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ABSTRACT New statistical perspectives on the secretory
patterns of both luteinizing hormone (LH) and testosterone
(T) may prove useful in further understanding the aging
process, and possibly ultimately in improving the diagnosis
and treatment of spermatogenetic failure and loss of sexual
interest. We examined serum concentration time-series for LH
and T in 14 young (21–34 years of age) and 11 aged (62–74
years of age) healthy men. For each subject, blood samples
were obtained at 2.5-min intervals during a sleep period, with
an average sampling duration of 7 hr. For each of LH and T,
we used the model-independent statistic approximate entropy
(ApEn) to quantify the irregularity of the serum concentration
time-series; to quantify joint LH–T secretory asynchrony, we
employed the recently introduced cross-ApEn. Although mean
(and SD) LH and T concentrations were indistinguishable in
the two age groups (P > 0.25), for LH, aged subjects had
greater ApEn values (1.5256 0.221) than younger individuals
(1.2076 0.252), P< 0.003, indicating more irregular secretion
in the older cohort. For T, aged subjects also had greater ApEn
values (1.622 6 0.120) than younger counterparts (1.384 6
0.228), P < 0.004. In young, but not older men, ApEn(T)
significantly exceeded ApEn(LH), P< 0.02. Aged subjects had
greater cross-ApEn values (1.961 6 0.121) than younger
subjects (1.574 6 0.249), P < 1024, with nearly 100% sensi-
tivity and specificity, indicating greater LH–T asynchrony in
the older group. In conjunction with previous findings of
greater irregularity of growth hormone release with increas-
ing age, we propose that increased secretory irregularity with
advancing age may be a widespread hormonal phenomenon.
Finally, theoretically, we clarify the need for quantifications
such as ApEn and cross-ApEn via a study of a ‘‘variable lag’’
pulsatile process, and empirically note the potential wide
applicability of cross-ApEn to quantify asynchrony in inter-
connected (hormonal) networks.

Greater understanding of the evolution of the hypothalamo–
pituitary–testicular axis with aging is of vital importance both
scientifically, in elucidating the physiology of reproductive
capacity, and clinically, in assessing, e.g., a loss of libido or
decreased reproductive performance. In recent years, there
has been considerable study of luteinizing hormone (LH) and
testosterone (T) serum concentration time-series in both
younger and older males to develop such understanding, and
to determine whether a hypothesized male climacteric (or
so-called andropause) at least partially analogous to meno-
pause in the female exists, and if so, in what precise sense. Such
studies have evaluated changes in (i) mean concentrations of
total and free T, and LH and the ratio of biological to
immunological (ByI) LH activity (1–6); (ii) ‘‘near-term’’ (cir-

choral) pulsatility characteristics of LH and T, via changes in
mean frequencies and amplitudes (7–10); (iii) ‘‘longer term,’’
i.e., nyctohemeral characteristics of LH and T release (1).
While considerable insight has already been gained, there
remain nontrivial controversies, e.g., primary determinations
of whether overall mean levels of LH and T decrease with
increasing age, as discussed below. Furthermore, the precise
neuroendocrine mechanisms that underlie such age-related
changes remain largely unresolved.
Here, we consider possible reproductive aging changes from

two perspectives entirely different from those mentioned
above, namely by directly evaluating the degree of irregularity
of each of the LH and T time-series, via approximate entropy
(ApEn) (11, 12) and by quantifying the degree of asynchrony
in the joint LH–T series, via cross-ApEn (12). In this study, we
reanalyzed data collected by frequent venous sampling (every
2.5 min) overnight (8) to delineate the nature of changes in the
secretion of these two hormones in healthy older men. Meth-
odologically, first, it is imperative to note the importance of
matching corresponding parts of the circadian epoch in the
older and younger age cohorts, because aged men lose circa-
dian fluctuations in serum T concentrations (1).
In addition to the biological relevance of assessing LH and T

release from a distinct statistical perspective, we particularly note
the potential broad statistical utility of the recently introduced
cross-ApEn to quantify asynchrony or conditional irregularity in
interconnected (hormonal) networks. In the Appendix we con-
sider: (i) themanner in which ApEn and cross-ApEn have a quite
different and complementary primary orientation from both
linear correlation and the power spectrum and (ii) why this
separate perspective affords the biologist distinct tools from
which changes in the extent of synchrony in interconnected
hormonal systems can be clearly determined. This quantification
strategy is relevant to many feedback andyor control systems and
models for which cross-correlation and cross-spectral methods
fail to fully highlight markedly changing features of the data sets
under consideration.

