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Abstract
The function of the S phase kinase cyclin A/Cdk2 in maintaining and regulating cell cycle kinetics
is well established. However an alternative role in the regulation of progesterone receptor (PR)
signaling is emerging. PR and its coactivators are phosphoproteins. Cyclin A/Cdk2 phosphorylates
several of the PR phosphorylation sites in vitro and there is evidence that it participates in PR
phosphorylation in vivo. Cyclin A/Cdk2 also functions as a PR coactivator. Overexpression increases
PR transcriptional activity independent of PR phosphorylation. In the presence of hormone, cyclin
A/Cdk2 is recruited to PR bound to DNA of target genes. Inhibition of Cdk activity prevents
recruitment of the p160 coactivator SRC-1 (steroid receptor coactivator-1), suggesting that Cdk2
phosphorylates SRC-1. Consistent with this finding, phosphatase treatment of SRC-1 reduces its
ability to interact with PR in vitro. Moreover, PR transcriptional activity is highest in S phase where
cyclin A is expressed. In G1, PR activity is reduced and the capacity to recruit SRC-1 to a progestin
responsive promoter is diminished. Future studies will focus on the importance of cyclin A/Cdk2
phosphorylation of other components of the PR transcription complex, such as the p160 coactivator
SRC-1, and the specific role of Cdk2 target sites in the regulation of PR activity.
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1. Introduction
The progesterone receptor (PR), a member of the steroid hormone receptor superfamily,
mediates the action of progesterone, which has critical roles in the regulation of female
reproductive function (reviewed in [1,2]). Human PR is expressed as two isoforms with PRA
lacking the first 164 amino acids of PRB [3,4]. They are expressed from unique mRNAs
transcribed from alternate estrogen inducible promoters within a single gene [4]. Although
structurally similar, the A and B isoforms have distinctly different activities in vitro and in
vivo. The B isoform is generally a stronger activator of transcription while the A isoform has
been shown to repress transcription of PRB as well as the estrogen, androgen, glucocorticoid
and mineralocorticoid receptors [5–7]. Additionally, the B and A isoforms regulate expression
of different subsets of target genes [8]. Analysis of isoform specific receptor knockout mice
demonstrated that loss of PRA causes abnormal uterine and ovarian function and loss of PRB
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leads to defective mammary gland development during pregnancy [9,10]. Both A and B forms
of the PR have three major functional domains (Fig. 1) – a poorly conserved amino terminal
transactivation domain (NTD) containing transcriptional activation function-1 (AF-1), a zinc
finger containing DNA binding domain (DBD) which also mediates receptor dimerization and
a C-terminal ligand binding domain (LBD) containing a second, ligand dependent, activation
function, AF-2, as well as a strong dimerization interface (reviewed in [2]). A flexible hinge
region (H) separates the DBD and LBD and also contains the nuclear localization signal. The
B isoform contains an additional activation function (AF-3) [11].

In the classical model of PR action [12–14] (Fig. 2), progestins diffuse across the cell membrane
and bind to PR located within the cytoplasm, where they induce a conformational change in
the receptor that leads to release of associated chaperone proteins (including heat shock proteins
such as HSP70 and HSP90 as well as p23 and immunophilins such as FKBP51 and FKBP52),
dimerization and nuclear translocation. Inside the nucleus, PR dimers bind to progesterone
response elements situated in the regulatory regions of target genes where they recruit
coactivator molecules such as those of the p160 family and other components of the
transcriptional machinery, leading to reorganization of chromatin structure and the initiation
of transcription. Although a consensus palindromic DNA binding site has been identified, many
natural binding sites contain half sites and likely require additional protein/protein interactions
for strong PR binding. More recently, alternate mechanisms of action have been described
where PRs can interact with and modulate other transcription factors, such as Sp1 and AP-1,
influencing gene transcription without binding directly to DNA [15–19] (Fig. 2). While this
mode of action of PR is also likely to involve coactivators, and the transcriptional regulating
protein of 132 kDa (TReP-132) has recently been identified as a coactivator of PR tethered to
Sp1 sites in the p21 and p27 genes [20], the precise role and contribution of other specific
coactivators has not yet been characterized.

