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Abstract

Background: Simple sequence repeat (SSR) markers are highly informative and widely used for genetic
and breeding studies in several plant species. They are used for cultivar identification, variety protection,
as anchor markers in genetic mapping, and in marker-assisted breeding. Currently, a limited number of SSR
markers are publicly available for perennial ryegrass (Lolium perenne). We report on the exploitation of a
comprehensive EST collection in L. perenne for SSR identification. The objectives of this study were 1) to
analyse the frequency, type, and distribution of SSR motifs in ESTs derived from three genotypes of L.
perenne, 2) to perform a comparative analysis of SSR motif polymorphisms between allelic sequences, 3)
to conduct a comparative analysis of SSR motif polymorphisms between orthologous sequences of L.
perenne, Festuca arundinacea, Brachypodium distachyon, and O. sativa, 4) to identify functionally associated
EST-SSR markers for application in comparative genomics and breeding.

Results: From 25,744 ESTs, representing 8.53 megabases of nucleotide information from three genotypes
of L. perenne, 1,458 ESTs (5.7%) contained one or more SSRs. Of these SSRs, 955 (3.7%) were non-
redundant. Tri-nucleotide repeats were the most abundant type of repeats followed by di- and tetra-
nucleotide repeats. The EST-SSRs from the three genotypes were analysed for allelic- and/or genotypic
SSR motif polymorphisms. Most of the SSR motifs (97.7%) showed no polymorphisms, whereas 22 EST-
SSRs showed allelic- and/or genotypic polymorphisms. All polymorphisms identified were changes in the
number of repeat units. Comparative analysis of the L. perenne EST-SSRs with sequences of Festuca
arundinacea, Brachypodium distachyon, and Oryza sativa identified 19 clusters of orthologous sequences
between these four species. Analysis of the clusters showed that the SSR motif generally is conserved in
the closely related species F. arundinacea, but often differs in length of the SSR motif. In contrast, SSR motifs
are often lost in the more distant related species B. distachyon and O. sativa.

Conclusion: The results indicate that the L. perenne EST-SSR markers are a valuable resource for genetic
mapping, as well as evaluation of co-location between QTLs and functionally associated markers.
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Background

Lolium perenne is one of the major grass species used for
turf and forage in the temperate regions of the world. It
belongs to the grass family Poaceae. L. perenne (2n = 2x =
14) is taxonomically related to many important plant spe-
cies in the Poaceae family, including rice (Oryza sativa),
wheat (Triticum aestivum L.), barley (Hordeum vulgare L.),
maize (Zea mays L.), and sorghum (Sorgum bicolor L.) [1].

Several anonymous molecular markers have been devel-
oped for L. perenne, including restriction fragment length
polymorphism and random amplified polymorphic DNA
[2,3], amplified fragment length polymorphism [4], as
well as SSR markers [5,6]. More recently, gene-tagged
markers [7] have been developed and used to construct
genetic linkage maps [8-10]. Although there have been
several reports on L. perenne SSR marker development,
most of these markers are currently not publicly available
[8,9]. Furthermore, synteny to other Poaceae species is
based on a limited number of anchor markers [11], rein-
forcing the need for more publicly available gene-derived
EST-SSR markers for L. perenne.

Simple sequence repeats (SSRs) have become one of the
most widely used molecular marker systems in plant
genetics and breeding. They are widely used for genetic
diversity assessment, variety protection, molecular map-
ping, and marker assisted selection, providing an efficient
tool to link phenotypic and genotypic variation [12-14].

SSRs are tandem repeated sequences comprised of mono-
, di-, tri-, tetra-, penta-, or hexa-nucleotide units [15,16].
SSRs are ubiquitous in prokaryotes and eukaryotes and
can be found both in coding- and non-coding regions.
They are ideal as molecular markers because of the co-
dominant inheritance, relative abundance, multi-allelic
nature, extensive genome coverage, high reproducibility,
and simple detection [12].

The number of SSR motifs at a locus is variable, because
SSRs experience a high rate of reversible length-altering
mutations by unequal crossing over and replication slip-
page, where the transient dissociation of the replicating
DNA strand is followed by misaligned re-association
[17,18]. SSRs are among the most variable DNA
sequences in the genome [19], and the mutation rate and
type depends mainly on the number of repeat motifs [20].
However, the mutation rates differ among loci and among
alleles, and also between species [21]. The resulting muta-
tions, which typically add or subtract one or a few repeat
motifs, can be reversed by a subsequent mutation at the
same or any other point in the repeat motif [22]. In addi-
tion, point mutations in a repeat motif may result in an
imperfect repeat motif, that in turn can be eliminated and
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converted back to a perfect motif again by replication slip-
page, which tends to eliminate imperfect repeats [22].

Whereas earlier studies on SSR marker development pri-
marily utilized anonymous DNA fragments containing
SSRs isolated from genomic libraries, more recent studies
have used computational methods to detect SSRs in
sequence data generated from large-scale EST sequencing
projects. About 1 to 5% of ESTs from different plant spe-
cies have been found to contain SSRs suitable for marker
development [23]. EST-SSR markers have been developed
for a number of plant species, including grape [24], rice
[25], durum wheat [26], rye [27], barley [28], barrel medic
[29], ryegrass [8], wheat [30], and cotton [31]. EST-SSR
markers are gene-tagged markers directly associated with
an expressed gene and, thus, completely linked with puta-
tive qualitative or quantitative trait locus alleles. EST-SSR
markers are, therefore, superior and more informative
compared to anonymous markers [7].

