pericentromeric regions,

possibly reflecting direct or indirect interaction(s) of epige-

netic states between euchromatic genes and heterochromatic

sequences (Zilberman et al, 2007). In the large genomes of

plants and vertebrates, transposons and repeats are also

scattered among and within genes. However, the impact of

such local heterochromatin on activity of cellular genes

remained largely unexplored.

The impact of epigenetic changes on transposon activity

can be directly examined using Arabidopsis mutants with

defective genomic DNA methylation. In plants, cytosine

methylation is found in both CG and non-CG contexts. In

Arabidopsis, methylation at CG sites is maintained by DNA

methyltransferase MET1, an ortholog of Dnmt1 in mammals,

while methylation at non-CG sites depends on DNA methyl-

transferase genes, CMT3 and DRM2 (Finnegan et al, 1996;

Ronemus et al, 1996; Bartee et al, 2001; Lindroth et al, 2001;

Cao et al, 2003; Kankel et al, 2003). Another gene involved in

maintenance of methylation and silencing of heterochroma-

tin loci is a chromatin-remodeling ATPase gene DDM1

(DECREASE IN DNA METHYLATION 1), which is involved

in both CG and non-CG methylation (Vongs et al, 1993;

Jeddeloh et al, 1998). In addition, chromatin and RNAi

components involved in de novo DNA methylation have

recently been identified using several reporter transgene

systems (Aufsatz et al, 2002; Kanno et al, 2004, 2005; Chan

et al, 2005; Herr et al, 2005; Onodera et al, 2005; Pontier et al,

2005; Pontes et al, 2006). Notably, many of the putative

endogenous targets of this pathway are located near transpo-

son sequences, which might epigenetically regulate adjacent

genes (Huettel et al, 2006).

Several examples of developmental variants were recov-

ered in both met1 and ddm1 mutant lines (Finnegan et al

1996; Kakutani et al, 1996, 2004; Ronemus et al, 1996; Kankel

et al, 2003; Saze et al, 2003). Genetic analysis of some of

these ddm1-induced developmental variants revealed that

each of the abnormalities is due to a heritable change in a

locus other than DDM1 (Kakutani et al, 1996). For example, a

ddm1-induced dwarf phenotype named bal is produced by

the overexpression of a cluster of disease resistance genes

(Stokes et al, 2002). Another ddm1-induced developmental

variation, characterized by a delay in flowering onset, is due
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to ectopic expression of the imprinted homeobox gene FWA

(Kakutani, 1997; Soppe et al, 2000; Kinoshita et al, 2004).

Although these abnormalities behave as dominant traits,

some of the ddm1-induced abnormalities behave as heritable

recessive traits, suggesting that a different mechanism is

responsible (Kakutani et al, 2004).

Here, we report the identification of the target gene of a

ddm1-induced loss-of-function epigenetic abnormality called

bns (Kakutani, 1997; Kakutani et al, 2004). The loss of

BONSAI gene function was due to gene silencing associated

with DNA hypermethylation and small RNA accumulation.

The de novo methylation of the BONSAI gene was induced

reproducibly in independent ddm1 mutant lines. This ectopic

methylation depends on the presence of a long interspersed

nuclear element (LINE) retrotransposon insertion within the

30 non-coding region. The LINE insertion, which is found in

the majority of natural accessions, generates a potential

trigger for epigenetic variation with strong developmental

effects.

Results

Repeated self-pollination of a ddm1 mutant induced a

combination of phenotypes named bns

Repeated self-pollination of the DNA hypomethylation mu-

tant ddm1 results in a variety of developmental abnormalities

(Kakutani et al, 1996). Genetic analyses of some of the

phenotypes have revealed that they are caused by gain-of-

function alleles, which reflect overexpression of the respon-

sible genes (Soppe et al, 2000; Stokes et al, 2002). However,

not all of the developmental abnormalities are gain-of-func-

tion alleles. An example is a ddm1-induced developmental

syndrome that we named bns.

The bns phenotypes were characterized by short, compact

inflorescence, resulting in reduced plant height (Figure 1A

and B). The bns variant showed disrupted phyllotaxis, re-

duced apical dominance and production of clusters of bracts

and flowers at the apex of the inflorescence (Figure 1C and

D). These phenotypes seem to reflect the inhibition of inter-

node elongation and the termination of shoot growth at the

apical meristems (Figure 1; Kakutani, 1997; Kakutani et al,

2004).

After backcrossing to the parental wild-type (WT)

Columbia (Col), the bns phenotype was not detectable in

the F1 population, suggesting that the abnormal phenotypes

are not due to a gain-of-function mutation. In the self-

pollinated progeny of an F1 plant, we recovered F2 plants

showing the bns phenotype. The phenotypic plants included

both ddm1/ddm1 and DDM1/- genotypes. This observation

suggests that the bns phenotypes are produced by a heritable

change in a locus (or loci) other than DDM1.