In addition to steroid hormone ligands, another important mechanism for regulating PR activity
is through cell signaling pathways (Fig. 2). PR and its coactivators are extensively
phosphorylated [21–26]. Kinases such as cyclin dependent kinase 2 (Cdk2), mitogen activated
protein kinase (MAPK), cyclic AMP dependent protein kinase, okadaic acid (an inhibitor of
phosphatases 1 and 2a) and tetradecanoyl 12-phorbol 12-acetate (a protein kinase C activator)
can enhance PR activity in the presence of ligand [27–32]. However, in contrast to other steroid
receptors, ligand independent activation of human PR by kinase cascades is not consistently
observed, although it has been described in some reports [29–31,33–35]. In turn, progestins
and PR localized in the cytoplasm or the cell membrane can rapidly induce cell signaling
cascades, such as the Src/MAPK pathway, that lead to phosphorylation of a variety of proteins,
which may or may not be involved in transcription [36,37].

2. Phosphorylation sites identified in PR
The key role of kinases in the regulation of genomic and non-genomic actions of PR has
prompted numerous biochemical and functional studies on the phosphorylation of PR. Like
other steroid receptors, PR is a phosphoprotein (reviewed in [21,38,39]), with phosphorylation
observed in response to hormone and activation of various kinases. Evidence to date suggests
that individual phosphorylation sites are likely to be candidates for multiple kinases in vivo
permitting integration of signals from multiple signaling pathways. Fourteen candidate
phosphorylation sites, summarized in Fig. 1, have been identified to date in the human PR, the
majority of which lie in the NTD suggesting that they play roles in protein-protein interactions.
Most of these are found in Ser/Thr-Pro motifs which suggests that proline-directed kinases
such as the Cdks, glycogen synthase kinase 3 or MAPKs are responsible for PR
phosphorylation [40]. There are 15 Ser/Thr-Pro motifs in PRB and 10 in PRA and 13 of these
have been confirmed as candidate Cdk2 or MAPK targets in vitro or in vivo. However not all
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Ser/Thr-Pro motifs in PR are phosphorylated by Cdks and MAPKs (Ser202 and Thr351 have
not been identified as targets to date), suggesting that kinases target PR in a context-specific
manner, allowing highly specific regulation by different kinase signaling pathways.

PR phosphorylation appears to occur in three phases – basal phosphorylation in the absence
of hormone, rapid (within a few minutes) hormone dependent phosphorylation and delayed
hormone dependent phosphorylation (up to two hours) [32,41]. Some, if not all, of the delayed
hormone dependent phosphorylations are also dependent on PR binding to DNA [32,42].