The conservation of grass genomes has been comprehen-
sively documented, and comparative genomics has
become an important strategy to extend genetic informa-
tion from model species to species with a more complex
genome, as well as between related species with complex
genomes [11,32]. As EST-SSR markers are derived from
expressed genes, they are more conserved and have a
higher level of transferability to related species than anon-
ymous DNA markers. They are, therefore, useful as anchor
markers for comparative mapping across species, compar-
ative genomics, and evolutionary studies
[23,24,28,29,33,34]. However, the conserved nature of
EST-SSRs may also limit their degree of polymorphism.
The transferability of SSR loci across species within a
genus has in several studies been above 50% [28,29,35-
37], whereas the transferability of SSR loci across genera
was poor [28,35,38,39].

We report on the exploitation of a comprehensive EST col-
lection in L. perenne for SSR identification. The objectives
of this study were 1) to analyse the frequency, type, and
distribution of SSR motifs in ESTs derived from three gen-
otypes of L. perenne, 2) to perform a comparative analysis
of SSR motif polymorphisms between allelic sequences,
3) to conduct a comparative analysis of SSR motif poly-
morphisms between orthologous sequences of L. perenne,
Festuca arundinacea, Brachypodium distachyon, and O. sativa
4) to identify functionally associated EST-SSR markers for
application in comparative genomics and breeding.

Results

Identification and characterization of EST-SSRs

A total of 31,379 single-pass sequencing reactions on ran-
dom L. perenne cDNA clones from 13 c¢DNA libraries
resulted in 25,744 high-quality ESTs (Table 1). Of these
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ESTs, 9,177 (3.85 Mb) were derived from the genotype
NV#20F1-30, 4,394 (1.75Mb) from the genotype
NV#20F1-39, and 12,173 (8,53 Mb) from the genotype F6
(Table 2). The 25,744 ESTs assembled into 3,195 tentative
consensus sequences and 6,170 singletons, thus repre-
senting 9,365 unique sequences.

The 25,744 ESTs from the three genotypes of L. perenne
were screened for SSRs using the MISA software [28]. As
shown in Table 2, a total of 1,458 redundant ESTs con-
taining an SSR were identified from the 25,744 ESTs. Thus
5.66% ESTs contain at least one SSR. Cluster analysis of
the EST-SSRs yielded a final number of 955 (3.71%) non-
redundant EST-SSRs. The percentage of redundant ESTs
containing an SSR of the two genotypes NV#20F1-30 and
NV#20F1-39 was 3.56 and 3.66, respectively, whereas the
percentage of ESTs containing an SSR of the genotype F6
was 9.97%. On average, approximately one SSR was
found per 10 kb in the genotypes NV#20F1-30 and
NV#20F1-39, whereas one SSR was found per 2.7 kb in
the genotype F6, corresponding to a total of approxi-
mately 26 ESTs per SSR for the two genotypes NV#20F1-
30 and NV#20F1-39, and 11 ESTs per SSR for the geno-
type F6. A total of 133 ESTs had more than one SSR motif,
96 of which were considered the compound type accord-
ing to the predefined criteria (Table 2).

The occurrences of different repeat unit size SSRs of the
ESTs from the NV#20F1-30 genotype were 16.4% di-,
67.1% tri-, 15.3% tetra-, and 1.1% penta-repeat units. For
the NV#20F1-39 genotype the occurrences were 25.9% di-
, 58.6% tri-, 14.4% tetra-, 0.6% penta-, and 0.6% hexa-
repeat units, and for the F6 genotype the occurrences were
8.6% di-, 85.1% tri-, 4.4% tetra-, 1.2 % penta-, and 0.7%
hexa-repeat units.

In the datasets from the genotypes NV#20F1-30 and F6,
there were significantly (X2; p < 0.05) more tri-repeat than
di- and tetra- repeat SSRs, while in the dataset from the
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genotype NV#20F1-39, there were significantly (X% p <
0.05) more di- and tri- than tetra- repeat SSRs (Figure 1).
No significant differences (X% p < 0.05) was observed
between genotypes with respect to tri- and tetra- repeat
SSRs, while the EST-SSRs derived from the genotype
NV#20F1-39 contained significantly (X2; p < 0.05) more
di-repeat SSRs compared to the EST-SSRs derived from the
other two genotypes. The frequency of the SSR motifs (any
two complementary sequences considered one motif) are
listed in Table 3 for the EST-SSRs from NV#20F1-30,
NV#20F1-39, and F6, and in Table 4 for the combined
dataset.

In some cases, the frequency of SSR motifs for EST-SSRs
varied significantly (X2; p < 0.05) between the three gen-
otypes (Table 3). In the genotype F6, the SSR motif CCG/
CGG was identified in 41.8% of the EST-SSRs but only in
1.4% and 1.2% of the respective EST-SSRs in the geno-
types NV#20F1-30 and NV#20F1-39.

In silico anadlysis of allelic and genotypic SSR motif polymorphisms
A total of 521 contigs containing an SSR motif were iden-
tified from the 3,195 L. perenne contigs. The individual
sequences within each contig were analysed for SSRs, and
the results of the SSR searches were subsequently com-
pared within each contig, to identify allelic- and/or geno-
typic polymorphisms at the SSR motif. A total of 22
contigs containing EST sequences with either allelic- and/
or genotypic SSR polymorphisms were identified, corre-
sponding to 2.3% of the non-redundant EST-SSR contigs
(Table 5).

