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A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps
for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria
in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275
cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species
based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven
vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published
niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A.
quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of
previous models. The results of the niche models are incorporated into three relative risk models which assume different
ecological interactions between vector species. The ‘‘additive’’ model assumes no interaction; the ‘‘minimax’’ model assumes
maximum relative risk due to any vector in a cell; and the ‘‘competitive exclusion’’ model assumes the relative risk that arises
from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human
population density. Relative risk maps are produced from these models. All models predict that human population density is
the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the
limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol
developed here can be used for any other vector-borne disease.
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INTRODUCTION
A central theoretical goal of epidemiology is the construction of

spatial models of disease prevalence and risk, including maps for

the potential spread of infectious disease [1,2]. In particular, Snow

et al. [3] have emphasized the need for risk maps for malaria in

Africa which accounts for an estimated 85% of the 1 million

annual deaths due to this disease [4]. Risk maps can be used to

identify appropriate strategies of response to disease outbreaks

including targeted vaccination [5] and vector, reservoir, or agent

control [6]. Risk maps have been constructed using a variety of

techniques including reports of disease cases [7] and distributions

of disease agents, reservoirs, or vectors, based on surveys and

expert opinion [8]. In recent years, these methods have been

extended to use ecological models to predict the potential spatial

spread of disease [9]. The use of ecological niche models for

quantitative prediction of geographical distributions of agent,

reservoir, and vector species has been advocated to augment

traditional mapping methods such as splining and kriging [9].

Here we report a systematic attempt to construct niche models for

all vectors of malaria in Africa for which data are available.

Niche models predict the ‘‘fundamental niche’’ of a species

which identifies the region in ecological space that the species

would occupy were its movement unrestricted [9,10]. Within

biodiversity studies, in which the concern is typically with the

conservation of the extant habitat of a species, this fundamental

niche (representing a potential distribution) is typically restricted to

a realized geographical niche by using additional information such

as confirmed occurrence records for a species within each accepted

contiguous piece of modelled suitable habitat [10]. Such a choice

is conservative in the sense that a species may occur outside its

predicted realized niche. In typical contexts of biodiversity

conservation planning such conservatism is appropriate; it ensures

that areas selected for conservation management are maximally

likely to contain the species predicted for them. However, in

epidemiological contexts, especially if the interest is in identifying

risk, the geographical extent of the fundamental niche is more

relevant as this range defines the areas to which agent, reservoir,

and vector species may potentially spread because of ecological

suitability. (This means that, in epidemiological contexts, the

fundamental niche or potential distribution should not be clipped

to a smaller realized niche in most cases.) In this analysis,

fundamental niches as predicted by niche models are used as the

basis for the construction of relative risk maps.

We construct niche models for 10 Anopheles species recognized as

vectors of malaria in Africa using a maximum entropy method

based on known species’ occurrences and environmental layers.

These niche models predict geographic distributions of the species.

For seven of these species the results presented here appear to be the

first niche models reported in the literature. We used the Maxent

software package [11] for the maximum entropy modelling. Within

biodiversity studies, in which niche modelling is a standard

technique [12–16] this maximum entropy method has emerged as

one of the three most reliable techniques for predicting species’

distributions [11,17]. The other two most reliable methods are
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genetic algorithms (GARP [18]) and regression trees [19]. The

advantage of Maxent over GARP is that it is much faster and allows

for the simultaneous modelling of an indefinite number of species.

The advantage of maximum entropy methods over both genetic

algorithms and regression methods is that Maxent predicts relative

probabilities of occurrence rather than the simple presence or

absence of a species. This permits a finer (more nuanced) risk

assessment than what can be achieved from presence-absence

predictions alone. Our analysis appears to be the first use of Maxent

in an epidemiological context.

Using the niche models, spatial information on human

population densities, and the human blood index (HBI) values of

Anopheles species for which these values were available, we

construct preliminary relative risk maps for malaria in Africa.

These maps report the relative risk of malaria occurrence at

different geographical locations. We discuss in detail what data are

necessary to make such maps more accurate and how our methods

can be generalized to other vector-borne diseases.