Basal or hormone induced phosphorylation sites were originally identified by in vivo [32P]
incorporation into endogenous PR in T47D human breast cancer cells. The first sites to be
confirmed in this manner were Ser81 and Ser162 [43]. These exhibit basal phosphorylation in
the absence of hormone, with further increases in response to hormone [41]. Sites targeted by
specific kinases have been identified via in vitro phosphorylation of a baculovirus expressed
hPR and in this manner Ser81 was found to be a target for casein kinase II [43]. Ser81 is the
only site reported to date which does not lie in a Ser/Thr-Pro motif. Ser102, Ser294 and Ser345
are optimally phosphorylated in vivo in response to longer-term (2 hours) treatment with
hormone [41]. Hormone dependent phosphorylation of PR is associated with a decrease in
mobility on SDS-PAGE gels, and this characteristic has been attributed at least in part to
phosphorylation at Ser345 [41]. Cyclin A/Cdk2, discussed in further detail below,
phosphorylates PR in vitro at Ser25, Ser162, Ser190, Ser213, Ser400, Thr 430, Ser554 and
Ser676 [22,44]. The use of baculovirus expressed hPR in Sf9 insect cells enabled additional
sites to be identified due to the higher amounts obtainable compared to native PR from T47D
cells. Phosphorylation of hPR isolated from Sf9 insect cells was found to be qualitatively
similar to that of endogenous PR in T47D cells [45]. Enhanced sensitivity was also achieved
using modified trypsin, which digests with increased efficiency, as well as mass spectrometry,
and Ser20, Ser676 and a peptide containing the Ser-Pro motif at Ser130 were identified as in
vivo sites using these techniques [22]. Ser294 was verified as a target of the MAPK pathway
firstly by mutation of this site to an unphosphorylatable alanine [46] and then by the use of an
antibody that exclusively recognizes PR phosphorylated at Ser294 [29,47]. However,
phosphorylation of Ser294 induced by R5020 is not inhibited by the MEK inhibitor U0126,
implicating an additional kinase in hormone dependent phosphorylation [47]. Phosphorylation
of Ser400 is also increased in vivo by treatment with epidermal growth factor, heregulin,
phorbol myristate acetate, insulin-like growth factor and fetal bovine serum in T47D cells and
is rapidly (within 15 minutes) phosphorylated in response to hormone [33].

3. Cyclin A/Cdk2 and PR
Of the kinases tested in vitro, Cyclin A/Cdk2 phosphorylates the largest number of candidate
sites (8 of the 14 identified authentic and candidate phosphorylation sites) (Fig. 1). As discussed
below, PR signaling and Cdk2 activity are intricately connected with multiple mechanisms of
cell cycle-associated feedback regulation.

3.1. Cyclin A/Cdk2 and the cell cycle
Cyclin A/Cdk2 is an S phase kinase composed of the regulatory cyclin A subunit and the
catalytic kinase subunit, Cdk2, and its role in cell cycle control is well accepted. There are two
forms of cyclin A. Cyclin A1 is expressed during meiosis and embryonic development as well
as in some cancers while cyclin A2 is expressed in all proliferating cells in adult tissues [48].
This review focuses exclusively on the action of the cyclin A2/Cdk2 complex as the role of
cyclin A1 in steroid receptor function has received little attention. Cyclin A2 appears essential
as knockout of this gene results in embryonic lethality [49]. However, at least from a
developmental perspective, Cdk2 seems redundant as Cdk2−/− mice, although sterile, develop
normally and with only a minor delay in cell cycle kinetics observed [50,51]. Cyclin A levels
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increase during late G1 phase and remain high throughout the S and G2 phases until degradation
occurs during mitosis [52]. The level of Cdk2 remains relatively constant throughout the cell
cycle but its activity is regulated by interaction with its cyclin A partner during S phase as well
as by other regulatory proteins such as cyclin E (which peaks during G1), Cdk activating
kinases, Cdk inhibiting kinases and Cdk inhibitors (for example p21 and p27) [53]. The active
cyclin A/Cdk2 complex subsequently regulates its target proteins via phosphorylation
principally during the S phase of the cell cycle.

3.2. Phosphorylation of PR by cyclin A/Cdk2 and the functional significance of target sites
Cyclin A/Cdk2 was initially found to phosphorylate PR at Ser162, Ser190 and Ser400 in
vitro, sites which are also authentic in vivo targets (Fig. 1) [43,44]. In vitro phosphorylation of
baculovirus PR with [32P]-ATP in combination with an alternative modified tryptic digest
strategy and edman degradation identified additional cyclin A/Cdk2 sites, including Ser25,
Ser213, Thr430, Ser554, and Ser676 [22]. Subsequently, mass spectrometry was used to show
Ser20 and Ser676 as in vivo targets in baculovirus PR expressed in Sf9 cells [22]. The
development of antibodies recognizing specific phosphorylations on PR has facilitated the task
of determining which signaling pathways target PR. An antibody recognizing phospho-PR-
Ser190 has previously been described [54]. As shown in Fig. 3, this residue is an in vivo Cdk2
site, although it is also a substrate for other kinases. In HeLa cells transiently expressing hPRB,
basal phosphorylation of Ser190 was observed and this increased 5.1-fold in cells co-
transfected with plasmids coding for cyclin A and Cdk2. In contrast, hormone dependent
Ser190 phosphorylation was not further enhanced by cyclin A/Cdk2 and may even be reduced.
Thus there are likely multiple kinases that phosphorylate this site. The lower level of hormone
dependently phosphorylated PR observed in the presence of cyclin A/Cdk2 in this experiment
might be due to increased ubiquitin-mediated receptor degradation in response to
phosphorylation in the absence of proteasome inhibitors (see below).

