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ABSTRACT

Most parametric methods for detecting foreign
genes in bacterial genomes use a scoring function
that measures the atypicality of a gene with respect
to the bulk of the genome. Genes whose features
are sufficiently atypical—lying beyond a threshold
value—are deemed foreign. Yet these methods fail
when the range of features of donor genomes
overlaps with that of the recipient genome, leading
to misclassification of foreign and native genes;
existing parametric methods choose threshold
parameters to balance these error rates. To cir-
cumvent this problem, we have developed a two-
pronged approach to minimize the misclassification
of genes. First, beyond classifying genes as merely
atypical, a gene clustering method based on
Jensen-Shannon entropic divergence identifies
classes of foreign genes that are also similar to
each other. Second, genome position is used to
reassign genes among classes whose composition
features overlap. This process minimizes the mis-
classification of either native or foreign genes that
are weakly atypical. The performance of this
approach was assessed using artificial chimeric
genomes and then applied to the well-characterized
Escherichia coli K12 genome. Not only were foreign
genes identified with a high degree of accuracy, but
genes originating from the same donor organism
were effectively grouped.

INTRODUCTION

One lesson of comparative genomics has been that
numerous intricate and interdependent processes underlie
organismal evolution. Even attempts to obtain an
unambiguous picture of bacterial evolutionary relation-
ships—organisms which reproduce in the absence of
genetic exchange—have often been confounded with the
emergence of the data that contradict accepted beliefs.
For example, while bacterial phylogenies have historically

used the highly conserved sequences of the small subunit
ribosomal RNA, more complete genome sequence data
has documented significant levels of gene transfer between
the distantly related organisms, a strongly confounding
influence on the elucidation of taxonomic relationships
(1). Beyond obfuscating the tree form of life, lateral gene
transfer (LGT) mobilizes ecologically important genes
among taxa, making it a potent force in the diversification
and speciation of prokaryotes (2,3).

Change in gene inventory is a historical process. In the
absence of experimental means to determine the evolu-
tionary history of a gene, several complementary methods
have been developed to infer the occurrence of gene
transfer events, categorized as phylogenetic incongruency
tests and parametric methods. The former identifies single
gene topologies that deviate significantly from consensus
relationships; aberrant phylogenies are considered to be
the most reliable indicator of ancestral gene transfer
events. Caveats for their use include biased mutation
rates, improper clade selection, gene loss, segregation of
paralogs and long branch length attraction (4). More
importantly, the success of phylogenetic methods depends
entirely on the breadth and depth of the sequence
database, which is especially evident in the inability to
use these approaches to identify orphan genes of foreign
origin. Lastly, phylogenetic studies may yield ambiguous
results. For example, a recent survey of 13 species of
v-proteobacteria concluded that few LGT events took
place among them, since organismal relationships inferred
from the sequences of most genes failed to reject the
consensus topology (5); however, it was later reported
that these same data failed to reject any topology, not
only the consensus one (6), suggesting that the phyloge-
netic signal was insufficiently robust to either accept or
reject hypotheses regarding gene transfer.

In contrast, parametric approaches are based on the
hypothesis that sequence features are similar within a
genome but differ significantly between genomes. Genes
which share a common set of features —that is, typical
genes—are classified as native. In contrast, putatively
foreign genes have atypical features inconsistent with the
patterns reflected by the bulk of the genome; the features
of these genes are posited to reflect the mutational
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proclivities of their donor organisms. While ancient gene
transfer events would be difficult to detect as their atypical
features ameliorate (7,8), genes of recent foreign origin are
of special interest to microbiologists due to their role in
recent changes in their ecological niche and/or metabolic
repertoire. However, the sets of foreign genes detected by
parametric approaches often differ significantly (4); this
may result from the different metrics being utilized, or
different thresholds used to discriminate between ‘typical’
and ‘atypical’ genes. Such conflicts between methods have
not been easy to resolve; until recently, the efficacy of
parametric methods had been difficult to assess due to the
lack of benchmark protocols (9).

Yet these caveats are somewhat minor compared to
an intrinsic weakness shared by nearly all parametric
methods. Rather than falling into totally discrete groups
corresponding to typical and atypical genes, composi-
tional features of genes lie along a continuum (Figure 1A).
That is, there is no easily defined threshold beyond which
atypical genes are clearly of foreign origin. Native genes
may also be strongly atypical, for example, highly
expressed genes have codon usage bias patterns that
distinguish them from the majority of chromosomal genes
(10). As a result, arbitrary thresholds must be employed
for declaring atypical genes to be of likely foreign origin,
where choice of threshold balances Type I and Type 11
errors (9). Conservative thresholds lead to rare misclassi-
fication of native genes as foreign, at the expense of more
falsely declared native genes. Liberal thresholds detect
more foreign genes, but also incur more false predictions
(i.e. native genes misclassified as foreign). Advances in the
efficacy of parametric methods critically depend upon
a decoupling of Type I and Type II errors, so that genes
that lie in the twilight zone (the somewhat atypical native
genes or weakly atypical foreign genes) may be robustly
classified as either native or foreign. To accomplish this
goal, we use two features of gene transfer in bacterial
genomes. First, many alien genes are introduced in
genomic islands; here, large number of genes arrive from
a single donor genome and are physically adjacent.
Second, the non-random distribution of donor genomes
for any one recipient (11) increases the likelihood that
foreign genes may resemble each other even if they arrived
in separate transfer events.

Using this information, we have implemented here a
2-fold approach for foreign gene identification. First, we
employ a novel gene clustering method based on Jensen—
Shannon (JS) divergence measure. Contrary to the
arbitrary thresholds used by existing parametric methods,
this approach segregates genes into distinct classes within
a hypothesis testing framework. In this way, we identify
foreign genes not solely by their incongruence with the
majority of genes in the genome but also by their
similarity to each other (Figure 1B). Yet even here, we
would expect that somewhat atypical native genes may be
misclassified as alien, and vice versa. To escape the
limitations imposed by any single threshold in classifying
genes with ambiguous features, we use genome position
information to reassign genes between native and foreign
classes based on the characteristics of physically adjacent
genes (Figure 1C). The performance of this approach was
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Figure 1. (A) Foreign gene identification by common threshold
approaches; native and foreign genes overlap in sequence features.
(B) Foreign genes detecting using a clustering approach. Genes from a
single source may have features that overlap with features of genes
from other sources, making unambiguous delineation difficult. (C)
Positional information may be used to accurately classify weakly
atypical genes. Misclassified genes may be correctly identified using
positional information.

assessed on a test platform of artificial chimeric genomes
(9) and then applied to well-understood Escherichia coli
K12 genome.

