
A Novel Alkylating Agent, Glufosfamide, Enhances the Activity
of Gemcitabine In Vitro and In Vivo

W. Steve Ammons*, Jin-Wei Wang y, Zhijian Yang y, George F. Tidmarsh z and Robert M. Hoffman y

*Department of Pharmacology and Toxicology, Threshold Pharmaceuticals, Inc., Redwood City, CA, USA;
yAntiCancer, Inc., San Diego, CA, USA; zThreshold Pharmaceuticals, Inc., Redwood City, CA, USA

Abstract

Glufosfamide is an alkylating agent consisting of

iphosphoramide mustard conjugated to glucose that is

currently included in clinical studies of pancreatic can-

cer. We studied the effects of glufosfamide, in combi-

nation with gemcitabine, on in vitro and in vivo models

of pancreatic cancer. In proliferation assays, glufosfa-

mide and gemcitabine inhibited the growth of MiaPaCa- 2,

H766t, and PANC-1 cells, but the combination of the two

agents provided greater effects. Apoptosis of MiaPaCa-2

cells, measured by fluorescence-activated cell sorting,

was enhanced by the combination of the two drugs,

compared to single-agent treatment. Glufosfamide

alone inhibited the growth of red fluorescent protein–

expressing MiaPaCa-2 tumors in an orthotopic nude

mouse model in a dose-dependent manner. Combining

glufosfamide (30 mg/kg) with gemcitabine resulted in

enhanced inhibition of tumor growth and significantly

prolonged survival. Immunohistochemistry of excised

tumors revealed that both glufosfamide and gemcita-

bine increased levels of apoptosis (measured by termi-

nal deoxynucleotidyl transferase–mediated nick end

labeling staining) and reduced proliferation (measured

by proliferating cell nuclear antigen staining). No ef-

fects on microvessel density were observed. These re-

sults support the use of the alkylating agent glufosfamide

and the DNA synthesis inhibitor gemcitabine, rather

than the use of either agent alone, to provide greater

benefits and demonstrate that this combination treat-

ment should be useful in the clinical treatment of pan-

creatic carcinoma.
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Introduction