Identification of the BNS gene

To further understand the basis of the heritable bns pheno-

types, we examined their inheritance in the F2 progeny from a

cross of a ddm1 plant with bns phenotypes (Col) to a WT

Landsberg erecta (Ler) plant. The genotype was determined

for 531 F2 plants with clear bns phenotypes, which comprised

about 10% of the F2 population. Characterization of Col/Ler

polymorphisms throughout the genome revealed that all of

the phenotypic plants were homozygous for the Col haplo-

type in one locus in the bottom arm of chromosome 1,

suggesting that a loss-of-function allele in this locus is

responsible for the bns trait. This locus was narrowed to an

interval between genetic markers NGA111 and BW54 (five

recombinants and two recombinants, respectively, out of the

1062 chromosomes examined). We compared the transcript

levels of 54 predicted genes in this genetically defined BNS

region between WT and bns plants (backcrossed to DDM1/

DDM1), using a reverse transcription (RT)–PCR assay. We

found that one gene (AT1G73177) showed a severe reduction

in its expression in bns DDM1 compared to WT plants

(Figure 2A). The AT1G73177 transcript was also reduced in

the self-pollinated ddm1 plants with the bns phenotypes

(data not shown). The identified gene consists of four

exons and encodes a predicted 63-amino acid (aa) protein

(Figure 2B), and this annotation is supported by the presence

of full-length cDNA in nucleotide sequence databases

(GenBank: AY088589). A truncated non-LTR-type retrotran-

sposon (LINE, long interspersed nuclear elements) sequence

(AT1G73175) was found in the 30UTR in the WT Col genome

(Figure 2B and see below). Two flanking genes, AT1G73170

and AT1G73180, did not show a detectable reduction in their

transcript level in bns plants (Figure 2A).

To test whether the bns phenotypes are due to the repres-

sion of AT1G73177, this gene was knocked down by RNAi in

WT Col plants by transformation with a transgenic construct

producing double-stranded RNA (dsRNA) of the gene se-

quence (Figure 2C). The transgenic lines showed the bns-

like phenotypes (i.e., reduced plant height and clustered

flowers) associated with a reduction in AT1G73177 transcript

abundance (Figure 2C and D). In addition, we analyzed the

effect of a T-DNA insertion in the upstream non-coding region

in the first exon (SALK_027397). In the insertion mutant, a

transcript was still detectable by RT–PCR, but the level was

Figure 1 The bns phenotypes. (A) WT Col plants (two on the left)
and bns plants in a DDM1/DDM1 background (two on the right;
hereafter referred to as bns). Both are six weeks old. (B) A close-up
image of bns. (C) Inflorescences of bns. (D) A cluster of flowers
produced in bns.
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less than that observed in WT plants (Figure 2B and C). The

plants homozygous for the T-DNA insertion showed similar

phenotypes, although they were much milder (Figure 2D),

further confirming that the reduction in AT1G73177 transcript

induces the bns phenotypes. From these results, together

with the recessive nature of the bns mutation, we concluded

that the loss or reduction in AT1G73177 function is most

likely to be responsible for the bns phenotypes.

The BNS gene product has similarity to a subunit of the

Anaphase-Promoting Complex/Cyclosome (APC/C)

The predicted BNS protein has a high similarity to the

mammalian Swm1/Apc13, a subunit of Anaphase-

Promoting Complex/Cyclosome (APC/C) (Figure 2E). The

APC/C is a large ubiquitin–protein ligase complex that reg-

ulates cell cycle progression in eukaryotic cells (Castro et al,

2005). Swm1/Apc13 was originally identified for its role in

spore wall assembly in Saccharomyces cerevisiae (Ufano et al,

1999), and was later found to be a core subunit of the APC/C

(Yoon et al, 2002; Hall et al, 2003). The protein is evolution-

arily conserved in a wide range of organisms (Schwickart

et al, 2004) (Figure 2E). We detected BNS expression in all

tissues examined in WT plants (Supplementary Figure 1).

bns is an epigenetic mutation associated with DNA

hypermethylation

Despite the marked reduction in BNS expression in the bns

line, the nucleotide sequence of the BNS gene in the bns line

AT1G73177 AT1G73

AT1G73180

Non-LTR retrotransposon (LINE)

ATG TAA

AT1G73170

AT1G73177
AT1G73180

ACT2

ACT2 (RT−)

WT bns ddm1

200 bp

T-DNA

AT1G73170

AT1G73177

AT1G73180

ACT2

ACT2 (RT−)

WT bns RNAi T-DNA

R1F2

MDS----EVQRDGRILDLIDDAWREDKLPYEDVAI-----PLNELPEP--EQDNG---GT
MDS----EVQRDGRILDLIDDAWREDKLPYEDVAI-----PLSELPEP--EQDNG---GT
MGGVEQEQLLSLGVLIDIVDEQWMRDTLPADDVPV-----PPAMAVKT--EEAEDPAPAN
MSGLELELGLSLGVLIDVVDEQWMRDTLPADDIPV-----PPAMAVKT--EDAEDPAPAN
MA------EVSLGMLIDIVDEEWMRDTLPDDDLPL-----PPVLAVKT--DDTEE---TN
MA------ELSLGILIDIVDEEWMRDTLPDDDLPL-----PPTLVVRT--DDTED---SN
MDSNYNYVHMNKPGVV-LFASDWLKDRLPVDDVEVRVEHLPPVTEDEMTIQHSSANLILM
* :: :. . * .* ** :*: : * . :. .