MATERIALS AND METHODS
DNA sequences

The complete genome sequences of the prokaryotes
Archaeoglobus fulgidus DSM4304, Bacillus subtilis 168,
Deinococcus radiodurans R1 chromosome 1, Erwinia
carotovora SCRI1043, E. coli K12, Haemophilus influenzae
Rd KW20, Methanocaldococcus jannaschii DSM2661,
Neisseria gonorrheae FA1090, Ralstonia solanacearum
GMI1000, Salmonella enterica serovar Paratyphi A str.
ATCC 9150, Sinorhizobium meliloti 1021, Synechocystis
sp. PCC6803 and Thermotoga maritima MSBS, Vibrio
cholerae O1 biovar eltor str. N16961 chromosome I, and
Yersinia pestis KIM were obtained from GenBank.
Protein-coding genes were extracted using the coordinates
provided in the annotation.



The entropic gene clustering method

The JS divergence between two probability distributions
P, and P> of a discrete random variable is defined as (12),

ISx(Py, Py) = H(m Py 4+ maPy) — my H(Py) —my H(P2), 1

where 7; and 7, are weight factors, with 7+, =1. H(.)
is the Shannon information entropy defined as

H(P)= =" P(i)log2P(i), 2

where P(i) is the probability of the ith element of
distribution P.

DNA sequences are represented by alphabet
A4=(A,C,G.T). To measure the compositional difference
between two DNA sequences S; and S5 of length L; and
L», respectively, the probability distribution P, (k=1, 2) is
represented by the relative frequency vector {f.(i), i€ 4},
() =Cr(i)/Ly, Ci(i) is the count of nucleotide i in
sequence Si. Assigning weight factors to be proportional
to the lengths of the sequences, 71 = L,/L and ;= L,/L,
L=L,+L,, the JS divergence between two sequences
S} and S, is expressed as,

IS(S1. 52) = H(S) ~ SLH(S:) — 2 H(S), 3

where H(Sy) = —)_fi(D)log, fi(i), S=S1& .

To assess the statistical significance of this measure
under the null hypothesis that sequences S; and S, are
similar, that is, both sequences are generated from the
same probability distribution, we use the analytical
approximation of the probability distribution of JS that
was shown to follow a x* distribution function [Arvey,A.,
Raval,A., Azad,R.K. and Lawrence,J.G., unpublished
data; (see also Section IV(C) in (13)]. For asymptotically
large values of L,

y(v/2, L(In 2)x)

Pri)S < x) = AL 2)v) = =1 7

, 4
where F, (.) is the chi-square distribution function for v
degrees of freedom (v=1[4|—1); y(.) and I'(.) represent
the incomplete and complete gamma functions, respec-
tively. The P-value for the test is thus obtained as
1-Pr{JS < x}.

We employed the JS divergence in an agglomerative
hierarchical clustering method to measure the dissimilarity
(or similarity) between genes or gene classes. The
clustering algorithm begins with N single gene classes.
For each iteration, each pair of classes is considered and
the JS distance between classes is measured. If the P-value
computed for the JS distance between closest classes is less
than pre-set significance threshold, the distinction between
the two classes is deemed statistically significant preclud-
ing the merger of these classes; otherwise the classes are
merged. The algorithm is repeated recursively until the
distinction between all classes is statistically significant,
preventing any further class merger. The frequency vector
for multigene classes is the mean frequency vector of the
constituent genes and its size is the mean size.
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To quantify the compositional difference between genes,
the DNA sequence of a gene is represented by a 12-symbol
alphabet A={A4,, T, C; G, i=1-3} accounting for
nucleotide identity and the three codon positions. A 48-
symbol alphabet representation of DNA sequence
accounting for the dinucleotide identity and the codon
positions was also used. We termed the respective
JS(S4, S5) as JS-N and JS-DN. To measure the difference
in codon usage bias between genes, each of the synon-
ymous codon group was considered separately; the
Shannon entropy, H(Sy), is thus defined as,

H(SK) == _fil@))_filcla)log, ficla), 5

cea

where f;(a) denotes the relative frequency of synonymous
codon group «a and fi(c | a) is the frequency of codon ¢
normalized in the synonymous codon group a. The
JS(S;,S>) for codon usage bias is termed JS-CB.

Construction of artificial chimeric genomes

To evaluate the performance of our proposed method, we
constructed artificial genomes using generalized hidden
Markov models (HMMs) (9). Briefly, genes making the
core of a genuine genome—those representing the spec-
trum of mutational signatures native to that genome—are
obtained by a gene clustering algorithm based on Akaike
information criterion [AIC (14-16)]. These genes are
segregated into distinct classes using a k-means clustering
algorithm employing relative entropy as distance measure
to decide the algorithm convergence. Multiple gene
models trained on these gene classes are then used in the
framework of a generalized HMM to generate an artificial
genome representing the variability found among genuine
core genes. A chimeric artificial genome is obtained as the
mosaic collection of genes sampled from different artificial
genomes. To a chosen recipient artificial genome, we
inserted at a random position one or more contiguous
genes selected randomly from a sample of donor artificial
genomes. Insertion is carried out recursively until a
chimeric genome of a desired composition is obtained.
Because the evolutionary histories of genes are known
precisely in these genomes, and because the genes fairly
represent the variability seen in genuine genomes, chimeric
artificial genomes serve as valid test beds for assessing the
parametric methods of gene transfer detection (9).