Adenocarcinoma of the ductal pancreas is characterized

by extensive local invasion and early metastasis. In most

patients, the disease, when detected, is usually already well

developed locally or has already metastasized [1,2]. Thus,

the 5-year survival rate of these patients is only 3% to 4%

[3], with a median survival after diagnosis of approximately

6 months [4]. Gemcitabine, a deoxycytidine analogue, has a

moderately extended median survival for patients with ad-

vanced pancreatic cancer [5,6] and is currently the standard

of care as first-line therapy. Gemcitabine induces apoptosis of

human pancreatic cancer cells and can inhibit tumor growth

and progression [7]. In addition, intracellular phosphorylation of

gemcitabine produces diphosphate and triphosphate molecular

forms capable of acting as fraudulent bases in DNA and also

capable of inhibiting DNA synthesis–dependent ribonucleotide

reductase [8], together producing a strong cytotoxic effect. A

recent study has suggested that gemcitabine may be more

effective as adjuvant therapy after complete surgical resection

of pancreatic cancer and may increase survival by as much

as 6 months in these patients receiving surgery [9]. Even so,

the moderate therapeutic advantage of gemcitabine therapy

over best supportive care, either as primary care or in the

adjuvant setting, indicates that there is a need for new treat-

ment strategies for pancreatic cancer. Among the promising

agents currently under investigation for first-line and second-

line therapies for the treatment of pancreatic carcinoma is

glufosfamide, a glucose-coupled iphosphoramide mustard with

alkylating properties. Glufosfamide was developed to avoid

the need for the activation of ifosfamide by P450 in the liver,

thus reducing toxicities associated with systemic exposure to

multiple metabolites of ifosfamide, including acrolein [10]. The

glucose moiety may allow enhanced uptake by tumor cells

because of upregulated sodium transporters [11]. One potential

glucose transport mechanism has been implicated [12], al-

though others have not been ruled out. In tumor cells, glufos-

famide is cleaved by glucosidases to liberate the cytostatic

agent iphosphoramide mustard [13]. Glufosfamide exhibits

lower myelotoxicity and increased antitumor activity in preclin-

ical in vitro and in vivo studies [14]. Here we present data that

specifically address the likelihood that glufosfamide and gem-

citabine may have benefits as combination therapy. Data

on this particular combination treatment have not been previ-

ously reported, and the results support the use of these two

agents to provide at least additive effects on models of human

pancreatic cancer.
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Methods

Cell Lines and Reagents

MiaPaCa-2, AsPC-1, H766t, and PANC-1 cell lines were

obtained from the American Type Culture Collection (Rock-

ville, MD). All cell lines were cultured in Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal calf serum,

sodium pyruvate, nonessential amino acids, L-glutamine,

vitamins, and antibiotics. Cells were maintained in a humid-

ified incubator containing 10% CO2 at 37jC. All chemical

reagents were purchased from Sigma Chemical Co. (St.

Louis, MO), unless otherwise specified. Gemcitabine was

purchased from Eli Lilly Co. (Indianapolis, IN), reconstituted

in sterile phosphate-buffered saline (PBS), and stored at room

temperature for in vivo studies or in aliquots at 20jC for in vitro

studies. Glufosfamide was provided directly by Threshold

Pharmaceuticals, Inc. (Redwood City, CA), and freshly recon-

stituted in PBS for each study. Anti–proliferating cell nuclear

antigen (PCNA) and anti-CD31 monoclonal antibodies were

obtained from Dakocytomation Corp. (Carpinteria, CA).

Cell Proliferation Assay

Cells were collected from exponentially growing cultures.

Cell numbers were determined by direct counting with a

hemocytometer, and cell viability was determined by trypan

blue exclusion. For cell growth curves, 1 � 106 cells were

plated in triplicate for each dose level. After 24 hours, the

culture medium was removed and replaced with a fresh

medium mixed with 1 mg/ml gemcitabine, 10 mg/ml glufosfa-

mide, or both. These concentrations were selected based on

preliminary studies and represent approximately 50% inhib-

itory concentrations. Cells were counted with a hemocytom-

eter every 24 hours for 3 days. Each experiment was

conducted on three separate occasions.

Determination of DNA Fragmentation By

Fluorescence-Activated Cell Sorting

(FACS) Analysis

Cells (1 � 106) were incubated with vehicle, gemcitabine,

glufosfamide, or a combination of both agents at 10 mg/ml for

24 hours. The cells were then collected by gentle trypsiniza-

tion, washed with PBS, and pelleted by centrifugation. Cells

were resuspended in PBS containing 50 mg/ml propidium

iodide (PI), 0.1% Triton X-100, and 0.1% sodium citrate. The

samples were then stored at 4jC for 16 hours and vortex-

mixed before FACS analysis. The relative percentage of cells

in the sub-G1 region was then quantitated and used as an

estimate of cells undergoing apoptosis. FACS channels were

set based on reference analysis and maintained constant

during the experiments.

Orthotopic Mouse Model of Pancreatic Cancer

Orthotopic tumors were generated using MiaPaCa-2 cells

that had been transfected to stably express red fluores-

cent protein (RFP), as previously described [15]. Tumor

stocks were made by subcutaneously injecting MiaPaCa-

2–RFP cells, at a concentration of 5 � 106 cells per 200 ml,

into the flanks of nude mice. Tumor tissues were resected

aseptically, and any grossly necrotic or suspected necrotic

or non-RFP tumor tissues were removed. The remaining

healthy tumor tissues were subsequently cut into small frag-

ments of approximately 1 mm3. Recipient mice were anes-

thetized with isoflurane, and the surgical area was sterilized

using iodine and alcohol. An incision approximately 1.5 cm

long was made on the left upper abdomen of nude mice

using a pair of surgical scissors. The pancreas was ex-

posed, and then two pieces of MiaPaCa-2–RFP tumor frag-

ments (in mm3) were transplanted to the mouse pancreas

with 8-0 surgical sutures (nylon) after the capsule of the

transplantation site had been stripped. The abdomen was

closed with 6-0 surgical sutures (silk). All procedures of

the operation described above were performed with a �7

magnification microscope (Olympus, Center Valley, PA) under

high-efficiency particulate-arresting filter laminar flow hoods.