TESVKEQEMKWTDLALQYLHENVPPIGN 74
TESVKEQEMKWTDLALQGLHENVPPAGN 74
QESQPAQGDVWRDFTLENL--------- 72
QESQPAQGDVWRDFALENL--------- 72
QETQQADAETWRDLALDTQ--------- 63
QETQQVNLDAWHDLAFGQE--------- 63
KNKQLRHEPAWKDLELEDLVNAFAFIQ- 86
:. . * *: :

Hs_APC13
Mm
Os
Zm
BNS
Gm
Sp_APC13

Figure 2 Identification of the BNS gene. (A) RT–PCR for the BNS gene (AT1G73177) and neighboring genes (AT1G73170 and AT1G73180). Total
RNA isolated from wild-type Col (WT), bns (backcrossed to DDM1) and ddm1 plants (before repeated self-pollination) was used. The BNS
transcript was also reduced in ddm1 lines after repeated self-pollination (not shown). Actin2 (ACT2) was used as a control. (B) A schematic
representation of the BNS locus. Boxes represent exons (coding sequences in black and UTRs in white for BNS and the neighboring genes, and
in gray for the LINE sequence). Black arrows indicate the annotated transcription start sites and transcript orientation (www.arabidopsis.org).
Horizontal white arrowheads represent the target site duplications of the LINE insertion. The position of the T-DNA insertion in the first exon
of BNS in SALK_027397 line is also indicated. The positions of primer pair, F2 and R3, used for RT–PCR of AT1G73177, are also shown.
(C) Knockdown of BNS transcripts in the RNAi lines and in the T-DNA insertion line. RT–PCR was performed with total RNA from wild-type Col
(WT), bns, transgenic plants expressing dsRNA of BNS gene (RNAi) and SALK_027397 line homozygous for the T-DNA insertion (T-DNA).
(D) Phenotypes of a BNS RNAi line (left panel), and an inflorescence in a plant homozygous for the T-DNA insertion (right panel). (E) Multiple
aa sequence alignment of BNS (Arabidopsis thaliana; AT1G73177) and APC13 homologs in Homo sapiens (Hs, NP_056206), Mus musculus
(Mm, NP_852059), Oryza sativa (Os, NP_001060376), Zea mays (Zm, AY105005), Glycine max (Gm, CX701269) and Schizosaccharomyces
pombe (Sp, NP_595754). The sequences were aligned using the ClustalW program that highlights the identical and conserved aa with asterisks
and dots, respectively.
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was identical to that in the WT progenitor strain, Col (from

�825 to þ 946; data not shown). These results suggested that

the silencing of the BNS gene has an epigenetic basis. We

therefore examined the level of DNA methylation in this

region.

To detect DNA methylation, we used the following two

methods: digestibility by methylation-sensitive restriction

enzymes and bisulfite genomic sequencing. Bisulfite genomic

sequencing revealed that the BNS gene in the WT Col genome

was almost free of DNA methylation (WT Col in Figure 3A).

On the other hand, the flanking LINE sequence was heavily

methylated, especially at CG sites (Figure 3A and B). In the

bns line, the BNS gene region was also heavily methylated

(bottom diagram in Figure 3A), which is in contrast to the

situation in WT Col plants. The hypermethylation at the BNS

locus was found at both CG and non-CG sites.

The methylation status of the BNS region was confirmed

by digestion with methylation-sensitive restriction enzymes

and subsequent PCR. WT Col samples did not show a PCR

signal, reflecting the complete digestion of the genomic DNA

(left panel in Figure 3C). Samples derived from bns plants

showed bands reflecting incomplete digestion due to methy-

lation. These results are consistent with the results of the

bisulfite sequencing.

Repeated self-pollination of ddm1 mutant reproducibly

induced de novo DNA methylation in the BNS gene

The hypermethylation in the BNS gene contrasts with the

global DNA hypomethylation induced by the ddm1. We

examined whether this paradoxical DNA hypermethylation

in the BNS locus reflected one single purely stochastic event,

or BNS hypermethylation could be reproducibly induced in a

ddm1 mutant background.

In order to see the initial effect of the ddm1 mutation,

ddm1 homozygotes were selected from progeny derived by

self-pollination of a DDM1/ddm1 heterozygote. This DDM1/

ddm1 parent was generated by backcrossing a ddm1 mutant

six times to WT Col parent, in order to remove heritable

effects from the original ddm1/ddm1 mutant (Kakutani et al,

1996, 1999). ddm1/ddm1 plants segregated in the self-polli-

nated progeny of the backcrossed DDM1/ddm1 parent did

not show signs of BNS gene hypermethylation (ddm1(1stG)

in Figure 3). In order to see the effect of repeated self-

pollination of the ddm1 mutant, seven ddm1 homozygotes

in the segregating family were independently self-pollinated

seven times. The hypermethylation of the BNS gene was

detected in all seven independent ddm1 lines (ddm1(8thG)

in Figure 3). The ddm1 mutation reproducibly induced BNS

methylation, but this process was slow and required multiple

generations. As a control, BNS methylation was also exam-

ined in four DDM1/DDM1 sibling lines segregated from the

same DDM1/ddm1 parent and self-pollinated seven times in

parallel (DDM1 (8thG) in Figure 3). BNS methylation was not

detected in any of the four DDM1 control lines. The lack of

methylation in the DDM1 sibling families further confirmed

that the ddm1 mutation was responsible for the de novo

methylation of the BNS gene.

The flanking LINE sequence showed a reduction in DNA

methylation in the self-pollinated ddm1 plants (ddm1 (8thG)

in Figure 3A and B). This result is consistent with the

previous observations that DDM1 activity is required for the

maintenance of DNA methylation and silencing of endogen-

ous transposons (Miura et al, 2001; Singer et al, 2001;

Lippman et al, 2004). The hypomethylation of the LINE

was found only after repeated self-pollination, which is

similar to the situation for the SINE-related sequence in the

FWA promoter, which remains methylated in the initial gen-

erations of ddm1 inbreeding, but loses methylation stochas-

tically in subsequent inbred generations (Soppe et al, 2000).

Interestingly, the LINE sequence was methylated to the WT

level in the bns mutant line backcrossed into a DDM1/DDM1

background (Figure 3A and B), suggesting de novo methyla-

tion in the DDM1 background.