Two sets of 4000-gene artificial genomes were created.
Artificial Genome I had a core of 3000 genes (75%)
representing an artificial E. coli genome; the remaining
genes were acquired from five different donors—A.
Sfulgidus (7%), B. subtilis (5%), H. influenzae Rd (3%),
M. jannaschii (6%), R. solanacearum (4%). Artificial
Genome II had a core of 3400 genes (85%) representing
an artificial E. coli genome with the remainder acquired
from 10 donors—A. fulgidus (1%), B. subtilis (1%),
D. radiodurans (2%), H. influenzae Rd (2%), M. jannaschii
(1%), N. gonorrhoeae (1%), R. solanacearum (2%),
S. meliloti (2%), Synechocystis PCC6803 (1%) and
T. maritima (2%).
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Class reassignment and refinement

Compositional properties of genes rarely lie as points
about a single defining set of parameters; rather, they fall
along a range of parameters (for example, of codon usage
bias). At high stringency (significance threshold), the JS
clustering algorithm may cause native genes, or the genes
from a donor organism, to be sorted into more than one
class representing this spectrum; relaxing the stringency
may raise the misclassification error and lead to the
undesirable merger of classes of genes. Gene-context
information can be used to identify classes of genes that
may have originated from the same source organism. If a
gene belongs to class ¢; whereas the two flanking genes are
grouped in class ¢;, we define this adjacency as a link
between classes ¢; and ¢;. To quantify the significance of
this link, we define P(c;..c)) as,

1 |:N(Ci —¢) | N — c[):|

Pao9d)=3"Tw 7 1o

6
2

where N(c;/—c;) is the total number of connections from
class ¢; to ¢; and L(c,) is the number of genes in class c,.
If P(ci.c;) exceeds an established threshold, the genes
comprising the two classes are physically associated within
the genome, perhaps due to common origin; the genes
from these two entropic classes are assigned to a single
logical class.

In the next post-processing step, we again use the
genome context information of genes to refine the
composition of gene classes. Here, a gene is reassigned
to the class of its neighbors only if it plausibly lies within
that class. Specifically, if a gene belongs to logical class ¢;
whereas the immediate neighbors of this gene are grouped
in logical class c;, this gene is reassigned to class c;, if and
only if it is either not atypical or only slightly atypical
with respect to class ¢; (determined by slightly relaxing
the stringency) as inferred within a hypothesis testing
framework.

Existing parametric methods for alien gene identification

Other parametric methods for foreign gene detection were
coded as follows. Karlin (17) suggested dinucleotide bias
as a genome signature, pxy =fxy/fx/y, assessed through
the odds ratio, fxy is the frequency of the dinucleotide
XY and fx is the frequency of the nucleotide X. If
the dinucleotide average relative abundance difference
between gene g and genome G (average over all genes)
defined as 8(g, G) = 1/16 Y yy |oxv(g) — pxv(G)| exceeds
an established threshold, the gene is classified as
foreign. The Karlin’s Codon Usage Difference (18)
between gene g and genome G was quantified as
B(g|G) =Y PA(X_ s —f€]), f. is the frequency of
codon ¢ nérmalized in the respective synonymous codon
group a, P, is the normalized frequency of amino acid a.
If B(g|G) exceeds an established threshold, g is classified
as a foreign gene.

Hayes and Borodovsky (19) developed a k-means gene
clustering algorithm using Kullback—Leibler distance,

DEIC)=1/2" 14 Y oea (S2T0g (2 /1) + 1 Jog (fE/15)),

as a measure of codon usage difference between gene g
and cluster C to decide the algorithm convergence (7, is
the size of the ath group of synonymous codons, f, denotes
the normalized frequency of codon ¢ as described above).
Initial seeds for typical and atypical clusters were obtained
from GeneMark predictions, each gene was reassigned
to the cluster with the closest cluster center determined
through D, cluster centers were recomputed and this
process was repeated until convergence. Our recently
developed AIC-based gene clustering algorithm is similar
in spirit to our proposed JS divergence based gene
clustering method, gene classes are populated in a
hierarchical agglomerative clustering fashion, however,
here clustering is decided in a model selection
framework. We used a generalized version of AIC,
AIC = =2In(L) + (1 +n/ny)K, as a stopping criterion
for clustering [L is the maximum likelihood, K is the
number of free parameters, 7 is the sample size and ng is
the tuning parameter (16)]. Garcia-Vallve et al. (20) used
multiple metrics, namely G+C content, codon and amino
acid usage to compile putative horizontally transferred
genes in their HGT-DB database. The machine-learning
method Wn-SVM uses a one-class support vector
machine for identifying alien genes (21). Alien-Hunter
detects putative alien genes using variable order motif
distributions (22).

Assessment parameters for evaluating the parametric methods

For assessing the performance of the parametric methods
in identifying the foreign genes, we obtain the misclassi-
fication error rates as Type I error = FN/(TP + FN) and
Type II error = FP/(TP + FP), where TP =true positives,
FN =false negatives and FP =false positives (note that
conventionally TP, FN and FP are interpreted in
accordance with a null hypothesis testing, here without
loss of generality, positives and negatives respectively
mean the genes declared as foreign and native by a
method). Type I error is the percentage of foreign genes
that were misclassified as native, whereas Type II error is
the percentage of predicted foreign genes that were
actually native. The average value of Type I error and
Type II error was used as a single error rate parameter.
JS- or AIC-based clustering methods yield one class
comprising the majority (60-95%) of genes in the genome;
the remaining genes are distributed among several smaller
classes. Native genes are represented by the largest class
while the foreign genes are, by definition, identified as
the residents of all other classes. Artificial genomes
contain ‘foreign’ gene with known sources; donor-specific
misclassification error rate is defined as the percentage
of genes from a donor organism misclassified as native
genes. Classes generated by the clustering methods
were assessed using two parameters: class abundance
and class purity. Class abundance is the percentage of
genes from a source organism identified correctly in a
respective class (the sensitivity with respect to the class).
Class purity is the percentage of genes in the class
correctly assigned to that class (the specificity with respect
to the class).