During the course of the study, the primary tumor size

for each animal was followed on a weekly basis. Primary

tumor sizes were estimated by measuring perpendicular

minor dimension (W ) and major dimension (L) using sliding

calipers. Approximate tumor volume was calculated by the

formula: W 2L � 1/2. At the end of the study, the primary

tumor burden was verified, and metastasis was evaluated

by whole-body imaging as previously described [15,16].

Briefly, the mice were placed in a fluorescent light box

equipped with a fiber-optic light source of 490 nm (Lightools

Research, Encinitas, CA). Selective excitation of RFP was

produced through aD425/60 bandpass filter and a 470DCXR

dichroic mirror. Emitted fluorescence was collected through a

longpass filter GG475 (Chroma Technology, Brattleboro, VT)

on a Hamamatsu C5810 3 chip-cooled color charge-coupled

device camera (Hamamatsu Photonics, Bridgewater, NJ).

Images were processed for contrast and brightness, and

analyzed with the use of Image Pro Plus 3.1 software (Media

Cybernetics, Silver Spring, MD). High-resolution images of

1024 � 724 pixels were captured directly on an IBM PC (IBM,

Armonk, NY) or continuously through video output on a high-

resolution Sony VCR (model SLV-R1000; Sony, Tokyo, Japan).

To evaluate the efficacy of glufosfamide alone in this

model and to determine the optimal dosage for combination

experiments, an initial experiment, in which groups of

six mice were randomized into one of several groups when

tumors had reached 100 to 150 mm3, was conducted.

Glufosfamide was administered intravenously, in doses of 3

to 100 mg/kg per day, for 14 days. Saline was administered

to control mice. Based on the results of this study, doses of

10 and 30mg/kg per day were selected for a second study. In

the second study, groups of 10 mice were treated with

glufosfamide alone, intravenously, daily for 14 days; with

gemcitabine alone, intraperitoneally, at 300 mg/kg once a

week for 3 weeks; or in combination. Based on the obser-

vations of animals in this study and in general pharmacology

studies previously reported [17], this dose of gemcitabine,

although higher than used in some studies, was considered

safe. However, to be sure, we have conducted a study in

which nude mice were injected once a week for 3 weeks and

detected no changes in liver or renal enzymes. Saline-

626 Glufosfamide in Combination with Gemcitabine Ammons et al.

Neoplasia . Vol. 9, No. 8, 2007



treated mice served as controls. As before, treatment

was initiated when tumors had reached 100 to 150 mm3.

The metastatic frequency of all groups was analyzed with

Fisher’s exact test. Differences in animal survival time be-

tween each treatment group and control were compared

with log-rank analysis. Tumor sizes at 14 and 21 days were

compared using Kruskal-Wallis test followed by log-rank

analysis. All values were considered significant at P < .05.

Immunohistochemistry of Pancreatic Tumors

In a separate experiment, tumors were established in

groups of five nude mice by an intrapancreatic injection of

1 � 106 MiaPaCa-2 cells after a midline incision and lapa-

rotomy under isoflurane anesthesia and aseptic conditions.

When tumor size was approximately 150 mm3, treatment

was initiated with 30 mg/kg per day of glufosfamide, intrave-

nously, for 14 days; with 300 mg/kg per day of gemcitabine,

intraperitoneally, once a week for 2 weeks (days 1 and 8 of

treatment); or with both agents. PBS served as vehicle

control. One day after the final glufosfamide dose, tumors

were harvested and frozen until analyzed.