In all 22 contigs, the SSR motif polymorphisms identified
were changes in the number of repeat units, while no con-
tigs were identified with changes in the repeat type. Most
of the SSR motif polymorphisms were one to two repeat
unit changes, and the maximum number of repeat unit
changes observed were three (Table 5).

Table I: Plant material used for cDNA library construction in Lolium perenne, and number of reads from each cDNA library.

cDNA library name Plant material Genotype Number of reads Number of Phred > 20 reads
rgl Ethiolated leaves NV#20F1-30 4242 3,857
rg2 Leaves from nitrogen depleted plants NV#20F -39 346 322
rg3 Leaves from cold stressed plants NV#20F1-39 4,069 3,546
rg4 Meristem NV#20F -39 325 307
rg5 Stem NV#20FI1-30 1,529 1,474
rgb Leaves from drought stressed plants NV#20FI1-30 4,014 3,667
rg7 Senescing leaves NV#20FI1-30 330 303
r Root Fé6 7,004 6,870
p Pollen Fé 425 335
ve Vegetative shoot Fé6 2,999 2,842
vr Vernalized shoot Fé6 490 423
sa/sb Seedling Fé6 2,805 2,435
gsalgsb Germinating seeds Fé6 2,801 2,519
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Table 2: Summary of EST-SSR searches for the Lolium perenne genotypes NV#20F1-30, NV#20F -39, and Fé, and for the combined

dataset.
NV#20F1-30 NV#20F1-39 F6 Combined

Total number of sequences examined: 9,177 4,394 12,173 25,744
Total size of examined sequences (bp): 3,846,707 1,751,833 2,932,559 8,531,099
Total number of identified SSRs: 353 174 1,074 1,601
Number of SSR containing sequences: 327 161 970 1,458
Number of sequences containing more than | SSR: 25 13 95 133
Number of SSRs present in compound formation: 15 6 75 96
Repeat types
Di-nucleotide type: 58 45 92 195
Tri-nucleotide type: 237 102 914 1,253
Tetra-nucleotide type: 54 25 47 126
Penta-nucleotide type: 4 | 13 18
Hexa-nucleotide type: 0 | 8 9
Number of ESTs per SSR: 26.0 253 1.3 l6.1
Kb sequence per SSR: 10.9 10.1 2.7 5.3

A total number of two and one allelic SSR polymorphism
were identified in contigs containing EST sequences
derived from the genotype NV#20F1-30 and NV#20F1-
39, respectively, while fifteen allelic SSR polymorphisms
were identified in contigs containing EST sequences
derived from the genotype F6 (Table 5). Comparing SSR
motif polymorphisms between NV#20F1-30 and
NV#20F1-39 identified two contigs containing genotypic
SSR motif polymorphisms. Contig 1520 contains both
genotypic and allelic SSR motif polymorphisms, with gen-
otypic SSR motif polymorphism between the genotypes
NV#20F1-30 and NV#20F1-39, as well as allelic SSR motif
polymorphism between alleles derived from the genotype
NV#20F1-39. Contig 0700 contains one allele from each
of the three genotypes, with a genotypic SSR motif poly-
morphism in the allele derived from the genotype
NV#20F1-39, while no genotypic SSR motif polymor-
phisms were identified in alleles derived from the other
two genotypes (Table 5).

In silico analysis of the conservation of SSR motifs
between four species of the Poaceae family

Molecular markers designed to the transcribed region of
the genome are often transferable among related species,
because gene sequences remain highly conserved during
evolution. Molecular markers designed to the transcribed
region of the genome can thus be used to construct com-
parative genetic maps, facilitating the study of synteny
conservation, and co-linearity among related genomes.

An in silico approach was used to validate the L. perenne
EST-SSRs as molecular markers in comparative genetic
studies. The non-redundant dataset of 955 L. perenne EST
sequences containing an SSR, were blasted using BlastN
(e-value 1.00E-10) against 41,834 F. arundinacea EST
sequences, 3,818 B. distachyon contigs, and 32,132 full-
length O. sativa cDNA sequences, to identify the ortholo-

gous sequences of these species. The blast searches
resulted in 833, 540, and 26 orthologous sequences of F.
arundinacea, B. distachyon, and O. sativa, respectively. A
dataset of 19 clusters of sequences containing orthologous
sequences from all four species was identified and aligned
using ClustalW [40]. All alignments were analysed for SSR
motif polymorphisms between the four species (Table 6).

In six of the 19 clusters (31%), there were no polymor-
phisms at the SSR motif between the sequences of the two
closely related species L. perenne and F. arundinacea. The
most frequent SSR motif polymorphisms between these
two species were changes in the number of repeat units
corresponding to 21% of the clusters. However, nucle-
otide substitutions, additions, and complete loss of SSR
motifs were also observed (Table 6). None of the SSR
motifs identified in L. perenne was completely conserved
in B. distachyon. In six clusters (31%), the SSR motif was
completely lost in B. distachyon, and in four clusters (21%)
the B. distachyon SSR motif had fewer repeat units. In these
four clusters, the B. distachyon SSR motif contained two to
three fewer SSR motif units, compared to the correspond-
ing L. perenne SSR motif. Nucleotide substitutions and
additions were observed in five (26%) of the nineteen
compared orthologous sequences (Table 6). None of the
SSR motifs identified in L. perenne was completely con-
served in O. sativa. In eight clusters (42%), the SSR motif
was completely lost in O. sativa, and in six clusters the O.
sativa SSR motif had fewer repeat units compared to the
corresponding L. perenne SSR motif. However, in one clus-
ter the O. sativa SSR motif had more repeat units com-
pared to the corresponding L. perenne SSR motif (Table 6).