MATERIALS AND METHODS
The study group comprised 14 young (21–34 years of age) and 11
aged (62–74 years of age) healthy nonsmoking men within 20%
of ideal body weight. For each subject, blood samples were
obtained during a sleep period on a second night of study in the
General Clinical Research Center at the University of Virginia,
at 2.5-min intervals commencing at 2300 hr, with sampling
terminated when the subject spontaneously awakened, for an
average sampling duration of 7 hr. Serum LH concentrations
were measured in duplicate by using a two-site monoclonal
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immunoradiometric assay (Nichols Institute, San Juan Capist-
rano, CA). Assay sensitivity was 0.2 unityliter according to the
First International Reference Preparation. Serum total T con-
centrations were quantified in duplicate for each sample by using
a solid-phase RIA (Diagnostic Products, Los Angeles). Assay
sensitivity was 20 ngydl. For both LH and T assays, intra- and
interassay imprecision was less than 10%. Further subject and
assay descriptions are given by Mulligan et al. (8).
ApEn. To quantify irregularity, we use ApEn, defined in ref.

11, further mathematical properties, and biological applica-
tions as given in refs. 12–18. ApEn is complementary to
pulse-detection algorithms widely employed to evaluate hor-
mone secretion time-series (19). ApEn evaluates both domi-
nant and subordinant patterns in data; notably, it will detect
changes in underlying episodic behavior not reflected in peak
occurrences or amplitudes (17). Additionally, ApEn provides
an explicit barometer of feedback system change in many
coupled systems (17, 20). Within various endocrine contexts,
ApEn has unveiled vivid distinctions (P , 10210) between
normal and tumor-bearing subjects for GH (21) and aldoste-
rone release (22), a pronounced and consistent gender differ-
ence in GH time-series irregularity in both human and rat (23),
and a positive correlation between greater irregularity of GH
secretion and advancing age (24).
ApEn assigns a nonnegative number to a time-series, with

larger values corresponding to greater apparent process ran-
domness (serial irregularity), and smaller values corresponding
to more instances of recognizable patterns in the data. Two
input parameters, m and r, must be specified to compute
ApEn. Briefly, ApEn measures the logarithmic likelihood that
runs of patterns that are close (within r) for m contiguous
observations remain close (within the same tolerance width r)
on next incremental comparisons; the precise mathematical
definition is given in ref. 11.
In this study, we calculated ApEn(m, r) values for all data sets,

m5 1 and r5 20% of the SD of the individual subject’s hormone
time-series.** Normalizing r to each time-series SD gives ApEn
a translation- and scale-invariance to absolute serum concentra-
tion levels (14). ApEn is a relative measure of process regularity,
and can show significant variation with changing background
noise characteristics. Because ApEn generally increases with
increasing process noise, it is appropriate to compare data sets
with similar assay coefficients of variation, as we do here.
Previous studies that included both theoretical analysis (16,

17, 25) and clinical applications (13–15, 18, 21–24) have
demonstrated that the input parameters indicated above pro-
duce good statistical validity (reproducibility) for ApEn ap-
plied to time-series of the lengths considered here. The ApEn
application with m 5 1 estimates the rate of entropy for a

first-order (m 5 1) approximating Markov Chain to the
underlying true process (26). Further technical discussion of
mathematical and statistical properties of ApEn, including
robustness to noise and artifacts, mesh interplay, relative
consistency of (m,r) pair choices, asymptotic normality under
general assumptions, statistical bias, and error estimation for
general processes can be found elsewhere (16, 25).
Cross-ApEn. To quantify asynchrony (conditional irregu-

larity), we use cross-ApEn, as introduced in ref. 12, definition
5. As noted there, cross-ApEn can be employed to compare
sequences from two distinct yet intertwined variables in a
network, herein applied to the joint LH–T time-series. The
precise definition is thematically similar to that for ApEn:
Let u 5 (u(1), u(2), . . . u(N)) and v 5 (v(1), v(2), . . . v(N))