RESULTS
Using entropic divergence to classify genes

We posit that both native and foreign genes in bacterial
genomes will fall into multiple classes. That is, foreign
genes will not only be atypical, but they may also be
segregated into groups of similar genes (Figure 1). As a
result, the identification of atypical genes can rely both on
their dissimilarity to native genes as well as on their shared
characteristics. These features may help delimit the
boundaries between typical genes and sets of atypical
genes. We employed our proposed JS gene clustering
methods to segregate genes in bacterial genomes into
classes. As described in the Materials and Methods
section, all genes from a genome were initially assigned
to N single-gene classes (Table 1, row 1). The most similar
classes merged recursively until the classes were distinct
from each other at a given significance threshold. A trade-
off between Type I and Type II errors is evident by
changing the stringency used to discriminate the gene
classes. As the number of classes decrease, more native
genes are identified correctly, but more foreign genes are
incorrectly deemed native (Table 1). Clustering stops
prematurely at high significance thresholds, generating
numerous potentially similar classes; at low significance
thresholds the distinction between classes is high, how-
ever, the likelihood of undesirable merger of classes
increases. Optimum performance is defined as the thresh-
old setting which minimizes the mean error.

We used three criteria for class merger: codon position
specific nucleotide composition (JS-N) and dinucleotide
composition (JS-DN) as well as codon usage bias (JS-CB);
their relative performance is shown in Table 2. Depending
on genome composition and the threshold parameters,
between 6 and 11 major classes were typically obtained;

Nucleic Acids Research, 2007, Vol. 35, No. 14 4633

additional classes contained very few genes. For all
methods, decrease in Type I error caused an increase in
Type II error and vice versa (Figure 2). JS-based clustering
methods, which form many atypical gene classes, generally
outperform other methods which sort genes into a single
foreign gene class (Table 2; Figure 2), including Karlin’s
dinucleotide (17) and codon usage bias methods (18), and
Hayes and Borodovsky’s k-means method (19). Gene
classification methods based on the AIC, which also allow
for the assignment of atypical genes to more than one class
(9), also performed well.

Because native genes show a spectrum of composi-
tional properties, we must decrease the significance
threshold to allow them to join the large class of native
genes (Table 1). Yet this simple change in threshold may
also allow foreign genes to be included, leading to
increased Type I error. This coupling of Type I and
Type II errors can only be circumvented if other
information is used to perform class merger. That is, we
must only merge classes of weakly atypical native genes to
the largest class, while leaving classes of weakly atypical
foreign genes separate. To do this, we rely on gene
position to perform a differential class merger, termed
class reassignment.

Differential class merger and refinement using positional
information

For reassigning foreign genes misclassified as native and
native genes misclassified as foreign, we used genome
context information, a technique developed by Lawrence
and Ochman (7,8). There, reassignment of native or
foreign genes was performed through human intervention
by examining the class identity of genes flanking
ambiguously assigned, weakly atypical genes. If a small

Table 1. Grouping genes in Artificial Genome I using JS entropic divergence, with codon usage bias as the discriminant criterion; values are averages

of 10 trials

Significance Number of Number of genes Percent of genes Type I error (%) Type II error (%) Mean error (%)
threshold classes in largest class in largest class

1 4000 1 0.025

0.99 446.7 69+9 1.74+0.2 na® na na

0.95 258.8 234426 5.8+0.6 0.01£0.02 73.5£1.0 36.7+0.5
0.9 185.4+6.0 452 £35 11.3+£0.8 0.01£0.03 71.94+0.9 359404
0.8 123.1£5.6 782439 19.5+£0.9 0.07£0.06 69.1£1.0 34.5+0.5
0.7 90.5+3.4 1203 +34 30.0+£0.8 0.2+0.1 64.5+1.1 32.3+0.6
0.6 69.8£4.5 1473 +34 36.8+0.8 03+0.2 60.7£1.3 30.5+0.7
0.5 56.0£3.6 1712+ 41 428 +1.0 0.5+0.2 56.7+1.1 28.6+0.5
0.4 443433 1912 +37 47.8+0.9 0.7+0.2 52.6+1.1 26.7+0.5
0.3 352420 2114 +£35 52.84+0.8 1.0+0.2 47.7+£1.2 24.4+0.6
0.2 27.4+£22 2290+ 36 57.2+£0.9 1.3+0.2 42.6+£1.2 21.9£0.6
0.1 22.0+1.5 2462 £33 61.5+0.8 2.0+0.3 36.6+1.4 19.3+0.8
1072 154+1.5 2724 +43 68.1+1.0 42+0.7 253+1.4 14.8+£0.9
1072 128+1.2 2848 +34 71.2+0.8 62+1.4 19.0+£1.8 12.6£0.9
107* 11.6+1.2 2934 £33 73.3+0.8 82+1.7 144+0.8 11.3+£0.9
10°° 10.9+1.1 2986 + 35 74.6+0.8 10.3+2.2 12.04+0.9 11.1+1.2
107¢ 11.0£1.1 3020 £ 35 75.5+£0.8 122+£2.5 10.9+0.9 11.6£1.5
1077 10.6+1.0 3049 +39 76.24+0.9 13.9+3.0 99+1.1 11.9+1.7
10°* 10.0£1.3 3079 £45 76.9+1.1 16.3£3.5 9.5+1.3 129+2.1
1077 9.4+09 3117£52 779+1.3 18.1+£3.7 77+£1.1 129+2.0
10" 9.0£0.7 3160+ 54 79.0£1.3 21.4+4.1 6.9+1.2 14.2+2.1
0 1 4000 100

“Not applicable; the largest clusters did not correspond to native genes.
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Table 2. Error rates of the methods for foreign gene detection