Frozen tissue sections were fixed, and 5-mm sections

embedded in paraffin were prepared for terminal deoxynu-

cleotidyl transferase–mediated nick end labeling (TUNEL)

assay using a commercial kit (Promega, Madison, WI) ac-

cording to the manufacturer’s instructions. Background re-

activity was determined by processing slides in the absence

of terminal deoxynucleotidyl transferase (negative control).

Nuclei were stained with PI (1 mg/ml) for 10 minutes. Fluo-

rescent bleaching was minimized with an enhancing reagent

(Prolong; Molecular Probes, Eugene, OR). Immunofluores-

cence microscopy was performed with a fluorescent mi-

croscope equipped with narrow bandpass excitation filters.

Images were captured using a Nikon camera (Photometrics,

Tucson, AZ). DNA fragmentation was detected by local-

ized green fluorescence within the nucleus of apoptotic

cells. For quantification of total TUNEL expression, the num-

ber of apoptotic events was counted in 10 random fields at

�100 magnification.

For the detection of PCNA and CD31 by immunohisto-

chemistry, paraffin-embedded tissues were mounted on

positively charged Superfrost slides (Fisher Scientific, Hous-

ton, TX) and dried overnight. Sections were deparaffinized in

xylene, treated with a graded series of alcohol (100%, 95%,

and 80% ethanol/double-distilled H2O, vol/vol), and rehy-

drated in PBS (pH 7.5). To enhance antigen retrieval, sec-

tions were microwaved for 5 minutes. For detection of CD31,

paraffin-embedded tissues were treated with pepsin (Bio-

meda, Foster City, CA) for 15 minutes at 37jC and washed

with PBS. After exposure to anti-PCNA or anti-CD31 anti-

bodies followed by washing with PBS, positive reactions

were visualized by incubating the slides with stable 3,3-

diaminobenzidine for 10 to 20 minutes. The sections were

rinsed with distilled water, counterstained with Gill’s hema-

toxylin for 30 seconds, and mounted with Universal Mount

(Research Genetics, Carlsbad, CA). Control samples ex-

posed to secondary antibody alone showed no specific

staining. For quantification of microvessel density (MVD),

10 randomly selected fields at �100 magnification were

captured for each tumor, and microvessels were quantified

according to the method described previously [26,27].

For quantification of PCNA expression, the number of pos-

itive cells was quantified in 10 randomly selected fields

at �100 magnification.

Figure 1. Effects of glufosfamide and gemcitabine on proliferation assays.

MiaPaCa-2 (A), H766t (B), and AsPC-1 (C) pancreatic cells were grown

in culture media for 3 days, as described in Methods. Glufosfamide and

gemcitabine were added to the media at the indicated concentrations alone or

together, and cell numbers were determined daily with a hemocytometer.

Each experiment was conducted in triplicate. **P < .01 vs gemcitabine alone.
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Results

Proliferation Assay

Based on preliminary experiments, a gemcitabine con-

centration of 1 mg/ml was selected to examine its growth-

inhibitory effects. Three separate experiments, in which

gemcitabine strongly inhibited the growth of MiaPaCa-2,

H766t, and PANC-1 cells and exhibited moderate effects on

the growth of AsPC-1 cells, were conducted (Figure 1).

Glufosfamide at 10 mg/ml was less effective than gemcitabine.

However, when glufosfamide was added to gemcitabine, ad-

ditional inhibition of the cell growth of MiaPaCa-2, PANC-1,

and H766t cells, but not of AsPC-1 cells, was observed.

DNA Fragmentation

Because cytotoxicity assay indicated that glufosfamide

and gemcitabine, either alone or in combination, were most

effective against MiaPaCa-2 cells, FACS analysis of the DNA

fragmentation of MiaPaCa-2 cells was conducted to deter-

mine whether apoptosis was induced by this combination.

Treatment of MiaPaCa-2 cells with 10 mg/ml glufosfamide or

1 mg/ml gemcitabine resulted in induction of apoptosis as

measured by an increase in apoptosis (sub-G1 fraction;

Figure 2), although the effect of gemcitabine was greater.