be two length-N sequences. Fix input parameters m and r.
Form vector sequences x(i)5 (u(i), u(i1 1), . . . u(i1m2 1))
and y( j) 5 (v( j), v( j 1 1), . . . v( j 1 m 2 1)) from u and v,
respectively. For each i # N 2 m 1 1, set C im(r)(v i u) 5
(number of j # N 2 m 1 1 such that d[x(i), y( j)] # r)y(N 2
m 1 1), where d[x(i), y( j)] 5 maxk 5 1, 2, . . . , m (uu(i 1 k 2 1) 2
v( j1 k2 1)u), i.e., the maximum difference in their respective
scalar components. The Cim(r)’s measure within a tolerance r
the regularity, or frequency, of (v-) patterns similar to a given
(u-) pattern of window length m. Then define Fm(r) (v i u) as
the average value of ln Cim(r) (v i u), and finally, define
cross-ApEn(m,r,N)(v i u) 5 Fm(r) (v i u) 2 Fm11(r) (v i u).
For this study, we applied cross-ApEn with m 5 1 and r 5

0.2 to standarized LH (5 u) and testosterone (5 v) time-series
data, i.e., for each subject, we applied cross-ApEn(1, 0.2) to the
{u*(i), v*(i)} series, where u*(i) 5 (u(i) 2 mean u)ySD u and
v*(i) 5 (v(i) 2 mean v)ySD v. This standardization, in
conjunction with the choice of m and r, ensures good replica-
bility properties for cross-ApEn for the data lengths studied.

RESULTS
All statistical comparisons below employ the two-sided t test,
except for the ApEn(LH) vs. ApEn(T) comparisons within
each of the younger and older cohorts, for which we employed
the paired t test. Results are given as mean 6 SD.
Inspection of serum hormone concentration profiles sug-

gests that clear pulse identification is a nontrivial endeavor,
especially for the aged subjects’ T series (see Fig. 4, ref. 8). For
LH, aged subjects had greater ApEn values (1.525 6 0.221)
than younger subjects (1.207 6 0.252), P , 0.003. For T, aged
subjects also had greater ApEn values (1.622 6 0.120) than
younger subjects (1.384 6 0.228), P , 0.004. In Fig. 1,
scatterplots of mean LH level vs. ApEn(LH), and of mean T
level vs. ApEn(T) visually confirm this statistical distinction.
The decision rule that associates ApEn(LH) values greater
than 1.445 with aged subjects has a specificity of 93% and a
sensitivity of 82%, whereas the decision rule that associates
ApEn(T) values greater than 1.60 with aged subjects has a
specificity of 100% and a sensitivity of 64%.
Notably, there was no difference in mean serum LH levels

between the younger (2.409 6 0.658 unitsyliter) and aged
subjects (2.830 6 1.064 unitsyliter) levels, P 5 0.26; and there
was no difference in mean T levels between the younger (4596
148 ngydl) and aged subjects (4156 115 ngydl) levels, P5 0.41.
Aged subjects had greater cross-ApEn values (1.961 6

0.121) than younger subjects (1.574 6 0.249), P , 1024.
Importantly, there was nearly complete separation of younger
and older subject cross-ApEn values, as observed in Fig. 2, with
all younger subjects’ cross-ApEn values smaller than all but a
single older subject’s value. The decision rule that associates
cross-ApEn values greater than 1.85 with aged subjects has a
specificity of 100% and a sensitivity of 91%. In counterpoint,
cross-correlation (Pearson ‘‘R’’), reveals no significant differ-
ences, either in the Pearson R values directly, older subjects
(0.0786 0.210) vs. younger subjects (0.0306 0.284), P5 0.629;
or in the magnitude of the correlation, assessed by uPearson Ru,