The hypermethylation and silencing of BNS gene is

associated with small RNAs

Epigenetic silencing of transposons and repeats are fre-

quently associated with the production of small RNAs,

which could be involved in RNA-directed DNA methylation

(Zilberman et al, 2003; Chan et al, 2004; Matzke and Birchler,

2005). Because the BNS gene was methylated de novo in a

ddm1 background, we examined small RNAs corresponding

to this region. As shown in Figure 4, BNS gene silencing was

associated with the accumulation of small RNA in the size of

24–25 nt, the length of small RNA species often detected for

heterochromatic sequences (Hamilton et al, 2002; Xie et al,

2004; Henderson et al, 2006; Pontes et al, 2006). Small RNAs

(24–25 nt) were also detected in the ddm1 mutant sample. A

hybridization probe covering the 30 region of the BNS gene

near the boundary with the LINE (BNS 30 probe) detected a

weak but significant signal in the WT Col sample (Figure 4B

and C), although the signal increased in the sample carrying a

silent BNS allele.

As is the case for many other silent transposons, small

RNA was also detected for the LINE sequence (Figure 4B) in

the WT Col sample. Interestingly, the amount of the small

RNA for this family of LINE increased in the ddm1 and bns

plants. The increase in the small RNA signal might mediate

the de novo methylation of this LINE element, and that may

explain the partial methylation of the LINE in the ddm1

mutant, and the de novo methylation of the element after

introduction into a background with a WT DDM1 allele

(Figure 3A and B).

The LINE insertion was found at the BNS locus in

majority of Arabidopsis natural accessions

The LINE (AT1G73175) at the BNS locus belongs to a pre-

viously uncharacterized subfamily of LINE sequences in

Arabidopsis (Wright et al, 1996; Noma et al, 2000, 2001).

The presence of 16-bp target site duplication (TSD) followed

by a 9-bp poly(A) sequence proximal to BNS indicates that

the LINE sequence is inserted in a tail-to-tail orientation

relative to the BNS gene (Figure 3A). In WT Col, BNS

mRNA extends into the LINE sequence over the TSD and

poly(A) sequences (Supplementary Figure 2). The Col gen-

ome contains two other members of this LINE subfamily,

which share more than 97% nucleotide sequence identity

(AT1G17390 and AT5G36935; Figure 5A). The copy on chro-

mosome 5 (AT5G36935) is likely to be the full-length copy

(Figure 5A). This copy encodes three open reading frames,

with a structure similar to ATLN-L class LINEs (Noma et al,

2001). The presence of these three copies in the Col genome

was confirmed by Southern blot analysis (Supplementary

Figure 3).
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*
Figure 3 DNA methylation pattern in the BNS locus. (A) Schematic representations of the BNS locus and cytosine methylation level analyzed
by bisulfite sequencing. After treatment with bisulfite, DNA fragments were amplified using four pairs of primers separately (the positions
indicated as short horizontal black bars), and cloned for sequencing (12 clones for each amplified region). The percentage of methylated
cytosine is indicated by vertical bars (black, CG; blue, CNG; red, asymmetric cytosine). Boxes below represent exons (coding sequences in
black and UTRs in white for BNS, and in gray for the LINE sequence). (B) Proportion of methylated cytosines in the BNS locus, which is based
on the results shown in panel A. (C) Methylation of the BNS region detected by restriction digestion. Genomic DNA was digested by
methylation-sensitive restriction enzymes BglII (50-AGATCT-30) or Sau3AI (50-GATC-30) (http://rebase.neb.com), and was subsequently used as
template for PCR amplification. The positions of the restriction sites and primers used for the PCR are indicated in the bottom of panel A;
primer pairs F2þR3 and F3þR4 were used after BglII and Sau3AI digestion, respectively. Asterisks (*) indicate the samples used for bisulfite
sequencing in panels A and B.
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In order to evaluate the impact of the LINE insertion in

natural populations, we examined the presence of the LINE

insertion at the BNS locus in 96 natural accessions of

Arabidopsis thaliana. Among them, 83 accessions have the

LINE insertion in the BNS 30UTR, while 13 did not have the

insertion (Figure 5B). This was confirmed by Southern ana-

lysis of the 96 natural accessions (data not shown). Among

the 13 accessions without the LINE insertion, five contain

sequences almost identical to Col apart from the LINE inser-

tion (Figure 5C). In those accessions, the TSD sequence

remained intact, suggesting that these are ancestral alleles

before the LINE insertion. Presence of the LINE in the

majority of natural accessions suggests that the LINE inser-

tion per se does not have deleterious effects in natural

populations.

Dependence of the BNS hypermethylation on the

flanking LINE sequence

Using Cvi, which does not have the LINE insertion at the BNS

locus (Figure 5C), we tested whether the LINE sequence is

necessary for the ddm1-induced de novo methylation at the

BNS locus. WT Cvi was crossed to a ddm1 heterozygote,

which had already been backcrossed six times in the hetero-

zygous state (Kakutani et al, 1996). A DDM1/ddm1 hetero-

zygote originating from this cross was self-pollinated, and

from the progeny, we selected ddm1 homozygotes with the

BNS allele from genome of Col (BNSLINE/BNSLINE; homozy-

gous for the LINE insertion) or Cvi (BNS�/BNS�; without the

LINE insertion) (Figure 6A). After three rounds of self-polli-

nation, DNA methylation of the BNS locus in these ddm1

plants was examined using methylation-sensitive restriction

enzymes. All of seven independent ddm1 lines homozygous

for the BNSLINE allele (from Col) showed de novo DNA

methylation of the BNS locus, whereas none of the five

ddm1 lines homozygous for the BNS� allele (from Cvi)

showed ectopic DNA methylation (Figure 6B). This result

suggests that ddm1-induced de novo methylation at the BNS

gene depends on the presence of the LINE insertion in the

30UTR.