Classification method® Artificial Genome 1

Artificial Genome II

Threshold Type 1 Type 11 Mean Threshold Type 1 Type 11 Mean

error (%) error (%) error (%) error (%) error (%) error (%)
JS-N 0.25 13.1+£4.0 9.9+2.6 11.5+1.9 0.2 17.3+4.6 15.7+3.2 16.5+1.9
JS-N pos 0.25 124£43 34+1.2 7.9+£2.0 0.2 18.9+4.9 24+1.1 10.6+2.1
JS-DN 0.4 8.4+7.7 10.3+1.8 9.3+3.1 0.2 13.2+3.9 8.1+1.1 10.6+£2.0
JS-DN pos 0.4 9.1+£8.6 48+19 7.0£3.5 0.4 11.1£3.6 54+2.1 8.2+£25
JS-CB 107° 10.3£2.2 12.04+0.9 1.1+1.2 1078 14.8+2.5 17.6+1.8 16.2+1.6
JS-CB pos 1072 4.1+0.6 42+1.5 4.1+0.9 107? 8.1+24 6.2+2.0 71+14
AIC-N 0.5 12.5+6.1 10.8£6.9 11.6£2.6 0.4 159+3.4 9.6+£2.3 12.8£2.1
AIC-N pos 0.5 11.4+6.5 6.5+5.6 89+23 0.4 16.1£3.0 34+13 9.7+1.8
AIC-DN 1.9 16.3+6.7 5.7+6.1 11.0£2.4 1.8 14.4+£4.0 5.6+4.4 10.0£2.5
AIC-DN pos 1.4 13.0+6.5 4.1+£4.2 8.6+2.3 1.2 9.8+5.8 6.4+11.2 8.1+£52
AIC-CB 1.5 19.4+5.0 4.7+4.0 12.0+£2.9 1.8 16.9+6.4 13.4+10.8 152+£55
AIC-CB pos 1.1 16.0+£2.0 23+1.9 92+14 1.6 19.6+6.8 4.0+4.1 11.8+3.5
Karlin’s dinuc 0.15 342435 28.6+0.8 31.4+2.0 0.12 17.3+2.3 56.4+1.5 36.9+1.7
Karlin’s dinuc pos 0.15 40.6 4.0 9.6£0.8 25.1£22 0.13 31.3+£4.0 25.8£2.0 28.6£2.9
Karlin’s codon 0.49 18.9+4.4 16.1£0.8 17.5+2.5 0.48 20.7+£2.8 298+1.5 253+£2.0
Karlin’s codon pos 0.47 19.3£5.1 7.4+£0.7 13.3£2.7 0.43 147+£3.4 21.0+1.4 17.8+£2.2
k-means N/A 23.2+4.0 44+1.5 13.8+2.4 N/A 41.2+6.4 42.6 £27.7 41.9+16.2
k-means pos N/A 21.7+4.4 45+1.6 13.1£2.6 N/A 44.0+£6.4 28.6+£19.6 36.3+124

The methods were applied to identify atypical genes in an artificial E. coli genome with foreign genes from five or ten donor organisms (see text for
detail) *JS-N, JS-DN and JS-CB denote Jensen—Shannon-divergence-based gene clustering method using respectively the nucleotide composition,
dinucleotide composition and codon usage bias as the discriminant criterion. Similarly for AIC-based gene clustering method. ‘pos’ denotes the use of

positional information.

number of genes from an otherwise contiguous set of
foreign genes were identified as native, they were
reassigned into the foreign class by invoking the rule of
adjacency. In our case, positional information can be used
to map the JS methods’ generated gene classes originating
from the same source organism and vet the incorrect
assignments of genes to the classes. We used the class
linking measure P(c;..c;) to merge classes obtained at strict
stringency on the basis of relative positions of their
constituent genes and not on their entropic divergence. If
P(c;..cj) exceeded an established threshold, the classes ¢;
and ¢; were merged; this process was iterated until
the merger of any two classes was not legitimate.
The threshold was set to 0.3 after testing on a number
of data sets.

The composition of classes was also refined using gene
context information. We examined genes that were
flanked by genes both belonging to a different class
(Figure 1B); if such a gene was reasonable member of that
different class—that is, if it had sufficient affinity for that
class inferred within a hypothesis testing framework—the
gene was reassigned to that class. We repeated this process
until no gene reassignment was significant. This process
would serve to purify classes, enabling them to add
members that were sufficiently different so that they were
misclassified, an inevitable result of classes of genes which
overlap in sequence features (Figure 1B). For Karlin’s
methods, the refinement of the predictions using
positional information was done in a multi-threshold
approach, where genes whose features lay between the
‘clearly typical’ and ‘clearly atypical’ boundaries were
reclassified in this way. Although Hayes and Borodovsky’s
clustering method does not use a threshold to discriminate

between typical and atypical genes, we used the distance
from class center to discriminate between genes which
are strongly associated with the class and those which are
weakly associated.

The use of gene context information reduced remark-
ably both the Type I and Type II errors for all three JS
methods, visualized in Figure 2 as curves that approach
the intersection of the axes; the JS-CB algorithm showed
the most improvement. The JS-CB method also
balanced the Type I and Type II errors better than other
methods at the optimal thresholds, and the variances in
the errors generated by JS-CB were much lower compared
to other clustering methods (Table 2). Note that the
inclusion of positional information makes the JS-CB
method more efficient than the JS-DN approach which
had earlier yiclded consistently lower misclassification
error rates; the decrease in the misclassification error rates
of the JS-CB method is nearly 3-fold on Artificial Genome
I and 2-fold on Artificial Genome II. Results were not
improved if class refinement preceded class reassignment
(data not shown).

Using positional information, we also see that the
margin of improvement in JS-based classification methods
was higher than in AIC-based gene classification methods.
The variances in error rates of both AIC-CB and AIC-DN
methods were also much higher. The AIC methods are
thus sensitive to the thresholds used; as a result, an
optimal threshold, one which minimizes the error values
with significantly low variances, is difficult to realize.
The use of positional information also increased the
accuracy of Karlin’s, and Hayes and Borodovsky’s
methods, although not to the same degree as gene-
clustering algorithms (Table 2). That is, positional
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Figure 2. Trade-offs in error rates of foreign gene identification in
artificial genomes. JS-N, JS-DN and JS-CB denote Jensen—Shannon
divergence-based gene clustering method using respectively the nucleo-
tide composition, dinucleotide composition and codon usage bias as the
discriminant criterion. AIC stands for AIC-based gene-clustering
methods. (A) Artificial Genome I, with 5 donors. (B) Artificial
Genome II with 10 donors.

information became more useful when atypical genes were
assorted into multiple classes.