**As a consequence of the sleep protocol, the measured time-series
show a modest variation in length, about a N 5 168 point mean. In
comparing ApEn of different data set lengths, we neglect a small
statistical bias in the estimator ApEn(m,r,N), as a function of N. As
indicated in ref. 16, the expected value of ApEn(m,r,N) increases
asymptotically withN to a limit ApEn(m,r) for virtually all processes.
If we were to incorporate a bias or length correction, we would first
observe that the younger group data set lengths were, on average,
7% larger than those of the aged subjects. Accordingly, the ApEn
values of younger subjects should be reduced by a correction term
that is a function of an unknown process, to accommodate an
average 7% reduction in data set length for an unbiased comparison
of group ApEn values between younger and aged subjects. Because
ApEn values for the younger subjects are seen below to be signif-
icantly smaller than those for aged subjects, a reduction in ApEn
values for the younger subject values would enhance the degree of
younger-aged group separation. Thus, the reported findings are
slightly conservative as to the extent of younger vs. aged group
distinctions shown via ApEn. Furthermore, we established an upper
bound of 0.06 for such a bias correction, for the range of data set
lengths encountered here, so that any correction would have min-
imal qualitative effect on our results. A similar observation applies
to the cross-ApEn analysis.
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older subjects (0.150 6 0.162) vs. younger subjects (0.231 6
0.155), P 5 0.220.
As another perspective on changes with aging in the joint

LH–T variable system, we ascertained that for younger sub-
jects serum T concentration time-series were more irregular
than the corresponding LH concentration series, P , 0.02,
whereas this per subject distinction vanished in the aged group,
with no significance in the pairwise ApEn(LH) and ApEn(T)
values, P . 0.28.††

DISCUSSION
Summary and Resultant Biological Questions. Summariz-

ing the primary statistical results, for each of LH and T, older
males have consistently and significantly more irregular serum
reproductive-hormone concentrations than younger males.
The distinction between ApEn(T) and ApEn(LH) indicating
greater irregularity of the former in young men was lost in
older men. Furthermore, cross-ApEn quantitatively supports a
mechanistic hypothesis, a loss of synchrony with aging in the
coupled LH–T system. The cross-ApEn finding reinforces the
utility of studying network aspects, in addition to single-
variable or nodal aspects, of hormone systems, both in statis-
tical analysis and in modeling, and ultimately, in evaluating
therapies. The determinations that mean serum LH and T
concentrations in the young and older males were not signif-
icantly different, nor were linear cross-correlations, further
suggest the need for the distinct perspectives assessed by
quantification of irregularity and (a)synchrony.

Our inferences in the aging male reproductive axis (above)
are in agreement with findings of greater growth hormone
irregularity of release with increased aging (24). Thus, we
hypothesize that greater secretory irregularity, and possibly
greater asynchrony, with increased aging may be a more
general paradigm for many hormones, potentially indicating a
diminution of subsystem integrity (20) andyor of (synchro-
nous) control.
It seems worthwhile to compare the results for the male to

corresponding findings for the female, although sex-steroid
levels decline more markedly in postmenopausal individuals
than in aging men. Any comparisons between male and
female evolution of ‘‘reproductive’’ hormone secretion as a
function of increasing age are at best partial, given the
cessation of female reproductive capacity in the aged, in
contrast to continued, albeit diminished male fertility in
advanced age. However, the above findings clearly indicate
distinct quantitative shifts in male hormonal secretory dy-
namics with aging. Thus, the question arises as to how
mechanistically greater individual signal irregularity (in LH
or T release) or joint signal asynchrony are linked directly or
causally to clinical changes in, e.g., spermatogenetic function
or libido, as commonly seen in elderly males. Moreover, does
the increased LH–T irregularity and asynchrony in older
males occur gradually, at a relatively constant rate through-
out life, or instead develop rather abruptly during a relatively
shorter time-frame of months or years, the latter analogous
to estrogen transitions in females across the menopause? For
this last point, we hypothesize a more gradual evolution
based on the somewhat analogous determination of a mod-
est, slow continuous decrease in mean total T serum con-
centrations with increasing age seen, e.g. by Zumoff et al. (6)
in a study of normal men 21–85 years of age.
In principle, there are several possibilities for the source of

the erosion of LH–T synchrony quantified above. These in-
clude: (i) decreased multi-synaptic modulation andyor syn-
chrony of the hypothalamic gonadotropin-releasing hormone
(GnRH) neuronal network that produces the GnRH drive to
pituitary LH synthesis and secretion; (ii) altered feedback
control of individual andyor coupled GnRH–LH secretory
activity by gonadal hormones, via a disrupted feedback signal,
e.g., of T itself, or deficient responsiveness to the feedback
signal; (iii) decreased GnRH and non-GnRH-dependent para-
crine or autocrine coordination of LH secretion by gonado-
troph cells; andyor (iv) disruption of effective (LH–T) stimu-
lus-secretion coupling at the level of the Leydig cell in the
testis. Further physiological studies will be required to clarify
the precise basis of this change. Nonetheless, because there is
increased ApEn of LH release after short-term ketoconazole