Treatment with both agents resulted in enhanced apoptosis

that was slightly greater than additive.

Orthotopic Model of Pancreatic Cancer

In a preliminary study, the activity of glufosfamide was

evaluated in the MiaPaCa-2–RFP model to determine the

best doses to be used in combination with gemcitabine.

Figure 3A shows final tumor volumes recorded at necropsy,

for glufosfamide at 3 to 100mg/kg, intravenously, for 14 days,

and gemcitabine at 300 mg/kg, intraperitoneally, once a

week for 3 weeks. Treatment was initiated when tumors

had reached 100 to 150 mm3. Glufosfamide treatment re-

sulted in dose-related reductions in tumor volume; a dose of

100 mg/kg was similar in effect to gemcitabine. In addition, at

Figure 2. Analysis of DNA fragmentation by FACS. Cells (1 � 106) were incubated with vehicle (A), gemcitabine (B), glufosfamide (C), or the combination of both

agents (D) at 10 �g/ml for 24 hours, with the addition of PI. DNA fragmentation (apoptosis) is indicated by events in Sub-G1 Phase.
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doses of 30 mg/kg or higher, there was an significant in-

crease in the time to 50% survival—an effect not significantly

different from gemcitabine (Figure 3B).

To evaluate combination therapy in the samemodel, doses

of 10 and 30 mg/kg glufosfamide were chosen to be tested

with and without 300 mg/kg gemcitabine. Figure 4A shows

the weekly primary tumor volumes for each group. Because

significant numbers of deaths were observed in three of the

groups (vehicle, 10 mg/kg glufosfamide, and 30 mg/kg glu-

fosfamide) after day 26, statistical evaluation was restricted to

the initial 26-day period. On day 26, 14 days after initiation

of treatment, glufosfamide at 10 mg/kg alone was without

effect, whereas 30 mg/kg significantly reduced tumor size by

approximately 50%. The effect of gemcitabine was somewhat

greater than that of glufosfamide. However, combining 30 mg/

kg glufosfamide with gemcitabine resulted in a significant

increase above the level achieved by gemcitabine alone.

Figure 5 shows images obtained from representative animals

from the vehicle, gemcitabine, and combination groups. RFP

expression was evident in the pancreas but was also seen

to have spread to the abdominal lymph nodes of all control

mice and to the diaphragm of a few mice (Table 1). Treatment

with glufosfamide or gemcitabine reduced RFP expression

in the primary tumor and also reduced the incidence of

metastasis. The magnitude of the inhibition of metastatic inci-

dence was similar among treatments, except for the 10-mg/kg-

glufosfamide group, which was ineffective under the conditions

of this study (Table 2). Figure 4B shows the survival curves

for each group and indicates that only the combination of

30mg/kg glufosfamide and gemcitabine significantly increased

survival relative to control. Treatment with either agent alone or

with both agents had no effect on body weights in this study

(data not shown).

Immunohistochemistry of Pancreatic Tumors

Figure 6 shows the apoptotic and proliferative indexes

derived from TUNEL-stained and PCNA-stained sections of

tumors from mice treated with saline, glufosfamide (30 mg/kg,

iv, daily for 2 weeks), with gemcitabine (300 mg/kg, once a

week for 2 weeks), or with both agents in combination. Tumors

were removed 24 hours after the last treatment (at 2 weeks)

and then weighed. Similar to the RFPmodel described above,

treatment with gemcitabine alone yielded a reduction in tumor

weight from 2.2 ± 0.5 to 1.4 ± 0.5 g. Glufosfamide at 10 mg/kg

decreased only to 1.9 ± 0.6 g, whereas 30mg/kg glufosfamide

reducedweight to 1.6 ± 0.4 g. Again, combination therapy was

most effective. Although the addition of 10mg/kg glufosfamide

to gemcitabine added little effect, combination with gemcita-

bine and 30 mg/kg reduced weight to 0.9 ± 0.3 g, a significant

effect. In these tumors, apoptosis occurred at a low level in

control mice, but was significantly increased by glufosfamide

and, to a greater degree, by gemcitabine (Figure 6). Combi-

nation treatment resulted in a level of apoptosis that was

significantly greater than that of either agent alone. PCNA

staining was significantly greater with both gemcitabine alone

and glufosfamide alone compared to control, indicating sig-

nificant antiproliferative effects. Combination treatment re-

sulted in significantly greater PCNA staining compared to

either treatment alone. CD31 staining failed to reveal any ef-

fects of either treatment alone or combination treatment (data

not shown).