Discussion

The present study was designed to create an SSR database
of the transcribed region of the L. perenne genome by iden-
tification of SSRs in a dataset consisting of 25,744 ESTs
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Table 3: The frequency of different types of repeats in redundant EST-SSR from the genotypes NV#20F1-30, NV#20F1-39, and Fé6.

Repeat motif
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Table 4: The frequency of different types of repeats in redundant
EST-SSRs from the three genotypes NV#20F1-30, NV#20F1-39,
and Fé.

Repeat motif Number of repeats Total %
4 5 6 7 8 9 10 >10

AC/GT - - 39 7 6 | 2 56 3.50
AG/CT - - 33 19 9 5 12 6 84 5.25
AT/AT - - 32 13 3 48 3.00
CG/CG - - 3 2 2 7 0.44
AAC/GTT 492 2 44 2.75
AAG/CTT 82 25 9 | 17 731
AAT/ATT 33 2 1 36 225
ACC/GGT 6l 13 6 2 | 83 5.18
ACG/CGT 719 2 | 83 5.18
ACT/AGT 215 2 28 1.75
AGC/GCT 104 26 9 | | 141 8.8l
AGG/CCT 128 15 5 | 2 3 154 9.62
ATC/GAT 70 32 3 4 [ 1 6.93
CCGI/CGG 309 8 32 I5 7 5 2 456 2848
AAAG/CTTT 4 | | 6 0.37
AAGG/CCTT 8 | 9 0.56
AATG/CATT 12 12 0.75
ACGC/GCGT | | 0.06
ACGG/CCGT

ACGT/ACGT | | 0.06
ACTC/IGAGT 15 15 0.94
AGAT/ATCT 27 27 1.69
AGCC/GGCT 5 5 031
AGCG/CGCT | | 2 0.12
AGCT/AGCT 5 5 031
AGGG/CCCT 6 6 0.37
AGGT/ACCT

CCCG/CGGG 2 2 0.12
CCGG/CCGG 2 2 0.12
CATC/GATG 3 3 0.19
CTGC/GCAG | | 0.06
GATC/GATC 9 9 0.56
GCAT/ATGC | | 0.06
AACC/GGTT | | 2 0.12
AGTG/CACT | | 0.06
ATAC/GTAT 3 3 0.19
CCGA/TCGG 5 5 031
GATG/CATC | | 2 0.12
TATC/GATA | 0.06
TGTA/TACA 2 3 5 031
AAGAG/CTCTT | | 0.06
TCCCA/TCCCA | | 0.06
TCGTC/GACGA 3 3 0.19
AGAGG/CCTCT 3 3 0.19
ATCGC/GCGAT | | 0.06
CCGCT/AGCGG | | 0.06
GCGAG/CTCGC | | 0.06
TGTCG/CGACA 3 3 0.19
CATGG/CCATG | | 0.06
GATCT/AGATC | | 0.06
GTGTT/AACAC | I 0.06
TGTGG/CCACA | | 0.06
AGAACA/TGTTCT | | 0.06
ACCTCC/GGAGGT 2 2 0.12
ACTCCT/AGGAGT | | 0.06
AGAGGC/GCCTCT | I 0.06
AGAGGG/CCCTCT | | 0.06
AGAGGT/ACCTCT | | 0.06
AGCTCC/GGAGCT | | 0.06
GAAGAG/CTCTTC | I 0.06
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Distribution of different repeat type classes for EST-SSRs of
the Lolium perenne genotypes NV#20F1-30, NV#20F[-39,
and Fé.

from three different genotypes. Random sequencing of
cDNA libraries leads to a high proportion of redundant
ESTs. In this study, both the redundant and non-redun-
dant dataset of EST-SSRs were included in the analysis.
The redundant EST-SSRs were used to characterize the fre-
quency of SSR motifs and to compare SSR motif polymor-
phisms between three genotypes of L. perenne, while the
non-redundant dataset was used to characterize the type
and distribution of EST-SSRs in the transcribed region of
the L. perenne genome, and for a cross-species comparison
of SSR polymorphisms within four species of the Poaceae
family.

A total number of 1,458 redundant and 955 non-redun-
dant SSRs were identified, corresponding to 5.66 and
3.71% of redundant and non-redundant ESTs, respec-
tively. Preliminary results exemplified in Figure 2 indicate
that some of the EST-SSRs identified in this study are pol-
ymorphic in the mapping population VinA [6] and, thus,
can be used for marker development, demonstrating that
L. perenne ESTs are a valuable resource for SSR marker
development. The transcribed region of the genome of the
genotype F6 contains a significantly higher frequency of
SSRs. Approximately 10% of the ESTs from the genotype
F6 contain an SSR, compared to approximately 3.6% in
the other two genotypes, indicating a large genotypic var-
iation in the frequency of SSR motifs. To our knowledge,
this is the first report where the frequency of SSRs in ESTs
from different genotypes within one plant species has
been compared. The results suggest that it would be rea-
sonable to generate a small number of ESTs from different
genotypes, to decide which one is the best for EST-SSR
development.
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Table 5: Comparative analysis of EST-SSRs between the genotypes NV#20F 1-30, NV#20F -39, and Fé.