Numerous studies have attempted to find a functional effect of these phosphorylations by site
directed mutagenesis of Ser/Thr targets to alanine, which is unable to be phosphorylated.
Mutation of Ser190, Ser676 as well as a cluster of serine residues just upstream of the DBD
(including Ser549, Ser552, Ser554, Ser558, Ser561) have modest inhibitory effects on PRA
and PRB transcriptional activity measured using transiently transfected receptor and reporter
plasmids that contain one or more consensus progesterone response elements, although the
effects are cell and promoter specific [55]. However mutation of other serines in the region
common to both A and B forms of PR have no effect on ligand dependent transactivation or
DNA binding and PRB mutants lacking phosphorylation sites in the N-terminal B-specific
region have comparable transcriptional activity to the wild type PRB under these conditions
[33,55]. This study included mutation of all known Cdk2 target sites with the exception of
Ser213 and Thr430. Interestingly, an increase in ligand-independent PRB activity is observed
in the presence of a dominant active Cdk2 (in cells expressing low levels of the Cdk2 inhibitor
p27) which was abolished upon mutation of Ser400 to alanine [33,56], suggesting a role for
this residue in ligand-independent PR activity. However in a different study, an increase in
wild type PRA activity in the absence of ligand in cells overexpressing wild type Cdk2 was
not observed [27], therefore the precise effects of Cdk2 on PR activity in the absence of ligand
requires further clarification.

PRs undergo hormone induced degradation which is mediated by the 26S proteasome and this
process is augmented by phosphorylation [29,33,46,57]. The Cdk2 site Ser400 lies within a
consensus motif, known as the destruction box, also found in other proteins (including cyclin
A) which are degraded by the ubiquitin-proteasome pathway [58,59]. In transiently transfected
HeLa cells, ligand induced degradation of PRB is enhanced by overexpression of a dominant
active Cdk2 [33]. PRB with an alanine substitution at position 400 also undergoes ligand
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induced degradation at a similar rate to wild type PRB however when a dominant active Cdk2
is overexpressed in this system, mutation at Ser400 abrogates degradation of ligand-bound PR
and the receptor accumulates. This suggests an important role for Ser400 in regulating the
hormone dependent degradation of PR in the presence of Cdk2 by the proteasome. A further
role for Ser400 phosphorylation in regulating PR nuclear translocation is supported by studies
showing that mutation of Ser400 to alanine results in delayed nuclear translocation following
treatment with R5020 in transiently transfected HeLa cells [33]. Moreover, activated Cdk2
induces nuclear translocation of wild type PR, but not PR mutated at Ser400, suggesting that
phosphorylation of this residue by Cdk2 mediates, at least in part, ligand-independent nuclear
translocation of PR.