There have been five recent vector-based attempts to construct

risk maps for malaria. Kiszewski et al. [8] produced a global risk

map based on the stability of malaria parasite transmission. They

divided the world into 260 malarious regions and then identified

the dominant vector in each region. The dominant vector was

defined as the most abundant Anopheles species in the region that

was a malaria vector, contained sporozoites frequently, and fed

predominantly on humans. The stability index of a region was

defined using the human feeding rate, daily survival rate, and

length of the extrinsic incubation period of the dominant vector.

The effects of temperature and precipitation on these parameters

were quantified and environmental data were used to produce

a worldwide projection of malaria transmission.

Lindsay et al. [20] used nonlinear regression to relate known

occurrences of A. arabiensis and A. gambiae to environmental

parameters. The regression was used to predict the relative

proportion of the two species throughout Africa. Kuhn et al. [21]

based their map on a database of occurrence records of six

Anopheles species in Europe. Statistical analyses correlated these

occurrence points with environmental parameters. The correla-

tions were used to predict the distribution of the Anopheles species

across Europe. Rogers et al. [22] used a maximum likelihood

analysis to identify the optimal environmental parameters to

predict the occurrence of five Anopheles species in Africa. Levine et

al. [23,24] used niche models to map malaria risk in Africa,

Central America, and the United States. Using species’ occurrence

and environmental data in a genetic algorithm (in the GARP

software package), they predicted the distribution of three Anopheles

species in Africa and five species in the United States.

In addition to these vector-based approaches, risk maps have

also been constructed by mapping the distribution of the malaria

parasite. Kleinschmidt et al. [25,26] used regression analysis to

determine the relationship between the malaria parasite preva-

lence of an area and environmental variables. The regression

model was refined using kriging for spatial interpolation thus

producing a map of malaria prevalence. Diggle et al. [27] used

a generalized linear mixed model to determine the relationship

between malaria presence in children and their age and bed net

use along with available medical services and land cover. Gemperli

et al. [7] developed a Bayesian model to calculate parasite

transmission intensity on the basis of malaria survey information

and land cover, temperature, and rainfall data.

We map malaria risk using distributions of malaria vectors rather

than malaria parasites. The underlying assumption is that malaria

vector abundance is an adequate surrogate for malaria risk without

explicit inclusion of parasite abundance. However, even if this

assumption is invalid, risk maps based on vector distributions are still

useful to augment risk analyses based only on parasite distributions.

(In future work, we plan to construct risk maps using more

sophisticated models of transmission that include interactions between

parasites, vectors, and variable human susceptibility [28–30].)

This analysis differs from and extends previous efforts in five

ways. First, our niche models are constructed using a maximum

entropy method. Second, we model a larger number of species

than previously attempted. Third, we include human population

distribution data in the risk analysis and associated relative risk

models. Fourth, we perform a sensitivity analysis to evaluate the

robustness of our results. Fifth, we show how additional data can

lead to a more sophisticated risk analysis for malaria and other

vector-borne diseases.

METHODS

Data
A 1 arc-minute (0.01666u60.01666u longitude6latitude, approx-

imately 4 km2 at the equator) grid was used to divide Africa into 9

185 275 cells. Twenty environmental layers were obtained from

the WorldClim database [31]. Each layer was available at

a resolution of 30 arc-seconds (0.008333u60.008333u) and was

resampled at a resolution of 1 arc-minute. These layers are listed

in Table 1. (All spatial data manipulation used ArcMap GIS [32].)

Land cover data were obtained from the Global Land Cover

Facility [33]. AVHRR satellite data acquired between 1981 and

1994 were used to derive 14 classes of land cover: water; evergreen

needleleaf forest; evergreen broadleaf forest; deciduous needleleaf

forest; deciduous broadleaf forest; mixed forest; woodland; wooded

grassland; closed shrubland; open shrubland; grassland; cropland;

bare ground; urban and built. The data were initially available at

a resolution of 1 km2 and resampled at a resolution of 1 arc-minute.