NV#20F1-30 NV#20F1-39 Fé
Allele 1 Allele 2 Allele 1 Allele 2 Allele | Allele 2
Contig 0576 n.d. n.d. n.d. n.d. (TC)bccctegagtegagtectce  (TC)4ccctcgagtegagtect
cggcgagtctct (GCG)5 cccggegagtctet (GCG)7
Contig 0395 n.d. n.d. n.d. n.d. (GCC)5 (GCC)4
Contig 0850 n.d. n.d. n.d. n.d. (GAG)I10 (GAG)9
Contig 1068 n.d. n.d. n.d. n.d. (AGC)4 (AGC)5
Contig 2174 n.d. n.d. n.d. n.d. (CGQ)7 (CGC)9
Contig 2043 n.d. n.d. n.d. n.d. (TGC)6 (TGC)4
Contig 0538 n.d. n.d. n.d. n.d. (GGT)4 (GGT)3
Contig 2873 n.d. n.d. n.d. n.d. (CCT)5 (CCT)4
Contig 2944 n.d. n.d. n.d. n.d. (GGC)4 (GGC)3
Contig 0131 n.d. n.d. n.d. n.d. (GGC)4 (GGC)3
Contig 0656 n.d. n.d. n.d. n.d. (GA) | I tggcgtcggcagcaacg  (GA)8tagagatggegtcggea
gegacge (CGG)4 gcagcggegacgc(CGG)4
Contig 3185 n.d. n.d. n.d. n.d. (CGC)5 (CGQO)4
Contig 2810 n.d. n.d. n.d. n.d. (CCT)Atccctetecteteccect  (CCT)4tcectctecectecc
(CGQ)6 cct (CGC)5
Contig 2542 n.d. n.d. n.d. n.d. (CTC)4 (CTC)6
Contig 1034 n.d. n.d. n.d. n.d. (CGC)4 (CGQ)5
Contig 3128 n.d. n.d. (GA)10 (GA)9 n.d. n.d.
Contig 2765 (ATGC)4ctatgcatggatgtgtg (ATGC)4ctatgcatggatgtgt n.d. n.d. n.d. n.d.
gaagctcctttgeatgtac(AT)6  ggaagctcctttgcatgtac(AT)8
Contig 0720 (CTG)5 (CTG)4 n.d. n.d. nd. nd.
Contig 2888 (TGTA)7 n.d. (TGTA)S n.d. n.d. n.d.
Contig 0855 (TA)8 n.d. (TA)7 n.d. n.d. n.d.
Contig 1520 (TGA)S5 n.d. (TGA)6  (TGA)7 nd. nd.
Contig 0700 (ATG)5 n.d. (ATG)4 n.d. (ATG)5 n.d.

n.d: No allelic sequence present in the EST collection.

However, the differences observed in the frequencies of
SSR motifs might not only be genotypic differences, but
also be due to different cDNA libraries established for the
three genotypes, because the composition of expressed
genes is likely differing between the thirteen cDNA librar-
ies selected for EST development. NV#20F1-30 and
NV#20F1-39 are full-sibs [6], and most of the differences
in SSR motif frequencies between these two genotypes
can, therefore, be attributed to differentially expressed
genes in the different cDNA libraries selected for EST
development. Comparing the frequencies of SSR motifs in
ESTs developed from four cDNA libraries of NV#20F1-30
with three libraries of NV#20F1-39 revealed no significant
differences in frequencies of SSR motifs between these two
genotypes. Thus, the variation in the frequency of SSR
motifs can most likely be attributed to genotypic differ-
ences between F6, and NV#20F1-30 and NV#20F1-39.
However, because most of the NV#20F1-30 and
NV#20F1-39 ESTs are from leaf cDNA libraries, whereas
the majority of ESTs from F6 comes from a root cDNA
library, still the possibility cannot be ruled out com-
pletely, that the root cDNA library and other cDNA librar-
ies prepared from the genotype F6 contains more SSRs.

The average frequency of 3.71% non-redundant SSRs in
the transcribed region of the L. perenne genome is within
the same range as previously reported for other plant spe-
cies [14,23,41-43]. However, caution should be exerted
when SSRs frequencies are compared between different
plant species, because of differences in the SSR search
parameters.

Approximately 96% of all SSRs analysed were shorter than
21 bp, indicating that the length of SSR motifs in the tran-
scribed region of the L. perenne genome are size-restricted.
In addition, 6 bp di-repeats comprise 40 to 64% of the di-
repeats in the three genotypes, indicating that di-repeats,
which do not perturb the open reading frame are pre-
ferred over others. The expansion of SSR repeats in tran-
scribed regions of the genome is limited by functional and
evolutionary constraints [44,45], because longer repeats
have higher mutation rates and are, thus, less stable
[20,46]. Short SSRs are probably generated by random
mutations and then expanded by DNA polymerase slip-
page. Thus, the base composition of a sequence that pre-
cedes the evolution of SSRs is expected to influence SSR
density [47,48]. The higher frequency of SSRs in the tran-
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Table 6: Comparative analysis of SSRs motif polymorphisms between Lolium perenne, Festuca arundinacea, Brachypodium distachyon,
and Oryza sativa. The cross-species comparison of SSR motif polymorphisms was performed as described in Methods.