3.3. Cyclin A/Cdk2 regulation of PR activity
Studies in our laboratory and others have shown that Cdk2 stimulates agonist dependent PR
activity [27,33,56]. As cyclin A/Cdk2 is an S phase kinase, this is consistent with data showing
that PR is regulated in a cell cycle dependent manner, with PR transcriptional activity peaking
in the S phase [47]. Interestingly, the ability of cyclin A/Cdk2 to increase PR activity is
independent of its ability to phosphorylate PR as mutation of all the Ser/Thr-Pro motifs in PRA
does not prevent coactivation. Instead, PR recruits cyclin A/Cdk2 via direct interaction to the
transcription complex where it can phosphorylate other associated factors leading to increased
transcription. Components of the PR transcription complex that have been shown to be targets
of Cdk2 include SRC-1, histone H1 and CREB-binding protein (CBP). SRC-1 is
phosphorylated in vitro by cyclin A/Cdk2 [27] while histone H1 is phosphorylated by Cdk2
in vitro and in vivo [60] and studies using the Cdk2 inhibitor p21 imply that CBP is also
phosphorylated by Cdk2 [61]. These data suggest that, in addition to the direct effects cyclin
A/Cdk2 has on PR, it also has indirect effects on other proteins which influence PR activity.
This mechanism is in contrast to that by which cyclin A/Cdk2 increases estrogen receptor
activity [62], which appears dependent on Cdk2 phosphorylation at Ser104 and Ser106, as
mutation of these sites abrogates coactivation by cyclin A/Cdk2 [63]. The glucocorticoid
receptor (GR) is also a substrate for cyclin A/Cdk2 [64]. Using yeast strains deficient in the
mammalian homologs of cyclin A (Clb proteins) or Cdk (Cdc28), activity of exogenous rat
GR was diminished compared to wild type strains [64], suggesting that GR activity is dependent
on cyclin/Cdk complexes. Although the specific effect of Cdk2 phosphorylation sites on GR
activity in the presence of cyclin A/Cdk2 has not been investigated, the importance of
phosphorylation for GR function is unclear as mutation of reported sites in human or mouse
GR has led to conflicting results for their effect on transactivation activity [65–67].

The role of Cdk2 in regulating PR phosphorylation and activity has been further investigated
through the use of roscovitine, an inhibitor of Cdk2. Roscovitine is a purine analogue that binds
to the ATP binding pocket of Cdk2 (as well as Cdk1 and Cdk5), preventing phosphate transfer
from ATP to the protein substrate [68]. Roscovitine induces cell cycle arrest, apoptosis and
differentiation and is currently undergoing clinical trials as a cancer therapeutic [69]. We have
found in our laboratory that roscovitine completely abolishes ligand induced PR activity [27].
As roscovitine also inhibits Cdk1 and Cdk5, a siRNA approach was used to specifically knock
down Cdk2, again resulting in a marked reduction in PR activity. These results strongly suggest
that Cdk2 is fundamental to the regulation of PR action. The mechanism by which this occurs
may be explained by the inhibition of SRC-1 recruitment and resulting histone H4 acetylation
at the PR transcription complex in response to roscovitine [27]. An alternative Cdk2 inhibitor
(Cdk2 inhibitor II) has been used to demonstrate that Cdk2 is a key kinase mediating hormone
dependent phosphorylation of PR at Ser400, as the R5020 induced phosphorylation of this site
was almost completely abolished by the inhibitor [33].
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Interestingly, while the PR antagonist RU486 inhibits PR activity alone or in the presence of
PR agonists, we have demonstrated that in the presence of cyclin A/Cdk2 the response of PR
to RU486 is altered, causing it to act as an agonist (Wardell et al, manuscript in preparation).
This change of RU486 to a PR agonist has also been observed in the presence of 8-bromo-
cAMP [31,70–72]. Although the mechanisms for this agonist-antagonist switch are yet to be
elucidated, cyclin A/Cdk2 may, through increased phosphorylation and recruitment of SRC-1
to the PR transcription complex, promote assembly of a coactivator complex rather than the
inactive corepressor complex which is typically formed upon binding of antagonists to
receptors. This observation provides further evidence that cyclin A/Cdk2 has profound effects
on PR activity and may have clinical implications for patients receiving antiprogestin therapies.