Discussion

Mechanism for BNS gene hypermethylation triggered

by the ddm1 mutation

Here, we report the identification and characterization of a

loss-of-function epigenetic developmental abnormality bns.

The most striking feature of the bns trait is that the local

hypermethylation of the BNS gene was induced in a back-

ground of global DNA hypomethylation. The hypermethyla-

tion of the BNS gene was not evident in newly segregated

ddm1 homozygous plants (1stG in Figure 3), but it was

reproducibly induced in the self-pollinated progeny of ddm1

mutants (8thG in Figure 3). These observations suggest that

BNS hypermethylation may be due to an indirect effect of the

globally hypomethylated ddm1 background. Similar observa-

tions have been previously reported for SUPERMAN (SUP)

and AGAMOUS (AG) sequences; these sequences are stochas-

tically hypermethylated in the absence of DDM1 or MET1

activity (Jacobsen and Meyerowitz, 1997; Jacobsen et al,

2000). In both SUP and AG, pyrimidine-rich sequences such

as CT dinucleotide repeats are found in the hypermethylated

target sequences, and the possible involvement of this sim-

ple-sequence motif has been proposed (Jacobsen et al, 2000).

However, a pyrimidine-rich sequence was not found in the

BNS locus, suggesting that it is not the basis for BNS hyper-

methylation (data not shown). Instead, our results suggest

that BNS hypermethylation is mediated by the pre-existing

LINE insertion in non-coding region of the BNS gene

(Figure 6).

The ectopic hypermethylation at BNS in ddm1 background

occurred in a spreading manner from the LINE into the BNS

region (Figure 3A). Spread of heterochromatin into genic

regions is also known in position-effect-variegation in

Drosophila (Talbert and Henikoff, 2006) and telomeric silen-

cing in budding yeast (Grunstein, 1997). Although the BNS

locus resides in a euchromatic chromosomal arm, the dense

DNA methylation on the LINE sequence at this locus suggests

that the LINE sequence can function as local heterochroma-

tin, which is maintained without affecting adjacent genes in

the WT background. The DDM1 gene is necessary for the

maintenance of the heterochromatic characteristics of LINE

and other transposons (Gendrel et al, 2002; Lippman et al,

2003, 2004). DDM1 might also be necessary to define a

heterochromatin boundary (Figure 7A). In mammals, the

chromatin insulator CTCF has a barrier function that blocks

the extension of heterochromatin. The CTCF-dependent in-

sulator activity was abolished by loss of an SNF2-like chro-

modomain helicase/ATPase protein, leading to a decrease in

euchromatic histone modifications and DNA hypermethyla-

tion around the boundary sequences (Ishihara et al, 2006).

Interestingly, the spreading of DNA methylation was not

found in the other side (opposite from the BNS gene) of the

LINE sequence. On that side, the expression of the gene

AT1G73170, which has the transcription start site approxi-

mately 150 bp away from the TSD of the LINE, was not

affected in bns and self-pollinated ddm1 lines (Figure 2A

and B and data not shown). These results suggest that the

AT1G73177(BNS)

ATG TAA

LINE

Col bns ddm1

100 bp

24-nt
21-nt

24-nt
21-nt

24-nt
21-nt

24-nt
21-nt

BNS middle
probe

EtBr

LINE
probe

miR171

BNS 3′
probe (LNA)

Col Cvi
BNS3′
probe
(LNA)

EtBr

BNS middle
probe

LINE
probe

BNS 3′ 
probe (LNA)

Figure 4 Small RNA northern analysis of the BNS locus. (A) The
positions of three hybridization probes used are indicated. (B) Small
RNA was examined in WT Col, bns in DDM1 background and self-
pollinated ddm1 plants with reduced BNS expression. The same
membrane was used for hybridization with each of the three probes
and for the control miR171 probe. Ethidium bromide staining of the
major RNA is shown as a control (EtBr). (C) WT Col and Cvi
samples on a different membrane.
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1 kb
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CTGAAACTTGGCGCGATCTGGCTCTGGATACACAGTAATAGCCTCT-ATGTACAATGGAAACTTCTTAAATGTCCTTTGTTTCTCGTTTTGT
CTGAAACTTGGCGCGATCTGGCTCTGGATACACAGTAATAGCCTCT-ATGTACAATGGAAACTTCTTAAATGTCCTTTGTTTCTCGTTTTGT
CTGAAACTTGGCGCGATCTGGCTCTGGATACACAGTAATAGCCTCT-ATGTACAATGGAAACTTCTTAAATGTCCTTTGTTTCTCGTTTTGT
CTGAAACTTGGCGCGATCTGGCTCTGGATACACAGTAATAGCCTCT-ATGTACAATGGAAACTTCTTAAATGTCCTTTGTTTCTCGTTTTGT
CTGAAACTTGGCGCGATCTGGCTCTGGATACACAGTAATAGCCTCT-ATGTACAATGGAAACTTCTTAAATGTCCTTTGTTTCTCGTTTTGT
CTGAAACTTGGCGCGATCTGGCTCTGGATACACAGTAATAGCCTCT-ATGTACAATGGAAACTTCTTAAATGTCCTTTGTTTCTCGTTTTGT
CTGAAACTTGGCGCGATCTGGCTCTGGATACACAGTAATAGCCTCT-ATGTACAATGGAAACTTCTTAAATGTCCTTTGTTTCTCGTTTTGT