Lolium perenne  LoliumPerenne Festuca Festuca Brachypodium distachyon Brachypodium Oryza sativa Oryza sativa SSR
sequence SSR motif arundinacea arundinacea accession no. distachyon SSR accession no. motif
name accession no. SSR motif motif
gsa_002c_hl| (ACC)6 DT687024 (ACC)IAGC BDESTOIPI_Contigd330 No sequence at SSR AKO058436 No SSR motif
(ACC)2 motif
gsa_002d_gl0 (CAG)4 DT696591 No SSR motif BDESTOIPI_Contig3728 No SSR motif AK103926 No SSR motif
gsa_004b_a03 (GCG)4 DT706499 (GCG)4 BDESTOIPI_Contig3390 No SSR motif AK058218 No SSR motif
gsa_005a_el2 (CCG)4 DT703561 (CCG)4 BDESTOIPI_Contig3040 (CCG)I AK058256 (CCG)2CG
(CCG)l
gsa_005c_d09 (GTC)4 DT706693 (GTC)4 BDESTOIPI_Contig3222 No SSR motif AK058745 No SSR motif
gsa_005d_h08 (CCG)4 DT680895 (CCG)ICA BDESTOIPI_Contig3684 No SSR motif AK058262 (CCG)IC(CCq)!
(CCGQ)I
gsa_006c_d05 (GCCO)5 DT702323 (GCC)3 BDESTOIPI_Contig3138 (GCC)2GGC AK103918 (GCC)4
(GCO)I
gsa_007c_g07 (TCC)4 DTé679877 (TCC)2 BDESTOIPI_Contig3812 (TCO)I AKO058319 No SSR motif
gsb_001a_g04 (TCC)4 DT693705 (TCC)4 BDESTOIPI_Contig2531 (TCC)ICC (TCC)3 AKO058266 (TCC)3
r_006d_e02 (CCG)4 DT714248 No sequence at BDESTOIPI_Contig2672 (CCG)2TCG AKO058319 No SSR motif
SSR motif (CCG)4
rgl_005a_h06 (CTAT)4 DT703817 (CTAT)4 BDESTOIPI_Contig3709 (CTAT)I AK058206 (CTAT)I
rgl_010d_bl2 (CCGA)4 DT711949 (CCGA)3 DV479746 No SSR motif AK099825 (CCGA)I
rg3_008b_el0 (CCGA)4 DT696572 (CCGA)3 BDESTOIPI_Contig3759 No SSR motif AK099825 (CCGA)I
rg6_009d_f05 (GAT)4 DT704991 (GAT)4 BDESTOIPI_ Contig3531 No sequence at SSR AKO073601 (GAT)3
motif
sb_004a_b07 (GCA)4 DTé681698 (GCA)ICGAGG BDESTOIPI_Contig3777 (GCA)2 AK058207 No SSR motif
(GCA)I
ve_006d_h08 (CGQ)4 DT714632 No sequence at DV488951 No sequence at SSR AKO71185 (CGQC)2AGC
SSR motif motif (CGO)I
ve_007d_h07 (CAC)6 DT708139 No SSR motif BDESTOIPI_ Contig3106 (ACC)2GCCGGC AKI103919 No SSR motif
C(ACQ)I
vr_001c_h04 (CGC)4 DT685847 (CGQ)IGCCC BDESTOIPI_ Contigd404  No sequence at SSR AK058248 (CGC)8
(CGQO)I motif
vr_002a_c03 (TGG)4TGCTG CK802951 (TGG)4TGCTG BDESTOIPI_ Contig3491 (TGG)ITGCTCCT AK058240 (TGG)3TGCTCCA
CCC (CTG)4 CCC(CTG)4 GCTG(CTG)4 GTTG(CTG)4

n.d: No allelic sequence present in the EST collection.

scribed region of the genotype F6 could indicate, that the
genome of this genotype is more prone to mutations and/
or DNA polymerase slippage compared to the genome of
the other two genotypes. This indicates that there might
be genotype specific cellular factors that interact with SSR
motifs and play an important role in generating short tan-
dem repeats [49].

Previous studies have shown that tri-nucleotide repeats
predominate in coding regions of plant genomes [12,50],
as well as in other genomes of higher eukaryotic organ-
isms [45,51,52], because expansions or deletions in cod-
ing regions can be tolerated for tri- and hexa-nucleotide
unit repeats, which do not perturb reading frames [53]. In
L. perenne, the most common SSR repeat units were also
found to be tri-nucleotide repeats, constituting between
59 and 85% of the repeats in the three genotypes included
in this study, while di- and tetra-nucleotide units consti-
tute the majority of the remaining motifs. Only a few
penta- and hexa-nucleotide repeat units were identified. A
wide variety of tri-nucleotide repeat units were repre-
sented at high percentages, however, the abundance of the
different types of repeat units differed, especially between
the genotype F6 and the two other genotypes. The repeat
motif (CCG/CGG)n was highly represented in 42% of
EST-SSRs from the genotype F6, while it was represented

at a low frequency of approximately 1% in the other two
genotypes.

In the two genotypes NV#20F1-30 and NV#20F1-39 the
most abundant repeat encodes for the amino acid threo-
nine, while the most abundant repeat in the genotype F6
encodes for the amino acid proline. Analysis of all protein
sequences from the SWISS-PROT database for single
amino acid repeats, tandem oligo-peptide repeats, and
periodically conserved amino acids showed that repeats of
glutamine, serine, glutamic acid, glycine and alanine
seems to be fairly well tolerated in many proteins [54]. Of
these amino acids, only the amino acid serine were found
in the tri-nucleotide repeats of L. perenne, while the other
amino acid residues were not represented. The presence of
SSRs in transcripts of genes suggests that they may have a
role in gene expression or function. In O. sativa, the length
of a poly(CT) SSR in the 5'-untranslated region of the waxy
gene is associated with amylose content [55], and in Z.
mays a SSR the 5'-untranslated region of some ribosomal
genes, have been suggested to be involved in the regula-
tion of fertilization [56].