Effect of donor genome identity

We would anticipate that genes with markedly different
compositional properties would be the easiest to detect as
foreign. We examined the performance of JS methods as a
function of donor genome and found that all three
discriminant criteria served well in detecting gene transfer
from four of the donors in Artificial Genome I, where the
misclassification error rate (percent of genes from a
donor genome misclassified as native) was less than 5%
(Table 3). Genes from the artificial B. subtilis genome were
misclassified at much higher rates by all methods, with the
JS-CB method performing best. These results show that
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the error rates are also functions of the discriminant
criterion and the gene number. We anticipate that
combining the methods using more than one discriminant
criterion may compensate for any one metric weaknesses,
as was seen for AIC-based methods (9).

By their very nature, the accuracy of JS methods in
detecting classes of atypical genes increases as the number of
genes in each class increases. To determine if the strong
performance of the JS methods in detecting most atypical
genes was a result of gene numbers, we compared results for
Artificial Genome I to those for Artificial Genome II,
wherein fewer genes were selected from each of a greater
number of donor genomes. Here, all JS methods performed
well (<10% misclassification error) in discriminating foreign
genes from six donors; only JS-CB was most consistent in
classifying correctly genes from A. fulgidus, N. gonorrhoeae
and Synechocystis and none of the methods performed well
on genes from B. subtilis (Table 3). In most cases, the
methods generated higher misclassification error rates than
those for Artificial Genome I. The performance of the AIC
gene clustering methods in classifying the genes of donor
genomes is shown in Supplementary Table 1. While AIC-
DN performed better than AIC-N and AIC-CB, it could not
classify the majority of the B. subtilis and N. gonorrhoeae
genes correctly. Overall, JS-CB emerged as the most effective
method in classifying the genes as foreign or native, being
least affected by the identity of the donor genome.

Identification of distinct atypical gene classes in a genome

To assess the efficiency of JS methods in grouping genes
contributed by different donor organisms, we examined two
accuracy parameters—class abundance and purity—after
the gene classes were refined using positional information
(Table 4). While all the JS methods grouped the genes that
have arrived from 4 donors in the Artificial Genome I into
distinct classes, JS-CB performed the best as measured by
both accuracy parameters. For the most part, all JS
methods generated classes with a very high degree of
purity (>90%); class purity was highest where genes arrived
from compositionally distinct donors. Only JS-CB could
group well the B. subtilis genes (class abundance and purity
were both greater than 80%). Even when Type 11 error was
relatively high—for example, when many B. subtilis genes
were misclassified as ‘native’ by JS-N and JS-DN-—those
genes that were identified as ‘foreign’ were placed into a
relatively pure class (~80% B. subtilis genes). With
Artificial Genome II, the performance of JS-N dropped
significantly, with only three gene classes having class
abundance and purity above 70%. The JS-N method
grouped R. solanacaerum and S. meliloti genes (class
abundance and purity in the range of 60-70%), but it
failed to cluster genes originating from five genomes, even if
they were identified as foreign (Tables 3 and 4). JS-DN
performed better, grouping genes from seven donor
genomes. The JS-CB method performed even better,
classing the genes of eight donors very well (class
abundance and  purity both  exceeded  70%),
N. gonorrhoeae less efficiently, and B. subtilis genes
poorly. These results show that the JS methods, particularly
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Table 3. Misclassification error rates of Jensen—Shannon-divergence-based clustering methods in detecting foreign genes in artificial E. coli genomes

Artificial Gene Donor Artificial Genome I

Artificial Genome II

Percent Classification method Percent Classification method
contribution contribution
JS-N JS-DN JS-CB JS-N JS-DN JS-CB

A. fulgidus 7.0 5.7+2.7 0.1+0.1 0.3+0.3 1.0 32.0+£19.8 1.3+£3.3 0.6+1.8
M. jannaschii 6.0 0.0+0.1 1.1+0.7 0.240.3 1.0 1.0+1.6 2.0+2.1 0.8+1.2
B. subtilis 5.0 56.0+18.8  38.3+323 18.1+6.4 1.0 66.2+21.0 77.5+£27.0 60.8+38.0
R. solanacearum 4.0 3.5+3.5 34430 33+£1.0 2.0 1.0+1.1 2.8+33 3.1+£2.0
H. influenzae 3.0 1.4+1.9 2.14£22 33+£22 20 1.9+2.0 3.0£2.0 44439
D. radiodurans 2.0 44+3.6 4.8+4.6 21422
N. gonorrheae 1.0 66.7+31.6 58.2+31.2 36.4+13.0
S. meliloti 2.0 53445 38+23 1.84+2.1
Synechocystis 1.0 99.6+£0.8 33+49 12.5+8.7
T. maritima 2.0 82439 1.1+0.9 0.84+0.9
Type I error (100-sensitivity) 124+43 9.1£8.6 4.1+£0.6 18.9+4.9 11.1£3.6 8.1+24
Type 11 error (100-specficity) 34+1.2 48+1.9 42415 24+1.1 54+2.1 6.2+2.0
Mean error 7.9+2.0 7.0+3.5 4.1+0.9 10.6 2.1 82+2.5 7.1+£14

The positional information of a gene was used to further minimize the classification errors.

Table 4. Assessment of the ability of Jensen—Shannon-based gene clustering methods in identifying the genes from a donor organism in the artificial

E. coli genomes as a distinct group

Artificial gene donor JS-N

JS-DN JS-CB

Class abundance® Class purity®

Class abundance

Class purity Class abundance Class purity

Artificial Genome I: 5 donors

A. fulgidus 92.9+2.8 92.2+29 93.4+2.1 99.8+0.2 99.4+0.5 99.6+0.2

M. jannaschii 96.0£2.2 99.54+0.3 88.0£3.5 99.8£0.1 97.8+£1.5 99.6+0.3

B. subtilis 33.5+16.8 81.0+5.9 55.2+31.0 75.0+£7.2 80.0+7.0 84.5+9.9

R. solanacearum 92.8+4.4 98.9+1.5 86.1+3.2 98.4+2.1 94.8+3.8 98.2+1.6

H. influenzae 92.8+2.1 90.7+6.4 82.2+52 96.8 £2.8 91.1+4.7 97.5+1.5

Artificial Genome II: 10 donors

A. fulgidus 8.74+26.2 56.5+0.0 80.3+8.1 98.8+2.2 86.1+£9.9 93.7+6.7

M. jannaschii 84.7+14.3 98.3+£2.8 77.0+8.9 99.5+1.4 94.34+5.7 98.3+2.3

B. subtilis 0.0+0.0 - 11.4+23.1 63.2+6.4 17.3+£30.2 -

R. solanacearum 69.2+28.5 61.2+10.8 66.9+23.4 77.4+18.1 79.1+14.8 83.5+15.1
H. influenzae 93.2+54 95.1+£3.6 77.3+£6.8 89.8+6.1 88.8+5.6 972423