Discussion

This study was conducted to provide information on the

potential value of the use of glufosfamide in combination

with gemcitabine in the treatment of pancreatic cancer.

Although gemcitabine is considered the standard of care

as first-line treatment for pancreatic cancer [18], the benefit

of such treatment is limited and, thus, alternative or addi-

tional treatments are needed. Among alternative agents of

interest, glufosfamide, an alkylating agent in which the

alkylating metabolite of ifosfamide is linked to b-D-glucose,
has been studied in phase I and phase II trials. Part of the

rationale for the potential advantage of glufosfamide over

ifosfamide was that the active compound of ifosfamide,

iphosphoramide mustard, must be released from the parent

compound by liver microsomal enzymes [10]. In addition,

other toxic metabolites (such as acrolein), which are both

nephrotoxic and urotoxic, are released [19,20]. By coupling

iphosphoramide mustard to glucose, in theory, metabolic

activation should be avoided, toxic metabolites should be

Figure 3. Final tumor volumes (A) and 50% survival (B) recorded in the

MiaPaCa-2–RFP pancreatic cancer model. Glufosfamide was administered

intravenously daily for 14 days. *P < .05 vs control.
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limited, and the active compound should be taken up pref-

erentially by cells with upregulated sugar transporters and

then released by hydrolysis by intracellular glucosidases.

Thus, glufosfamide may take advantage of the observation

of the overexpression of glucose transporters by pancreatic

carcinomas [11].

Although several small clinical studies [21,22] have indi-

cated that glufosfamide had an activity similar to that indi-

cated by published results for gemcitabine, preclinical

studies such as those described here showing that glufosfa-

mide could be used in combination with gemcitabine to

provide even greater benefits have not been previously

reported. Our results clearly demonstrate that, at a minimum,

an additive benefit is associated with a combination treat-

ment with these two agents. In vitro proliferation and apop-

tosis assays indicated that addition of glufosfamide to

gemcitabine enhanced activity. Glufosfamide demonstrated

dose-dependent inhibition in the pancreatic orthotopic xeno-

graft model and enhanced the activity of gemcitabine. This

model takes advantage of a fluorescent biomarker (RFP) to

follow the disease in real time to more accurately follow the

effect of therapeutics on the particularly malignant human

cancer than can be conducted with traditional flank xenograft

models [15]. In this invasive lethal model, only the combina-

tion of 30 mg/kg glufosfamide and gemcitabine resulted in

a significant increase in survival. This finding is somewhat

surprising because treatment with glufosfamide alone or

gemcitabine alone in the preliminary study resulted in an

increase in 50% survival. However, examination of the

control groups in the two studies revealed that control tumors

grew much faster and that greater lethality was observed in

the second study. Thus, we conclude that single-agent

Figure 4. Primary tumor volumes (A) and survival curves (B) recorded in the MiaPaCa-2–RFP pancreatic cancer model. Gemcitabine (intraperitoneally, once a

week for 3 weeks) and glufosfamide (intravenously, daily for 14 days) each significantly reduced tumor volume measured on day 26, but the combination of 30 mg/kg

and gemcitabine resulted in significantly greater reduction. The same combination of treatments also provided significant improvement in survival. *P < .05.
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therapy in the second study was inadequate to affect these

more rapidly growing tumors significantly and that combina-

tion therapy was required to increase survival significantly.