3.4. Progestin regulation of cyclins and Cdks
While the above studies demonstrate potent regulation of PR signaling by cyclin A/Cdk2, there
are several studies supporting potential feedback regulation of cyclin A and Cdk2 by PR. It
has been reported that a single dose of natural or synthetic progestin stimulates one round of
the cell cycle in T47D cells but that cells arrest in late G1 of the second cycle and this arrest
is maintained following subsequent doses of progesterone [73,74]. This biphasic response to
progesterone is accompanied by a rise and fall of cyclin A protein and Cdk2 activity as well
as a sequential increase in p21 followed by p27 levels and their association with cyclin/Cdk
complexes. An increase in Cdk2 protein levels in response to progestins is also observed [33]
and experiments using the kinase inhibitor UO126 demonstrated that the Erk 1/2 MAPK
pathway is required for this regulation [56]. Moreover, progesterone regulates transcription of
the Cdk2 inhibitor p21 [16]. Progestin regulation of cell cycle molecules, particularly Cdk2
which enhances PR activity, may represent an added mechanism by which progestins maintain
PR activation and further support a close functional association between PR and molecules
involved in cell cycle control.

4. Concluding remarks
While recent studies have shown that Cdk2 is not essential in a developmental context, the
studies presented here provide strong evidence for the importance of Cdk2 in the regulation of
PR signaling pathways. Cdk2 coactivates PR via a mechanism that involves direct
phosphorylation of a fundamental component of the PR transcription complex, the p160
coactivator SRC-1 [27]. Cdk2 also phosphorylates PR at eight Ser/Thr-Pro motifs (Fig 1),
although this does not appear to influence PR activity in the presence of Cdk2. Despite the
number of phosphorylation sites identified and intensive efforts to define their functional
significance, little effect of these sites (perhaps with the exception of Ser400) on PR function
in the presence or absence of Cdk2 has been observed. It has been proposed that the use of
transient overexpression systems, which have been employed in many studies, may not be
optimal for detecting functional changes upon mutation of phosphorylation targets, and that
the use of stably expressed mutant PRs may be more informative. Using this approach, a role
for the MAPK target Ser294 in ligand-induced ubiquitin mediated PR degradation [29,46] and
ligand independent EGF induced nuclear translocation of PR [28,75] has been demonstrated
using cells stably expressing a PR-S294A mutant. Thus the generation of cell lines stably
expressing PRs with mutations in other Cdk2 sites will likely enable a more thorough analysis
of the functional consequences of PR phosphorylation. Moreover, most functional studies to
date have been restricted to systems using transiently transfected reporters with promoters that
contain multiple progestin response elements. These promoters don’t require the extensive
chromatin remodeling of endogenous targets nor do they require binding and interaction with
other site specific transcription factors to induce transcription. Thus an analysis of endogenous
gene expression likely will reveal additional functions for the phosphorylation sites.
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Cdk2 partners two cyclins, cyclin A and cyclin E, and it is currently unknown which of these
exerts a greater influence on PR signaling. Studies from the Weigel lab [27] have overexpressed
Cdk2 in conjunction with cyclin A to show that this complex coactivates PR while the Lange
lab [33] demonstrated increased PR activity in cells only overexpressing a dominant active
Cdk2 mutant. Endogenous cyclin A and E partners in the cell lines used in these experiments
can interact with Cdk2 and as such the possibility of both cyclins contributing to the effect of
Cdk2 cannot be excluded. A mutant cyclin A that cannot bind to Cdk2 does not enhance PR
activity [27], implying that the interaction between cyclin A and Cdk2 is essential for
coactivation. However, cyclin E may potentially interact instead with Cdk2 and enable it to
continue affecting PR in vivo. The observation that PR activity peaks during S phase, and not
during G1 when cyclin E levels peak, may suggest that cyclin A is the predominant cyclin in
regulating PR activity. Experiments using siRNA against cyclin A and cyclin E are required
to confirm their individual effects. Furthermore, the abilities of cyclin A2 versus cyclin A1 to
regulate PR activity are unknown. A role for cyclin A1 in regulating the stimulatory effect of
Cdk2 on PR activity may be of significance in the subset of PR positive breast and ovarian
cancers that overexpress cyclin A1.