A total of 22 contigs containing EST sequences with either
allelic- and/or genotypic SSR polymorphisms were identi-
fied, corresponding to 2.3% of the non-redundant EST-
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Figure 2

PCR amplification of the microsatellite (CGA)4
within the EST-clone ve_002b_h12 in eight selected
and representative Lolium perenne F2 genotypes of
the VrnA mapping population [6]. Lane |: 100 bp ladder
DNA-marker; lane 2: NV#20/30-39/008; lane 3: NV#20/30-
39/018; lane 4: NV#20/30-39/091; lane 5: NV#20/30-39/102;
lane 6: NV#20/30-39/119; lane 7: NV#20/30-39/224; lane 8:
NV#20/30-39/392; lane 9: NV#20/30-39/438. The primers
used were G05_132_LI (CAGATGCGCATGTCCTACAG)
and GO5_132_RI (CTTGCTCTTGTCCGAATCGT). PCR
and electrophoresis was performed as described previously

[6].

SSR contigs. The remaining 499 contigs (97.7%) con-
tained no SSR motif polymorphism, indicating a selection
against length polymorphisms in the transcribed region of
the L. perenne genome. In all contigs containing an SSR
motif polymorphism, the polymorphisms identified were
changes in the number of repeat units, while no contigs
were identified with changes in the repeat type or com-
plete loss of the SSR motif. The majority of the SSR poly-
morphisms were allelic polymorphisms, and most of the
SSR motif polymorphisms were one to two repeat unit
changes. All polymorphisms identified, except for poly-
morphisms in compound SSRs, were changes in the
number of repeat units, while no single nucleotide addi-
tions or deletions were identified, that otherwise would
perturb the open reading frame.

Several studies have shown that SSRs developed for one
species could be used in related plant species, and that the
success of cross-species amplification depends on the evo-
lutionary relatedness [57]. The availability of the O. sativa
genome sequence provides a rich source of molecular
information [58]. On the contrary, this type of informa-
tion is limited for most forage and turf grass species. Com-

http://www.biomedcentral.com/1471-2229/7/36

parative mapping can make use of the genomic
information available for O. sativa by applying this
knowledge to less studied forage and turf species.

The transferability of the L. perenne SSR markers between
species of the Poaceae family were performed in silico, to
evaluate if the SSRs can be used as anchor markers for
comparative mapping and evolutionary studies. SSRs
designed from EST sequences are especially valuable
owing to their genome location, which implies con-
straints on length, motif, abundance and flanking regions,
the latter of particular interest in this context, because
common primers can be designed to conserved flanking
regions. However, before primers are designed it is neces-
sary to evaluate if the SSR motif is conserved between
related species, and therefore useful for SSR marker devel-
opment. Blast searches using the 955 non-redundant
Lolium perenne EST-SSRs as query sequences against
41,834 F. arundinacea EST sequences, 3,818 B. distachyon
contigs, and 32,132 full-length O. sativa cDNA sequences
resulted in 833, 540, and 26 orthologous sequences,
respectively. However, because the amount of sequence
information available differs between the species
included in this study, the number of hits cannot be
directly compared. A total of 19 clusters were identified
containing sequences of all four species. Analysis of the
clusters indicates that the SSR motif in general is con-
served in the closely related species F. arundinacea apart
from differences in the length of the SSR motif. In con-
trast, the SSR motif is often lost in the more distant related
species B. distachyon and O. sativa.

In a previous study, the transferability of genomic SSR
markers developed for F. arundinacea across multiple grass
species was investigated [59]. A total of 511 F. arundinacea
genomic SSRs were used to screen the six species; F. arund-
inacea,F. arundinacea var. Glaucescens (tetraploid), F. prat-
ensis, L. perenne, O. sativa, and Triticum aestivum,
representing three tribes and two subfamilies of the
Poaceae family. Most SSRs could be amplified in all forage
and turf grasses but not in cereal species included in that
study [59]. These results support the results presented in
this study, where SSR motifs are more conserved between
L. perenne and F. arundinacea, compared to B. distachyon,
and O. sativa.

Experimental validation of these hypothetical transferable
SSRs and their polymorphism is needed, to validate the
results of the in silico analysis of SSR motif polymor-
phisms between the species included in this study. How-
ever, the in silico analysis of the conservation of SSR motifs
across species is a valuable tool, because it gives an indica-
tion of how distant related species can be, when experi-
ments for comparative mapping and evolutionary studies
are designed. Furthermore, the results are valuable for esti-
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mating how large the chance is, to find SSR motifs as pre-
requisite for a polymorphic marker, in closely- as well as
distant related species.

With the L. perenne EST-SSRs presented in this paper, a val-
uable tool has been developed for further genetic-,
genomic-, and plant breeding applications on the intra- as
well as on the inter-species level.

Conclusion

In this study, we present a comprehensive set of publicly
available EST-derived SSRs from three genotypes of Lolium
perenne, one of the major grass species used for turf and
forage in the temperate regions.

A total of 955 non-redundant SSRs were detected in silico
using clustered and assembled EST data. Tri-nucleotide
repeats were the most abundant type of repeats followed
by di- and tetra-nucleotide repeats. Approximately 96% of
all SSRs identified were shorter than 21 bp, indicating that
the length of SSR motifs in the transcribed region of the L.
perenne genome are size-restricted.

A large variation in the number of SSRs in transcribed
regions of the three genotypes was observed, ranging from
one SSR per 10.9 kb in genotype NV#20F1-30 to one SSR
per 2.7 kb in the genotype F6. This result suggests that sev-
eral genotypes should be screened to find the best geno-
type for SSR discovery in transcribed sequences.