ATGATCAGAGCATAAAACAAAACTTTTCTTGGCTTTGTATGAAGAAGACATAATTG---CTCTACTTTTCCATAAAAAATTTTAGCTGAC
ATGATCAGAGCATAAAACAAAACATTTCTTGGCTTTGTATGAAGAAGACATAATTG---CTCTACTTTTCCATAAAAAATTTTAGCTGAC
ATGATCAGAGCATAAAACAAAACATTTCTTGGCTTTGTATGAAGAAGACATAATTG---CTCTACTTTTCCATAAAAAATTTTAGCTGAC
ATGATCAGAGCATAAAACAAAACTTTTCTTGGCTTTGTATGAAGAAGACATAATTG---CTCTACTTTTCCATAAAAAATTTTAGCTGAC
ATGATCAGAGCATAAAACAAAACTTTTCTTGGCTTTGTATGAAGAAGACATAATTG---CTCTACTTTTCCATAAAAAATTTTAGCTGAC
ATGATCAGAGCATAAAACAAAACTTTTCTTGGCTTTGTATGAAGAAGACATAATTG---CTCTACTTTTCCATAAAAAATTTTAGCTGAC
ATGATCAGAGCATAAAACAAAACATTTCTTGGCTTTGTATGAAGAAGACATAATTG---CTCTACTTTTCCATAAAAAATTTTAGCTGAC
ATGATCAGAGCATAAAACAAAACTTTTCTTGGCTTTGTATGAAGAAGACATAATTG---CTCTACTTTTCCATAAAAAATTTTAGCTGAC

G-TAAATTTGCTTGTTAATCATGACGTAAGAATTTTTAGCTGACGTGCCTCGTGATAATTCGT
G-TAAATTTGCTTGTTAATCATGACGTAAGAATTTTTAGCTGACGTGCCTCGTGATAATTCGT
G-TAAATTTGCTTGTTAATCATGACGTAAGAATTTTTAGCTGACGTGCCTCGTGATAATTCGT
G-TAAATTTGCTTGTTAATCATGACGTAAGAATTTTTAGCTGACGTGCCTCGTGATAATTCGT
G-TAAATTTGCTTGTTAATCATGACGTAAGAATTTTTAGCTGACGTGCCTCGTGATAATTCGT
G-TAAATTTGCTTGTTAATCATGACGTAAGAATTTTTAGCTGACGTGCCTCGTGATAGTTCGT
G-TAAATTTGCTTGTTAATCATGACGTAAGAATTTTTAGCTGACGTGCCTCGTGATAATTCGT
G-TAAATTTGCTTGTTAATCATGACGTAAGAATTTTTAGCTGACGTGCCTCGTGATAATTCGT
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CTGAAACTTGGCGTGATCTAGCTCTTGATACACAGTAATAGCCTCTTAAGTACAATGGAAAATTCTTACAAGTC--TTGTTTCTCGTTGTGTCol-0

ATGATCAAAAC------CAAAACTGTTCCTGGCTTTGTATGATGAAGACATAATTGCTACTCTACTTAATATTAAAAAAAACCTTGGTGG

CATAAATTT-----------------TAAGAATTTGTCGCTGACGTGTCTCGTGATGATTCGTCol-0

The LINE insertion found in 83 strains including Col-0.

Figure 5 The AT5G36935 LINE family in the Arabidopsis genome. (A) Schematic representations of the LINE sequence at the BNS locus, and
two other related sequences in the Col genome. Sequence identities are indicated in the parentheses. Exons of LINEs are shown as gray boxes
(coding sequences in black and UTRs in white for the BNS gene). White triangles indicate target site duplications of the LINE insertion.
AT1G17390 lacks a part of the internal sequence, as indicated by dashed lines. Predicted ORFs in AT5G36935 are shown at the bottom. (B) The
LINE insertion at the 30UTR of BNS in 96 natural strains of Arabidopsis thaliana. Presence of the LINE insertion was examined by PCR using
BNS FB3 and LINE RB6 primers indicated in panel A. The PCR using genomic DNA isolated from 96 Arabidopsis strains amplified either
B1950 bp (LINEþ ) or B260 bp (LINE�) fragment. Names of the strains used are shown in Supplementary data. (C) An alignment of the
nucleotide sequences of the BNS 30UTR in 13 strains that do not have the LINE insertion. Col sequence is also shown. Note that the 13 strains
are classified into two groups based on similarity, and only one group has an identical target site sequence to that found in the Col genome
(indicated by box). The stop codon of the BNS gene is indicated by the black bar.
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spreading of cytosine methylation from the LINE was unidir-

ectional. In addition, we could detect small RNA from the

BNS coding sequence in the ddm1 mutant plants (Figure 4),

which correlates with the ectopic methylation. These features

raise the possibility that LINE transcripts induced in the ddm1

background form dsRNA with the BNS mRNA through the

complementary sequence in the 30UTR of BNS mRNA

(Figure 7B; Supplementary Figures 2 and 3). It is also possible

that the LINE at the BNS locus has a cryptic promoter within

the element. Readout transcripts originating from cryptic

#9 #10 #11 #12
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Bg/II

Cvi #1 #2 #3 #4 #5 #6

#8#7
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Undigest
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×

(seven lines:#1−7) (five lines: #8−12)