Table 1. Environmental Parameters Used in Niche Modelling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parameter

Annual Mean Temperature

Mean Diurnal Range

Isothermality

Temperature Seasonality

Maximum Temperature of Warmest Month

Minimum Temperature of Coldest Month

Temperature Annual Range

Mean Temperature of Wettest Quarter

Mean Temperature of Driest Quarter

Mean Temperature of Warmest Quarter

Mean Temperature of Coldest Quarter

Annual Precipitation

Precipitation of Wettest Month

Precipitation of Driest Month

Precipitation Seasonality

Precipitation of Wettest Quarter

Precipitation of Driest Quarter

Precipitation of Warmest Quarter

Precipitation of Coldest Quarter

Altitude

Land Cover

doi:10.1371/journal.pone.0000824.t001..
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A review of the global distribution of malaria vectors [34] was

used to identify those African Anopheles species that are capable of

transmitting malaria. The 29 species used for this analysis are

listed in Table 2. An extensive literature search was performed to

obtain records of vector occurrences. Besides using the Mapping

Malaria Risk in Africa (MARA) database [3] both PubMed and

Google Scholar were searched using ‘‘Africa’’ and ‘‘distribution’’

in conjunction with the names of each of the Anopheles species listed

in Table 2. References from those papers so identified were also

searched. This resulted in a data set of 3 342 records of 22 malaria

vectors, with 2634 of the records drawn from the MARA database.

Each record was georeferenced to the nearest arc minute and

assigned to a corresponding cell. For those cells containing more

than one record of a given species only the most recent record was

kept. So as to increase the likelihood that current values of the

selected environmental parameters represent the environment as it

existed when the records were obtained, only those records

reporting observations made after 1980 were included. The

resulting data set consisted of 977 records of 22 Anopheles species

with 367 of these records drawn from the MARA database.

Table 2 provides a summary of these records.

Human population density data for the year 2000 were

obtained from the Gridded Population of the World database

[35]. These data were provided at a resolution of 2.5 arc-

minutes (0.041666u60.041666u) and resampled at a resolution of

1 arc-minute. Figure 1 shows a map of normalized population

densities.

HBI values were obtained from the literature. Both PubMed

and Google Scholar were searched using the terms ‘‘Anopheles’’ and

‘‘human blood index’’ with each of the species names. References

from those papers so identified were also searched. Of the 10

species for which we were able to construct reliable niche models

(see below), HBI values were available for nine species, with no

value available for A. paludis.

Table 2. Occurrence Data used in Niche Modelling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species

Records from
the MARA
Database References

Additional
Records References

A. arabiensis 129 [53–100] 292 [101–126]

A. aruni 0 0

A. atroparvus 0 0

A. brunnipes 0 2 [127,128]

A. coustani 0 22 [101,111,114,115,118,120,125,128–138]

A. d’thali 0 0

A. flavicosta 0 3 [128,131,139]

A. funestus 0 64 [101,102,106,108,111,112,114,115,118,120,126,127,129,
131–134,136,137,138,140–152]

A. gambiae 139 [54,57,59,61,63–67,70,73,75,77–80,
84–92,97,99,127,153–163]

364 [103,104,106,108,112,113,116,117,121,122,124,132,
135–138,144,145,147,151,164–172]

A. hancocki 0 9 [127–129,131,133,137,139,141]

A. hagreavesi 0 0

A. hispaniola 0 0

A. labranchiae 0 0

A. marshallii 0 12 [101,120,138,173]

A. melas 29 [54,64,65,86,89,97,153,157] 34 [103,108,124,126]

A. merus 33 [59,72,73,78–80,83,88,99,174,175] 39 [107,113]

A. moucheti 0 15 [101,115,129,133,137,138,141,151,166,176]

A. multicolor 0 2 [176]

A. nili 0 16 [120,128,129,131,133,138,141,151,177,178]

A. paludis 0 9 [127,129,133,137,138,151]

A. pharoensis 0 19 [101,109,111,112,115,118,120,125,128,131,132,134,139,145,179]

A. pretoriensis 0 4 [115,128,134,139]

A. quadriannulatus 33 [59,60,72,81,88,93,99] 36 [107,110,180]

A. rhodesiensis 0 0

A. rufipes 0 13 [106,111,112,115,118,126,128,131,133,134,139]

A. sergentii 0 2 [179]

A. squamosus 0 6 [128,131–133,135,139]

A. wellcomei 0 1 [141]

A. ziemanni 0 13 [118,128,129,131–133,138,139,141,145]

Included in column (i) are each of the 29 Anopheles species responsible for the spread of malaria in Africa. Column (ii) contains the number of records drawn from the
MARA database for each species. Column (iii) contains the references from which the MARA data were obtained. Column (iv) contains the number of records drawn
from sources not included in the MARA database. Column (v) contains the references from which these additional records were obtained.
doi:10.1371/journal.pone.0000824.t002
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Niche Models