††It is appropriate to apply the statistic ApEn(T)2 ApEn(LH), based
on the serum concentration time-series, only to establish that there
are significant differences between two subgroups, here younger vs.
aged, based on the joint [LH–T] dynamics. Given that LH and Twere
measured via different assays, and have distinct clearance rates, we
do not compare LH secretory irregularity to T secretory irregularity
for either young or old.

FIG. 2. Individual subject cross-ApEn values vs. cross-correlation
(Pearson R), applied to the joint LH–T time-series in healthy young
vs. older men.

FIG. 1. Age contrast in ApEn values for LH and T time-series
considered singly. (Upper) Individual subject ApEnLH(m5 1, r5 20%
SD) values vs. mean serum LH concentrations. (Lower) Individual
subject ApEnTESTO(m 5 1, r 5 20% SD) values vs. mean serum T
concentrations.
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treatment in young men when T secretion falls,‡‡ and in-
creased ApEn of GH release with fasting as IGF-1 falls (21),
we favor decreased feedback signal strength, or diminished
GnRH–LH system responsiveness to feedback signal intensity,
as a unifying hypothesis.
Complementarity of Present Findings to Previous LH and T

Age-Related Changes. A number of age-related changes have
been established earlier for both LH and T secretion. Our
findings provide an entirely distinct and complementary perspec-
tive to previously identified differences inmeans or amplitudes of
suitable physiological variables, so that secretory typicality can be
assessed quantitatively both on the basis of mean and amplitude
level of output and on the basis of orderliness of serial output.
Mathematically, we observe a primary difference between reg-
ularity measures, such as ApEn, and moment statistics (e.g.,
means, standard deviations); namely, moment statistics and their
nonparametric counterparts are computed without regard to the
order of the series to which they are applied. For ApEn, the serial
data order is the crucial factor. Additionally, to the best of our
knowledge, a direct statistical assessment of joint LH–T network
characteristics of either younger or aged men has not previously
been accomplished, which cross-ApEn now addresses.
The relative clarity of the youngyold separation by ApEn and

cross-ApEn takes on enhanced importance in light of reassess-
ment of age-related changes in mean reproductive hormone
levels, especially in the case of T, for which there is no clear
consensus. Touitou (27) elucidates the controversy for T, in part
due to diurnal variations, and time-of-day sampling; e.g., Ver-
meulen et al. reports a decrease in plasma concentrations in the
aged (4), based on morning sampling, whereas Harman and
Tsitouras (2) show unchanged T levels in the aged group, based
on early afternoon studies. Bremner et al. (1) showed an overall
24-hr decrease in T concentrations (P , 0.05) in the aged,
although none between mid-afternoon and late evening. Zumoff
et al. (6) concluded that total T levels decrease in the aged, though
there was considerable overlap between younger and older mean
levels (Fig. 1, ref. 6). Nankin and Calkins (3) reported that mean
serum total and free T were similar in young and older groups,
whereas the mean absolute non-sex hormone-binding globulin-
bound T level, as an index of bioavailable T, was significantly
lower in the older group. And above, we deduced that for
nocturnal observations, mean serum T concentrations are not
necessarily distinguishable between very healthy young and older
males. For immunoreactive LH, the inference of no overall mean
level changes between young and older subjects has been verified
by several studies (3, 5, 6), as well as by our analysis. Even so,
Warner et al. (5) and Urban et al. (28) suggested that whereas
mean serum immunoreactive and bioactive LH concentrations
are age-invariant, the ratio of biological to immunological LH
activity decreases in the aged basally or after stimulation, respec-
tively.
Our findings also augment, from a distinct perspective,