(Methylation assay at the BNS locus)
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ddm1/ddm1, BNSLINE/BNSLINE, ddm1/ddm1, BNS−/BNS−,

Figure 6 The ddm1-induced de novo methylation at the BNS locus depends on the presence of the LINE insertion. (A) Genetic scheme to
generate ddm1 plants with or without the LINE insertion at the BNS locus. X and encircled X indicate outcross and self-pollination, respectively.
BNSLINE: BNS allele from Col with LINE insertion. BNS- : BNS allele from Cvi without the LINE insertion. DNA methylation was examined after
three generations of self-pollination. (B) DNA methylation at the BNS gene in twelve independent lines. Methylation was analyzed as described
in Figure 3C.
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Figure 7 Two models for ddm1-induced de novo methylation at the BNS locus. (A) Heterochromatin spreading model. (B) RNA-directed DNA
methylation model. Filled lollipops indicate DNA methylation. See Discussion for details.
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promoters in LTR-retrotransposons and LINEs can affect

transcription of adjacent genes in both mammals and plants

(Michaud et al, 1994; Nigumann et al, 2002; Kashkush et al,

2003). Indeed, the plant promoter database (PlantProm;

Shahmuradov et al, 2003) predicted the presence of a puta-

tive bidirectional promoter sequence at the 30 end of the LINE

sequence (data not shown). The promoter could be activated

through the loss of DNA methylation in self-pollinated ddm1

lines (8thG in Figure 3A), and produce antisense transcripts

of BNS mRNA, which subsequently result in the formation of

dsRNA of BNS mRNA.

A low level of small RNA was also found in WT Col plants

at the 30 region of the BNS gene (Figure 4B and C). This

situation might have parallels with the maize B paramutation

system, in which small RNA are detected for the region

controlling the epigenetic state of the B gene, even when

this gene is expressed (Chandler, 2007). Similarly, small RNA

was detected for the Arabidopsis FWA promoter even when it

is unmethylated (Chan et al, 2006). Thus, the presence of

small RNA correlates with the potential for the epigenetic

silencing, which, in the case of the BNS gene, also correlates

with presence of the flanking LINE sequence (Figure 4C).

Phenotypic effects of BNS gene silencing

The predicted product of the BNS gene shares similarity with

APC13, a subunit of the Anaphase-Promoting Complex APC/

C that regulates the metaphase–anaphase transition and exit

from mitosis through the degradation of cell cycle regulators

(Castro et al, 2005). In budding yeast, loss of Swm1/APC13

leads to slow growth and an accumulation of G2/M cells

(Hall et al, 2003; Schwickart et al, 2004). The observed bns

phenotypes—inhibition of internode elongation and termina-

tion of shoot growth at shoot apical meristems (Figure 1)—

might result from defects in APC-dependent cell cycle events.

Null mutants of other single-copy Arabidopsis APC/C com-

ponents, APC2 and APC6, exhibit female gametophytic leth-

ality due to cell cycle arrests at an early stage of embryo sac

development (Capron et al, 2003; Kwee and Sundaresan,

2003). Although BNS is present as a single-copy gene, bns

phenotypes (Figure 1) are distinct from that of apc2 or apc6.

It is possible that the bns epiallele does not cause a complete

loss-of-function, and the remaining activity circumvents the

cell cycle arrest that occurs in apc2 or apc6 gametophytes.

Once the bns phenotypes were induced in the ddm1

background, these phenotypes were inherited by their pro-

geny even in the presence of a WT DDM1 allele. However,

phenotypic variability was observed in bns DDM1 lines (data

not shown), suggesting that the epigenetically silent state

may be unstable in a DDM1 background. Similarly, the loss-

of-function epigenetic alleles of sup and ag are unstable

(Jacobsen and Meyerowitz, 1997; Jacobsen et al, 2000).

The role of transposons as potential triggers for

heritable epigenetic developmental variation

When a transposon is inserted near a cellular gene in maize,

expression of that gene is often affected by the epigenetic

state of the transposon (McClintock, 1965; Fedoroff, 1989).

Similarly, in mouse, insertion of a retroviral element within a

gene can form an allele that shows epigenetic variation,

which is heritable over multiple generations (Whitelaw and

Martin, 2001; Rakyan et al, 2003). In an evolutionary context,

an important question is whether the newly generated allele,

which is under the transposon control, survives within

natural populations or not.

The presence of the LINE insertion at the BNS locus in a

majority of Arabidopsis natural accessions suggests that the

insertion of the LINE per se did not have a deleterious effect

in natural populations. Considering that, it is striking that the

LINE mediates changes in epigenetic state of the BNS gene

that lead to strong developmental variation. It is often the

case that alleles with transposon insertions are indistinguish-

able from the original allele in term of expression pattern, as

long as the transposon is silent (Fedoroff, 1989; Martienssen,

1996). Such hidden phenotypic variability, generated by a

transposon insertion, may broaden the potential for evolu-

tion, as implied from ‘canalization’ phenomena in Drosophila

(Waddington, 1959; Flatt, 2005). A systematic survey of

polymorphisms in transposon insertion sites in natural po-

pulations might reveal beneficial impact of transposon inser-

tions as a source for epigenetic variability, which is heritable

but reversible.