Previous niche models of Anopheles species have used genetic

algorithms, as implemented in GARP [23,24]. In this analysis we

use instead a maximum entropy technique implemented in the

Maxent software package [11]. Maxent was used instead of GARP

because Maxent provides relative probabilities of presence rather

than only presence-absence output and because it has, in some

recent studies, been shown to outperform GARP with respect to its

predictive success [11,17]. However, there are some preliminary

data suggesting that GARP may perform better than Maxent at

extrapolating from occurrence data (A. Townsend Peterson,

personal communication). This means that models constructed

using Maxent may be excessively conservative thus predicting false

absences more often than GARP. If this is true then while the

areas of high relative risk identified in our maps are probably

reliable, those with low relative risk should not be entirely

discounted. Regression tree methods (for instance those imple-

mented in the RandomForest software package [19]) have so far

not been used in an epidemiological context.

Figure 1. Population density in Africa. The population densities have been normalized so as to range over the unit interval.
doi:10.1371/journal.pone.0000824.g001
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Given a set of records of species occurrences and values of

selected environmental variables defined over a chosen geo-

graphical region, Maxent predicts the distribution of species in

that space by finding the distribution of maximum entropy subject

to the constraint that the expectation of the distribution of each

species matches its observed average over the sample locations

[11]. The distribution thus produced is a relative probability

distribution for each species over all cells. If each relative

probability in a cell is divided by the maximum such probability

across the landscape, then the result is a normalized relative

probability distribution which assumes that the species is certainly

present in the cell in which it had its highest predicted relative

probability. This analysis used this normalization.

Computer memory limitations prevented Maxent runs using as

input all 9 185 175 cells simultaneously. Instead, Maxent was run

using 100 sets of 10 000 cells drawn randomly from the complete

set. Sets of 10 000 cells were used because Maxent performance

does not significantly improve when more than 10 000 cells are

used (S. Phillips, personal communication), while 100 sets were

selected to sample widely from the complete set of cells. The 100

different niche models produced for each species were averaged

and subsequently normalized as described above. As we were

concerned with the geographical range of the fundamental niche

of the vector species, these output maps were not further refined.

The accuracy of the niche models thus produced was evaluated

by constructing the models using only 75% of the records with the

remaining 25% set aside for testing. The accuracy of each model

was then determined by performing both a threshold-dependent

binomial test of omission and a threshold-independent receiver

operating characteristic analysis with those cells set aside during

model development [11].

In the threshold-dependent binomial test of omission a threshold

of 0.10 was used to classify each vector as either present or absent

in each cell, with a vector present in a given cell if the niche model

assigned it a value greater than 0.10 in that cell and absent

otherwise. This threshold transformed the continuous data

produced by the niche models into binary data to allow a binomial

test to be performed. For each vector the number of cells in which

the vector was predicted to be present was compared to the

number of cells known to contain the vector. A one tailed binomial

test was used to determine whether the niche model outperformed

a random model predicting the vector to be present in the same

number of cells [11]. Maxent provides test statistics for binomial

tests for 10 different threshold values. The value of 0.10 used in

this analysis was arbitrarily selected from this set of possible

threshold values.

In the threshold-independent receiver operating characteristic

analysis, the sensitivity and specificity of the niche models were

calculated at all possible thresholds. The sensitivity of a model at

a threshold was defined as the percentage of species occurrences

that were correctly predicted by the model at the threshold, while

the specificity of the model at a threshold was defined as the

percentage of correctly predicted species absences at the threshold

[11]. By calculating the sensitivity and specificity of a model at all

possible thresholds a receiver operating characteristic curve was

produced with sensitivity plotted on the y-axis and (1–specificity)

plotted on the x-axis. The area under the curve (AUC) of the

resulting plot provides a measure of model performance in-

dependent of the choice of any particular threshold. An optimal

model, one that predicted each occurrence of a species and for

which each prediction was accurate, would have an AUC of 1.0

while a model that predicted species occurrences at random would

have an AUC of 0.5.