previous analyses of mean frequency and amplitude charac-
teristics of LH and T release episodes, where elderly men
exhibit more frequent (low amplitude) LH secretory bursts,
and amplitude-attenuation of T secretory bursts (8). Indeed,
the present appraisal by ApEn and cross-ApEn offers a clearer
youngyold group separation than the aforementioned signif-
icant frequency and amplitude differences, especially for T
(compare figures 5 and 6 of ref. 8 to figures 1 and 2 herein).
In addition, we observe that for parameters such as pulse
characteristics and irregularity, a rapid sampling protocol is
crucial in some settings (e.g., the 2.5-min sampling paradigm
employed herein) to obtain a fine probabilistic description of
the contiguous measurement series, whereas for mean level
analysis such as those described in the previous paragraph, the

20-min sampling protocol used by many researchers is gener-
ally sufficient to provide an accurate estimate (of the mean).
In instances in which mean secretory burst frequency and
amplitude differences are relatively subtle (e.g., young vs. old
LH and T characterizations), inferences from the finer sam-
pling can actually differ qualitatively from those based on
significantly coarser sampling (e.g., compare results from ref.
8 to those from coarser sampling protocols employed in refs.
7 and 9).
It is crucial to note the counterpoint between the perspec-

tives of irregularity and that of diurnal variation. Bremner et al.
(1) observed a clear loss of nyctohemeral T variation in older
men, which, as indicated above, was critically noted in estab-
lishing the experimental protocol in this study. From a broader
perspective, as summarized by Copinschi and van Cauter (29),
changes in circadian rhythms toward lower amplitude andyor
phase advance with increasing age have been established for
the peripheral levels of many other hormones (30–33). How-
ever, this change in circadian variation is a very different
notion of rhythm change from that of a change in irregularity,
as quantified here. Statistically, the extent of 24-hr variation
[e.g., quantified by Bremner et al. (1) as the highest point minus
the lowest point] is basically a measure of overall day-night
amplitude. The nyctohemeral changes with age reflect an
evolution from a decidedly nonstationary time-series in
younger subjects, with pronounced day-night secretory differ-
ences, toward a more stationary output, with blunted overall
variation. Thus, the very real attenuation of circadian varia-
tion, while linguistically often labeled as a ‘‘loss of rhythmic-
ity,’’ is more precisely an appropriately quantified change in a
notion of overall amplitude or variation, typically applied as a
measure of the extent of time-series non-stationarity over a
relatively long time period (24 hr). This is juxtaposed with the
quantification of changes in irregularity or disorderliness of
serial data seen above and elsewhere (21, 23), inasmuch as
irregularity and amplitude measure epistemologically distinct
concepts. Nonetheless, the generality of the finding of consis-
tently blunted overall daily circadian variation with increasing
aging is most convincing, and the interpretation that this is at
least partially due to changes in central nervous system control
(29) is thematically consistent with our hypothesis of an
age-related increased asynchronyynetwork dissociation in
broad classes of hormonal networks.
Potential Applications. More generally, quantification of

signal regularity of both LH and T release, as well as of their
mutual relationship and synchrony, could be employed to
evaluate a variety of clinical disorders and the efficacy of
medical interventions. Furthermore, if a disorder is most
prominently characterized by diminution of synchrony, means
to restore synchrony may require putatively novel therapeutic
strategies. From an experimental perspective, studies will be
required ultimately to specify the source(s) determining syn-
chrony, e.g., from the possibilities indicated above, and to
perturb this source directly. However, even prior to this
identification, one could attempt to restore synchrony ob-
liquely, by providing dual, synchronous administration of
agents that respectively induce LH and T production. The
point is that if a disorder is biologically determined by an
overall system decoupling, a recoupling or reestablishment of
temporal concordance may be required to restore physiolog-
ical function, rather than any means of perturbing a single
target node.