Immunohistochemistry assay of apoptosis and proliferation

in treated tumors confirmed the additive effects of combina-

tion therapy on tumor size and indicated that both activities

are involved in the antitumor effects of both agents.

It is generally believed that chemotherapy and radiation

therapy exert their effects by apoptosis [23]. We investi-

gated apoptosis in our experiments and found that gemcita-

bine and glufosfamide both exhibited proapoptotic effects.

Bold et al. [24] concluded that Bcl-2 plays a major role in the

apoptosis evoked by gemcitabine because increased levels

of Bcl-2 correlated with resistance to gemcitabine in various

pancreatic cell lines. Interestingly, MiaPaCa-2 cells were

most sensitive to gemcitabine and were associated with

relatively low levels of Bcl-2 expression. This finding may,

in part, explain the high sensitivity of our MiaPaCa-2 tumors

to gemcitabine. Similarly, glufosfamide was found to induce

apoptosis in association with a decline in Bcl-2 levels [25],

and overexpression of Bcl-2 reduced the cytotoxic effect of

glufosfamide. Thus, gemcitabine and glufosfamide may

have some proapoptotic mechanisms in common. However,

other mediators of gemcitabine-mediated apoptosis have

been described [26,27], and the precise series of events

leading to glufosfamide cell death has not been well studied.

Although glufosfamide and gemcitabine may share some

activities, these agents should initiate cell death by different

mechanisms. Glufosfamide is hydrolyzed to iphosphoramide

mustard in tumor cells and acts as an alkylating agent lead-

ing to DNA double-stranded breaks [25,28]. In contrast,

gemcitabine is a deoxycytidine analogue that, after intracel-

lular phosphorylation to diphosphate and triphosphate mo-

lecular forms, inhibits ribonucleotide reductase, resulting in a

reduction in deoxynucleotide concentrations, including

dCTP. In addition, metabolites of gemcitabine compete with

dCTP for incorporation into DNA. These two mechanisms of

action lead to inhibition of DNA synthesis. Recently, an

additional activity of gemcitabine, which in our opinion could

explain the additional benefit derived from glufosfamide

treatment above that achieved with gemcitabine only in our

experiments, has been described. Gemcitabine was shown

Figure 5. Representative open-body images of individual mice from each treatment group. (A) Saline treatment. (B) Glufosfamide treatment. (C) Gemcitabine treat-

ment. (D) Glufosfamide + gemcitabine. White arrows, primary tumor; yellow arrows, abdominal lymph node metastases; green arrow, diaphragmatic metastases.

Table 1. Incidence of Metastasis to the Lymph Nodes and Diaphragm.

Groups Dose (mg/kg) Abdominal Lymph Nodes DiaphragmAvailable Tested

Animals (n)

Total Metastatic Incidence

(All Organs)
Metastatic Incidence P Metastatic Incidence P

Control – 9 10 9 – 1 –

Glufosfamide 10 10 9 8 .474 1 1.000

Glufosfamide 30 9 6 4 .029 2 1.000

Gemcitabine 300 9 4 3 .009 1 1.000

Glufosfamide + gemcitabine 10 + 300 8 1 1 .000 0 1.000

Glufosfamide + gemcitabine 30 + 300 10 2 2 .001 0 .474
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to inhibit homologous recombination mechanisms that are

required to repair double-stranded DNA breaks induced by

ionizing radiation or chemotherapy [29]. Becker et al. [25]

demonstrated that glufosfamide does induce DNA double-

stranded breaks. Therefore, it is reasonable to hypothesize

that, in the present experiments, gemcitabine may have

inhibited the repair of these lesions. Further experiments

are required to prove that this mechanism is the primary

explanation for our results.

In summary, these in vitro and in vivo studies have dem-

onstrated that glufosfamide enhances the effects of gemcita-

bine on multiple in vitro and in vivo models of pancreatic

cancer. The additional benefits appear to be, at least in part,

related to enhanced apoptosis and antiproliferation. These re-

sults suggest that glufosfamide could be useful as adjunctive

therapy in the treatment of patients with pancreatic cancer.
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