D. radiodurans 15.1+£28.3 63.1£17.8 36.4+34.0 80.2+20.2 72.3+20.1 89.6+11.0
N. gonorrheae 22.0+£29.2 67.7+£15.4 28.6£29.8 78.8+11.7 58.2+13.5 72.7+6.5

S. meliloti 62.1+40.7 67.1£13.0 77.8+£11.2 85.4+9.8 85.7+£23.6 84.1+7.2

Synechocystis 0.0+0.0 - 87.2+6.6 89.1+5.9 88.3+6.1 88.6+10.9
T. maritima 81.1£27.5 71.5+9.6 89.8+4.0 97.1+£4.0 96.6 1.7 94.1+4.1

“The percentage of total contributory genes from a source organism identified correctly in a respective class.

°The percentage of genes in a class correctly assigned to that class.

the JS-CB, can be powerful tools for identifying genes that
originate from the same donor organism.

The performance of the AIC gene clustering method in
classing the genes from donor genomes is shown in
Supplementary Table 2. None of the AIC methods seemed
proficient in grouping the B. subtilis genes from Artificial
E. coli 1. On Artificial E. coli 11, the performance went worse
with AIC-DN grouping together majority of the genes of
only four genomes. The performance of AIC-CB was no
better; AIC-N, however, performed comparably with JS-N.
Overall our analysis shows that JS methods are most
consistent and efficient in classing the genes in genomes.

Phylogenetic breadth of potential donor classes

As expected, classification accuracy increases with the
number of genes in each class. In artificial genomes,

classes are represented by genes from a single donor
species. Yet genuine genomes will likely not receive
multiple transfer from any single donor, although it may
experience multiple events from related donors. Because
LGT is believed to occur more frequently among
evolutionary closely related organisms (11,23), the array
of donor genomes may indeed be non-random. More
importantly, differences in genome composition increase
as a function of the evolutionary distance between species,
and related genomes are compositionally similar. As a
result, JS methods should sort genes from related donors
into one or few classes.

To assess how the effectiveness of the JS entropy
clustering depends on the evolutionary distance between
donor and recipient genomes, we performed simulated
gene transfers into an artificial E. coli genome using genes
from genomes modeled after the related y-proteobacteria



as donors (Figure 3). Salmonella enterica, being the closest
to the E. coli among the five donors, had most of its genes
(~80%) misclassified by JS-CB. That is, JS methods
could not distinguish E. coli genes from S. enterica genes,
so that these genes would form a single class if they were
both introduced into a foreign genome. Genes from
artificial genomes constructed from other members of the
Enterobacteriaceae were also found to be compositionally
similar to E. coli genes (Figure 3), while genes from more
distantly related y-proteobacteria were distinguished more
efficiently. Thus, JS methods do not form species-specific
classes; rather, genes from any member of a bacterial
family would be placed into a single compositional class.

Application of entropic clustering to genuine genomes

Although artificial genomes mimic the genic complexity of
genuine genomes, it is difficult to model the positional
distribution of foreign genes. Therefore, it is unclear if the
advantages of using positional information will be seen in
genuine genomes. To examine this, we applied the best
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Figure 3. Performance of the Jensen—Shannon divergence-based gene
clustering method in identifying the foreign genes introduced from
artificial y-proteobacterial genomes into an artificial E. coli genome.
The percentage of the acquired genes was varied from 10 to 30% of the
genome.
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performing method, JS-CB, to the well-characterized E.
coli K12 genome. A set of putative horizontally trans-
ferred genes (‘HT’ genes henceforth) was defined as those
present in the E. coli K12 genome but absent from the
S. enterica LT2 genome. This yielded 891 HT genes (very
short genes, those with length <300nt, were not con-
sidered). Given the vagaries of genuine data, this set is
known to be imperfect in two ways. First, foreign genes
acquired before the divergence of E. coli and S. enterica
will be excluded, leading to some foreign genes being
mislabeled native. Second, homologs of native genes lost
from the S. enterica genome will be included in our test
set.

Using this set of HT genes as a guide, we observed that
the JS-CB method performed well (Table 5). At a baseline
significance threshold of 0.05 (Supplementary Table 3),
the number of false predictions was high due to several
small classes of native genes misclassified as foreign (mean
error ~49%). Class reassignment caused a significant drop
in the number of false predictions at the cost of fewer true
predictions (mean error 42%). Upon class refinement, the
mean error decreased further to 39.6%. An equivalent
number of predicted foreign genes was obtained at a
significance level of 107 without using positional infor-
mation, but the mean error was 59.5%. Thus the use of
positional information results in remarkable improvement
in the HT gene detection in genuine genomes, as predicted
from the artificial genome simulations.