Appendix: Mathematical and Statistical Considerations for
ApEn and Cross-ApEn

Replicability of Cross-ApEn. To establish a theoretical
statistical validity of cross-ApEn as employed here, we studied
a range of two-variable vector AR(2) processes, and several
types of coupled two-variable analogs of the ‘‘variable lag’’

‡‡Zwart, A. D., Iranmanesh, A. & Veldhuis, J. D., 77th Annual
Endocrine Society Meeting, Washington, DC, June 14–17, 1995,
abstract OR29-4.
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process described below, for each of which we applied cross-
ApEn(1, 0.2) to standardized time-series (x–y pair) outputs, 50
replicates of n 5 150 point data lengths per process. For each
process studied, SD (cross-ApEn) was #0.06, the SD calcu-
lated from the cross-ApEn values from the 50 replicates; this
imparts reasonable replicability properties similar to that given
elsewhere for ApEn (16, 25). This degree of reproducibility is
not unexpected, because cross-ApEn is a parameter that
aggregates low-order, two variable joint distributions at a
moderately coarse resolution (determined by r).
Complementarity of ApEn and Cross-ApEn to Correlation

and Spectral Analyses.Mathematically, the need for ApEn, and
particularly for cross-ApEn, is clarified by considering alternative
parameters that might address similar concepts. In comparing
two distinct signals or variables (e.g., to assess a degree of
synchrony), primary parameters that one might employ include
the cross-correlation function, and the cross-spectrum (34), with
single variable counterparts the auto-correlation function and the
power spectrum. Evaluation of these parameters often is insight-
ful, but with relatively small length data sets statistical estimation
issues are nontrivial and, moreover, interpretation of the sample
cross-correlation function is highly problematic, unless one em-
ploys a model-based prefiltering procedure (ref. 34, p. 139).
Furthermore, ‘‘standard’’ spectral estimationmethods such as the
fast Fourier transform can be shown to be inconsistent andyor so
badly biased that findings may be qualitatively incorrect, espe-
cially in the presence of outliers and nonstationarities. This is
vividly demonstrated by Thomson (35), who recently developed
a superior multiple-data-window technique with major advan-
tages compared with other spectral estimation techniques (35,
36). These difficulties are mirrored in the cross-spectrum, in
addition to an often serious bias in estimation of coherency in
short series.
Most importantly, the autocorrelation function and power

spectrum, and their bivariate counterparts, are most illumi-
nating in linear systems, e.g., SARIMA models, for which a
rich theoretical development exists (37). For many other
classes of processes, these parameters often are much less
effective at highlighting certain model characteristics, even
apart from statistical considerations. To illustrate this point
consider the following simple model, which we denote as a
‘‘variable lag’’ process: this consists of a series of quiescent
periods of variable length duration, interspersed with identical
positive pulses of a fixed amplitude and frequency. Formally,
we recursively define an integer time-valued process denoted
VarLag whose ith epoch consists of (a quiescent period of)
values5 0 at times ti-1 1 1, ti-1 1 2, . . . , ti-1 1 lagi, immediately
followed by the successive values sin (py6), sin (2py6), sin
(3py6), sin (4py6), sin (5py6), sin(6py6)5 0 at the next 6 time
units, where lagi is a random variable uniformly distributed on
(randomly chosen between) the integers between 0 and 60, and
ti-1 denotes the last time-value of the (i-1)st sine pulse. Fig. 3A
displays representative process output, with Fig. 3B a closer
view near time t 5 400. The power spectrum and autocorre-
lation function calculations shown in Fig. 3 C and E were
calculated from a realization of length n 5 100,000 points.
(The coarse pulse sampling in the above definition was chosen
to approximate typical sampling resolution in clinical studies.)
Processes consisting of alternatingly quiescent and active pe-

riods seem reasonable for biologists to consider, as they appear
to model a wide variety of phenomena. However, within math-
ematics, such processes with a variable quiescent period are not
commonly studied. To the endocrinologist, output from the above
model would be considered smoothly pulsatile, especially with the
identical pulses; the variable lag process would be most readily
distinguished from its constant lag counterpart (for which lagi 5
30 time units for all i) via a decidedly positive SD for the
interpulse duration time-series, in the variable lag setting, as
opposed to SD5 0 (constant interpulse duration) in the constant
lag setting. The essential point here, however, is that for VarLag,