Materials and methods

Plant materials and growth conditions
The identification and isolation of the bns strain was described in
the previous study (Kakutani, 1997). Sources of the 96 natural
accessions (Figure 5B) are described in Nordborg et al (2005). Seeds
of these strains (CS22660) and the BNS T-DNA insertion line
(SALK_027397) (Figure 2) were obtained from the Arabidopsis
Biological Resource Center. Plant seeds were allowed to germinate
and grow on a medium containing 0.5� MS salts (SIGMA), 2%
sucrose and 0.8% agar (pH 5.7), for 2 weeks under long-day
conditions (16 h, light; 8 h, dark) at 221C. The seedlings were
subsequently transferred and grown on vermiculite under the
conditions described above. The ddm1-1 mutant and the WT DDM1
alleles were distinguished by PCR, as described by Kato et al (2003).
The LINE insertion in the BNS locus (Figure 5B) was detected by
PCR with primers BNS FB3 (50-CAG GAA ACT CAG CAA GCA GAT
G-30) and LINE RB6 (50-GAG CCG TTT GCC AAC CAC GTG G-30).

RT–PCR
Total RNA from Arabidopsis leaves was isolated with the RNeasy
Plant Mini kit (QIAGEN) and was treated with DNase I (TAKARA).
cDNA was synthesized using the TAKARA RNA PCR kit (AMV)
Ver.3.0 (TAKARA) and an oligo-(dT) primer. A total of 500 ng RNA
in the RT reaction mixture (total 10ml) was reverse transcribed at
42–501C for 1 h, followed by heat inactivation at 951C for 5 min. A
one-fifth portion of the RT reaction was used as a template for PCR
(total 20 ml). PCR conditions were as follows: 941C for 2 min, 26–30
cycles at 941C for 15 s, 601C for 30 s, 721C for 45 s and 721C for
5 min. Control reactions without RT were carried out as described
above. The primer pairs used for RT–PCR were as follows: the BNS
gene (BNS F2: 50-GCT AGA GGT TTT TAG TTC TCT G-30 and BNS
R1: 50-TGT ACT TAA GAG GCT ATT ACT G-30); AT1G73170
(AT1G73170 F1: 50-GCG ATA CGG GCA TTA CTA ACA G-30 and
AT1G73170 R1: 50-TAA TCA GG CAA TAG AGG TAA CC-30);
AT1G73180 (AT1G73180 F1: 50-GGC GAA GGT CCT TAT AAC ACT
C-30 and AT1G73180 R1: 50-TGA TTT CTT CAA TCA GGC GTT G-30);
LINE (LINE FB5: 50-AAATTA CAC TTG AAC GTT CCG G-30 and LINE
RD: 50-AGT GGG GAG GAG ACA ATT CTA CAC-30) and Actin2
(ACT2F: 50-CTA AGC TCT CAA GAT CAA AGG C-30 and ACT2R:
50-AAC ATT GCA AAG AGT TTC AAG G-30). cDNA synthesized from
total RNA isolated from WT Col plants was used for 30 RACE of the
BNS gene. The initial PCR was performed using the BNS F2 primer
and the M13 Primer M4 supplied with the kit, and then nested with
BNS F1 primer (50-TGT GTG GAG TAC GGC TGC ATT G-30) and M13
primer M4. Amplified fragments were cloned and sequenced.

Transgenic plants
To prepare the RNAi construct (Figure 2), the BNS genomic
sequence was amplified from genomic DNA, using the 177 12attB1
F (50-AAA AAG CAG GCT TGT GTG GAG TAC GGC TGC AT-30) and
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177 12attB2 R (50-AGA AAG CTG GGT AGA GGC TAT TAC TGT GTA
TC-30) primers, and cloned by a GATEWAY BP reaction (Invitrogen)
into the binary vector pHELLSGATE 2 (Wesley et al, 2001). Plants
were transformed by the standard floral dip method (Clough and
Bent 1998).

DNA methylation analysis
Genomic bisulfite sequencing was performed as described by Paulin
et al (1998). Detail is shown in Supplementary data.

DNA methylation was also analyzed by restriction enzymes BglII
and Sau3AI (Figure 3C). A 100 ng weight of genomic DNA was
digested with BglII and EcoRI, or Sau3AI and EcoRI, in 40ml reaction
mix. Control ‘undigest’ sample was digested with EcoRI alone. After
digestion, PCR was performed by using 1ml of the digested sample
as a template. BNS F2 and BNS R3 (50-TTC CTT ATG ACA TTT CAA
GGT C-30) primers were used for BglII-digested DNA, and BNS F3
(50-GTA ATG GAG ACA CATACG TCA C-30) and BNS R4 (50-TAC AAA
GCC AGG AAC AGT TTT G-30) were used for Sau3AI-digested DNA.

Small RNA Northern analysis
Small RNA was isolated from mature leaves using the mirVana
miRNA isolation kit (Ambion). RNA (25B30 mg) was resolved on
denaturing polyacrylamide/urea gels (15%). Electroblotting and
hybridization were performed as described (Llave et al, 2002).
Hybridization was performed overnight at 381C using PerfectHyb
Plus buffer (Sigma). Blots were washed at 421C in 2� SSC, 0.2%
SDS for 10 min, and in 0.5� SSC, 0.1% SDS for 60 min, and

analyzed by BAS-2500 (Fuji film). BNS middle probe was 50-TGG
TTT CTT CAG TAT CAT CAG TTT TAA CAG CAA GCA CTG G-30 and
BNS 30 probe was 50-AþAG AþGC TþAG AþTC AþCG CþCA
AþGT TþTC AþGC AþTC TþGC TþTG CþTG A-30 (þ
indicates LNA-modified bases). For the LINE probe, a PCR fragment
amplified from genomic DNA by using LINE FB5 and LINE RD
primers was used.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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