The indirect effects of cyclin A/Cdk2 on PR function are not completely understood. In the
classical model of PR action, PR binds to the regulatory regions of target genes and recruits a
specific set of coactivator molecules which operate together to stimulate transcription. Cyclin
A/Cdk2 may be recruited to the PR early in this process and direct further recruitment of other
components of the transcription complex through its kinase activity. This is suggested firstly
by studies where roscovitine inhibited recruitment of SRC-1 and histone acetylation but not
PR or cyclin A recruitment and secondly by the increased interaction between PR and SRC-1
in the presence of active cyclin A/Cdk2 [27]. It was proposed that recruitment of cyclin A/
Cdk2 increases kinase activity in the PR transcription complex and that this can influence the
activity of other associated factors. Indeed, cyclin A/Cdk2 enhances the intrinsic activity of
SRC-1 [27]. Presumably this occurs via direct phosphorylation of SRC-1 by cyclin A/Cdk2
and identification of the targeted sites in SRC-1 may reveal the mechanisms involved.
Moreover, Cdk2 may also have the potential to phosphorylate other proteins in the PR
transcription complex although alternative targets are yet to be confirmed. Taken together, the
direct consequences of Cdk2 phosphorylation of PR and the indirect effects mediated by its
phosphorylation of other associated factors imply a multifaceted role for Cdk2 in the regulation
of PR transcriptional activity.
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Fig 1.
Schematic showing major functional domains of the human PR with phosphorylation sites
identified. Kinases or activators of kinases that have been reported to cause phosphorylation
in vitro or in vivo are indicated (A/2 = cyclin A/Cdk2, CK = casein kinase II, MAPK = mitogen
activated protein kinase, EGF = epidermal growth factor, HER = heregulin, PMA = phorbol
myristate acetate, IGF = insulin like growth factor, S = fetal bovine serum). Sites confirmed
as authentic in vivo targets are underlined. Asterisks denote sites identified as strongly hormone
dependent. The remaining sites are basally phosphorylated at least to some extent in the absence
of hormone, or their hormone dependence has not yet been determined.
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Fig 2.
Model for progesterone receptor (PR) genomic and non-genomic actions. Progesterone
diffuses across the cell membrane and binds to the PR in the cytoplasm of target cells, inducing
conformational changes in the receptor, dissociation of molecular chaperones (including heat
shock proteins (HSP), p23 and immunophilins (I)), dimerization and nuclear translocation. In
the classical mechanism of action, the PR dimer binds to specific DNA response elements
situated in the regulatory regions of target genes and recruits coactivators, such as p160s,
histone acetyltransferases and the cyclin A/Cdk2 complex, and other components of the general
transcription machinery enabling RNA synthesis. PRs also regulate transcriptional activity of
other transcription factors (TFs) through protein-protein interactions and coactivator
recruitment rather than direct DNA binding. Moreover, progestins activate kinase cascades
such as Src and MAPK, which leads to phosphorylation of a variety of transcription factors.
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Fig 3.
PR phosphorylation by cyclin A/Cdk2. HeLa cells were transiently transfected with an
expression plasmid for PRB, cyclin A and Cdk2 as shown and 24 hours later cells were treated
with R5020 (10 nM) or vehicle (0.1% ethanol). Cell lysates were harvested after a further 24
hours and 30μg was electrophoresed on an SDS-PAGE gel. Proteins were transferred to
nitrocellulose and blotted for phosphorylated PR-190 or total PR (upper panel). Band intensity
was measured by densitometry, corrected for background and expressed graphically as p190/
total PR signal relative to the empty vector vehicle treated control (lower panel). Materials and
methods are as previously described [27,47].
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