the power spectrum and autocorrelation function somewhat
confound, as seen in Fig. 3C andE. Based on these figures alone,
the pulsatile nature of the time-series realizations is hardly
evident, and for all k$ 6, the autocorrelation coefficient rk at lag
k is insignificantly different from 0. In contrast, the power
spectrum and autocorrelation function confirm the periodicity of
the constant lag analogue, shown in Fig. 3 D and F, as expected.
Significantly, the issues here are in the parameters, rather than
statistical inadequacies based on an insufficiently long output, or
on artifacts (outliers), since Fig. 3 C–F were derived from
calculations based on 100,000 points from a purely theoretical
model.
Similar limitations of the spectra and autocorrelation func-

tion are inherent to wide classes of mathematical processes.
We can construct large classes of variable lag processes simply
by considering point processes (38), in which we replace the
‘‘point’’ occurrence by a pulse occurrence, the pulse itself of
either a fixed or variable form. The associated counting process
could be of any character, and need not be so special as Poisson
or renewal (as in the above example). Also, variable lags
between events to be compared are the normative case in
nonlinear differential equations, in Poisson clumping models
(39), and in output variables in typical (adaptive) control
theory models and queueing network models. Notably, for
many two-dimensional analogs of variable lag processes, and
for many two-dimensional systems in which no small set of
dominant frequencies encapsulates most of the total power,
the cross-spectrum and the cross-correlation function often
will similarly fail to highlight episodicities in the underlying
model and data, and thus fail to highlight concomitant changes
to such episodic components.

FIG. 3. (A) Representative time-series for a ‘‘variable lag’’ sine
wave process denoted VarLag (see text for formal definition). (B)
Close-up view ofA, near time t5 400. (C) Power spectrum for VarLag.
(D) Power spectrum for a constant (fixed) lag analog of VarLag. (E)
Autocorrelogram corresponding to C. (F) Autocorrelogram corre-
sponding to D. C–F are all derived from time-series of length n 5
100,000 points.
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In contrast to the autocorrelation function and spectral differ-
ences between the above variable lag and constant lag processes,
respective ApEn(1, 20% SD) values for the two processes are in
close agreement:meanApEn5 0.195 for the variable lag process,
while ApEn5 0.199 for the constant lag setting. This agreement
in ApEn values manifests the primary requirement of matching
(sub)patterns within data, while relaxing the requirement of a
dominant set of frequencies atwhich these subpatterns occur. The
two-variable analogue of ApEn, given by cross-ApEn, similarly
enables one to assess synchrony in many classes of models. It thus
should not be surprising that in this study cross-correlation
(PearsonR) does not show significant group differences, whereas
cross-ApEn does.
We emphasize, nonetheless, that Fig. 3 C–F neither invali-

date spectral power and (lagged) autocorrelation calculations,
nor do they violate a properly oriented intuition. The broad-
banded spectrum in Fig. 3C, and the negligible lagged auto-
correlation in Fig. 3E for lag $ 6 time-units, primarily reflect
the independent, identically distributed, relatively broad dis-
tribution of the variable lagi. Visually, this conforms to viewing
Fig. 3A from afar, in effect (nearly) ignoring the nature of each
pulse, instead de facto primarily focusing on the ‘‘random’’
timing of the peaks as the process of interest. The viewpoint
taken by ApEn is thus complementary to the spectrum and
correlogram, more de facto focusing on (close-up) similarities
between active pulses, e.g., from the perspective given in Fig.
3B, while in effect nearly ignoring the nature of the quiescent
epoch aspect of the process. The putative utility of ApEn and
cross-ApEn to endocrinologists is based on the recognition
that in many settings, changes in the episodic character of the
active periods within pulsatile secretory time-series appear to
mark physiologic and pathophysiologic changes; thus, there is
a concomitant need for quantitative methods that primarily
address this perspective, e.g., ApEn and cross-ApEn.
Simple variable lag processes similar to VarLag would not

confound pulse-identification statistics widely used within
endocrinology (19). In many settings, such pulse-identification
methods are quite sufficient to characterize and distinguish
distinct physiologic states. However, in other settings, clear
pulse identification appears to be a challenging endeavor, e.g.,
clinically, for GH time-series in acromegalics (21) and for
healthy female rats (23), as well as for the T data studied here
and, theoretically, for several distinct classes of mathematical
processes (17, 20). Crucially, as well, there has been no
quantification of two-variable synchrony from a pulse-
identification perspective, except to determine whether or not
co-pulsatility of discrete events within concomitant hormone
series is nonrandom (40).
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