Using this benchmark set of putative foreign genes,
the JS-CB method also outperformed other parametric
methods for foreign gene detection (Table 5). Karlin’s
codon usage method (18) identified only 50 genes
(>600nt) as the laterally transferred candidates; while
specificity was high, sensitivity was very low. Garcia-
Vallve et al. (20) have compiled 306 putative HT genes of
E. coli K12 in their HGT-DB database, their method was
also not found to be sensitive. We also tested two recently
proposed parametric methods for LGT detection, Wn-
SVM (21) and Alien-Hunter (22). Alien-Hunter had a
comparatively lower Type I error as it identified highest
number of foreign genes among all methods but this came
at the cost of very high number of false predictions.
Wn-SVM generated less false predictions but could
identify fewer foreign genes We also tested the best
performing method among the AIC methods (AIC-DN)
which performed slightly better than Wn-SVM, generat-
ing less of false predictions at equivalent number of
true predictions. JS-CB achieved much better accuracy

Table 5. Performance of the methods for lateral gene transfer detection in identifying the putative horizontally transferred genes in the E. coli K12

genome

Parameter Karlin’s codon usage (18) HGT-DB (20)  Wn-SVM (21)  Alien Hunter (22)  AIC-DN. (9) JS-CB
Number of predicted HT genes 50 (>600 nt) 306 490 1239 464 639
True positives 45 223 302 504 306 449
False positives 5 83 188 735 158 190
False negatives 577 668 589 387 585 442
Type I error (%) 92.76 74.97 66.10 4343 65.65 49.60
Type 1I error (%) 10.0 27.12 38.36 59.32 34.05 29.73
Mean error (%) 51.38 51.04 52.23 51.37 49.85 39.66

The ‘positives’ and ‘negatives’ respectively mean the genes declared as foreign and native by a method.
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than other methods, identifying correctly 449 HT genes at
the cost of 190 false predictions. While the mean errors of
other methods were close to 50%, it was remarkably less
by more than 10% for JS-CB. While these numbers are
a function of the data set analyzed, they suggest that the
JS-CB method is a promising approach when compared to
other commonly used approaches.

DISCUSSION
Statistical significance of atypical gene identification

Current parametric methods select a threshold to dis-
criminate between foreign and native genes. While these
thresholds are often arbitrary, our proposed entropic
clustering method discriminates between the gene classes
in the framework of statistical significance. As a caveat,
there are multiple hypothesis testing problems involved,
namely the repetition of the test in each iteration step and
over the hierarchy. Therefore, appropriately stringent
thresholds must be chosen to compensate for multiple
tests. Although sporadic rejection of the null hypothesis
when using multiple tests results in failure to merge
classes, these classes may be merged in subsequent steps
using positional information. Although the AIC-based
approach we introduced earlier (9) also has a strong
theoretical underpinning, the thresholds in the generalized
AIC cannot be rigorously described. Among the para-
metric methods of foreign gene detection, to our knowl-
edge, the JS clustering methods are the only methods that
classify atypical genes in the framework of statistical
significance.

Use of genome position information decreases remarkably
both Type I and Type II errors

A shortcoming of parametric methods is their difficulty
in identifying weakly atypical genes. The trade-off is
clear: classifying only strongly atypical genes as foreign
decreases false predictions, however, this comes at the
expense of many foreign genes misclassified as native, a
more relaxed criteria increases the sensitivity of a method
at the expense of false predictions. This inherent weakness
limits the abilities of this class of methods. Through this
study, we propose gene context information as a means to
address this issue. The utility of positional information
increases when the confidence of typical and atypical gene
classes increases. That is, optimal assignment occurs at
higher stringencies ensuring the purity of both typical and
atypical gene classes, at the expense of creating a larger
number of classes. In a two pronged approach (class
reassignment followed by class refinement), the misclassi-
fication of foreign genes was reduced by allowing
weakly atypical native genes to join the native gene
class by virtue of their positions, not by relaxing the
criteria for class merger. This also serves to reduce the
misclassification of native genes as weakly atypical foreign
genes join their classes in a similar fashion (Supplementary
Table 4).

Grouping similar genes improves foreign gene identification

We also observed that positional information works
synergistically with gene clustering methods reducing the
classification errors better than for methods which classify
the genes only as native and foreign (Table 2). To examine
this further, we carried out numerical experiments where
genes from all the small classes generated by JS-CB were
pooled as a single foreign class and the largest class
represented native genes. Class refinement was then done
using the positional information of genes. By minimizing
the mean error over the parameter space of the method,
comparison was made with cases when class refinement
was done for all method-generated classes and also when
full power of positional information (both class reassign-
ment and refinement) was used for these -classes
(Supplementary Table 5). The Type II error decreased
significantly causing a decrease in mean error when class
refinement was performed on all method- generated
classes as opposed to two classes (typical and atypical).
Both Type I error and Type II error decreased remarkably
when class reassignment followed by class refinement was
done at strict stringencies. In addition, since JS methods
effectively group genes from common donors (Figure 3),
they may be useful in helping identify potential donors
for foreign genes in bacterial genomes.

Implications in gene identification

Hayes and Borodovsky (19) developed a k-means algo-
rithm for partitioning a gene-set into primarily two classes
(k=2). The gene models trained on these classes were then
incorporated in a prokaryotic gene finder, GeneMark-
genesis, where the use of two gene classes improved
considerably the identification of genes, particularly those
with atypical composition. The success of such prediction
algorithms critically depends on the purity of the gene
classes. The value of ‘k” is not known a priori and k=2
may not be best option to model genic complexity, as
shown by our experiments on chimeric artificial as well as
genuine genomes. Our hierarchical agglomerative gene-
clustering algorithm provides a solution: gene classes grow
logically starting with single genes and the process is
halted when the distinction between the gene classes is
deemed statistically significant. Native genes are identified
as belonging to the single largest class that has typically
~60-95% of the total genes, and foreign genes are divided
into several small classes. It should be possible to build a
gene model for each gene class, which will likely improve
the accuracy of gene identification.

CONCLUSIONS

In comparison to the frequently used parametric methods
for foreign gene detection, as well as our previously
devised AIC-based methods, our proposed JS gene
clustering methods were found to be much robust and
consistent in classifying foreign genes in artificial as well as
genuine genomes. Among the three JS methods, JS-CB
proved to be most efficient not only in identifying foreign
genes, but also in grouping genes contributed by distinct
donor organisms as distinct classes. In pursuance of our



long- term goal of quantification of lateral gene transfer in
prokaryotes, we intend to exploit this ability of the JS
methods in identifying the sources of gene transfer in
prokaryotes. Development of the highly accurate gene
classification methods has brought us closer to realizing
the genome scale quantization and characterization of
lateral gene transfer events in prokaryotes.

SUPPLEMENTARY DATA
Supplementary Data is available at NAR Online.
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