All allelic SSR polymorphisms identified within L. perenne
were changes in the number of repeat units. When com-
paring SSR motifs from L. perenne to SSR motifs in orthol-
ogous sequences from F. arundinacea, B. distachyon, and O.
sativa changes both in the number of repeats, and com-
plete loss of the SSR motifs were observed. Comparing
orthologous sequences of L. perenne and F. arundinacea
revealed that the most frequent SSR motif polymorphisms
between these two species were changes in the number of
repeat units corresponding to 21% of the clusters, while
there were no SSR polymorphisms in 31% of the analysed
clusters. Thus, the EST-SSRs are suitable for synteny stud-
ies between these two species.

In contrast, none of the SSR motifs identified in L. perenne
was completely conserved in the more distant related spe-
cies B. distachyon and O. sativa. In 31% of the clusters the
SSR motif was completely lost in B. distachyon, and in 21%
the SSR motif had fewer repeat units. This suggests that the
EST-SSRs are less suitable for synteny studies outside the
Lolium/Festuca complex.

With the EST-SSR set, a valuable tool has been made pub-
licly available for numerous further genetic and genomic
applications on intra- and inter-species level.

http://www.biomedcentral.com/1471-2229/7/36

Methods

Library construction and DNA sequencing

Thirteen directional cDNA libraries were constructed from
arange of tissues and developmental stages (Table 1). Tis-
sues were obtained from three different L. perenne geno-
types: NV#20F1-30, NV#20F1-39 [6], and F6 (DLF-
Trifolium Ltd.). The two genotypes NV#20F1-30 and
NV#20F1-39 are F1 offspring (full-sibs) of a cross between
two genotypes from the variety Veyo and the ecotype Fal-
ster, respectively, and have thus the same heterozygous
parents [6].

RNA was isolated using Tri® Reagent (Sigma-Aldrich, St.
Louis, MO, USA), and the cDNA libraries were con-
structed using the Creator™ SMART™ cDNA Library Con-
struction Kit (BD Biosciences, Palo Alto, CA, USA),
according to the manufacturer's instructions. The cDNAs
were cloned directionally into the asymmetric Sfil sites of
the pDNR-LIB vector, transformed into electrocompetent
DH10B T1-phage-resistant Escherichia coli cells (Invitro-
gen, Carlsbad, CA, USA), and robotically arrayed into
384-well plates. A total of 31,379 random clones were
subjected to single-pass sequencing reactions from the
5'end using BigDye®” Terminator v3.1 sequencing chemis-
try and analyzed on an ABI Prism 3700 DNA Analyzer
(Applied Biosystems, Foster City, CA, USA). Colony pick-
ing and sequencing was performed by MWG Biotech
(MWG Biotech, Ebersberg, Germany). Base calling, vector
trimming, removal of low quality bases, and clustering
and assembly of the ESTs were performed using the
PHRED and PHRAP/CROSS_MATCH software packages
[60-62]. Sequences with less than 100 PHRED > 20 qual-
ity bases after trimming were discarded. A complete
description of the ¢DNA library construction methods
will be reported elsewhere.

EST database and identification of EST-SSRs

An EST database was developed consisting of 25,744 ESTs
corresponding to 8.53 Mb of sequence (Asp et al. unpub-
lished). Protein functions were predicted by BlastX simi-
larity searches against the protein database in the
GenBank [63], and annotated in terms of the associated
biological processes, cellular components, and molecular
functions using the Gene Ontology vocabulary.

The Perl script MIcroSAtelitte (MISA) [28] was used to
identify SSRs in the L. perenne EST sequences. The param-
eters for the SSR search were defined as follows. The size
of motifs was two to six nucleotides, and the minimum
repeat unit was defined as six for di-nucleotides and four
for tri-, tetra-, penta-, and hexa-nucleotides. Compound
SSRs were defined as > 2 SSRs interrupted by < 50 bases.
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Allelic and genotypic SSR motif polymorphism analysis

L. perenne is a diploid (2n = 2x = 14) outbreeding species
with self-incompatibility being controlled by two genetic
loci. A maximum number of two alleles can therefore be
expected in each genotype. The 3,195 L. perenne contigs
was queried using MISA to identify SSR containing con-
tigs. The individual sequences within each SSR containing
contig was subsequently analysed for SSRs using MISA to
identify allelic and/or genotypic SSR motif polymor-
phisms.

Cross-species SSR motif polymorphism analysis

The cross-species SSR motif polymorphism analysis was
performed by comparing orthologous sequences of L. per-
enne, F. arundinacea, O. sativa, and B. distachyon. A total of
41,834 F. arundinacea ESTs were downloaded from dbEST
in the GenBank [64], 32,132 O. sativa full-length
sequences were downloaded from KOME [65], and 3,818
B. distachyon contigs were downloaded from the Genom-
ics and Gene Discovery bEST Resource home page [66].
The sequences were subsequently blasted (e-value 1.00E-
10) using BlastN against 1,458 L. perenne ESTs containing
SSRs, to identify the orthologous sequences. A relational
database was created and used to store all information
related to the DNA sequences of the four species, includ-
ing DNA sequences, similarity search results, query search
results, SSR presence, SSR motif type, and SSR locus poly-
morphisms between the four species included in this
study.

Data access

Sequences described have been submitted to GenBank.
Submitted sequences are in the accession number range of
ES699013 to ES700454.
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