These two tests were used to restrict attention to those models

that performed significantly better than random. Only those niche

models possessing both a p value less than 0.05 for the binomial

test of omission and an AUC greater than 0.75 were used in this

analysis. The same protocol for model retention has previously

been used by Pawar et al. [16].

Risk Models
Three different relative risk models were constructed in which

a value between 0 and 1 was assigned to each cell representing the

relative risk of malaria posed to the human population residing

within it. These models only used the nine species for which an

HBI value was available. The models only incorporate the risk

from ecological and demographic factors and ignore the

modulation of risk through human intervention such as measures

to control the spread of parasites or vectors. They also assume that

parasites are present at sufficient densities to be capable of

spreading whenever vectors are present. These assumptions are

generally appropriate for Africa given the continued prevalence of

malaria within it. However they would not be appropriate for

regions such as northern Australia from which malaria parasites

have been eliminated though malaria vectors remain

Let alik be the relative abundance of the l-th vector for the i-th

parasite in cell k (relative to other cells in the landscape). Let pk be

the human population of cell k. Let hlik be the HBI of the l-th

vector for the i-th parasite in cell k. Let elik be the transmission

efficiency of the l-th vector for the i-th parasite in cell k, measured

by the relative likelihood of parasites being transferred to the

human agent with each bite. We use a simple multiplicative model

for the relative risk, wlik, due to the l-th vector for the i-th parasite

in cell k:

wlik~alik
:pk
:hlik

:elik: ð1Þ

Constraints on available data force further simplification of the

model: (i) differences between the two primary parasites for

malaria in Africa (Plasmodium vivax and P. falciparum) were ignored;

(ii) the HBI was interpreted as an intrinsic property of the vector

species that does not vary over geographical space; and (iii)

differences in transmission efficiency between vectors were

ignored. This results in the simplified relative risk model:

wlk~alk
:pk
:hl : ð2Þ

This equation expresses the relative number of individuals in cell k

to whom the malaria parasite is expected to be transmitted by the

l-th vector. Finally, a linear correlation is assumed between the

expected relative abundance of a vector and its relative probability

of presence as predicted by its niche model. This assumption must

be tested in the field. Because of these four assumptions, the

relative risk model presented here must be regarded as very

preliminary and treated with caution.

To construct a relative risk map from this model, the relative

risk from the different vectors must be compounded for each cell in

the landscape. Three different models for compounding relative

risk were used for this purpose:

(i) Additive model The relative risk due to the different

vectors were added together and then normalized on a scale of 0 to

1. Let Wu be the relative risk of cell k. Then:

Wk~
X

l

wlk: ð3Þ

Malaria in Africa
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This model thus assumes that there is no interaction between

vector species, that each vector is able to inhabit the full extent of

its fundamental niche and that there is no competition between

vectors for human blood meals. If there is no such interaction then

it should be possible to add the relative risks posed by the vectors

in arriving at the overall relative risk posed to a given cell.

However, the presumed lack of interaction between vectors has

been questioned [36] and probably does not hold for all vector

species. Moreover, given the methodology of this paper, there is an

additional problem with the additive model. The relative

probabilities provided by Maxent sum to 1 over the landscape.

Thus, even if the relative abundances of a vector in the cells are

linearly correlated with these probabilities, there is no way to

estimate the absolute abundance. Adding the relative risk values

makes the assumption that the highest absolute abundance of

a vector among the cells of the landscape is the same for each

vector. This assumption is ecologically suspect. Consequently, the

next two models for compounding relative risk are more plausible

than the additive model.

(ii) Minimax model The relative risk of each cell was defined

as the maximum relative risk from any one of the vectors. Thus:

Wk~ max
l

wlk: ð4Þ

This is being called a minimax model since, ultimately, in

epidemiology, the goal is to minimize the risk of disease while what

is being used as a relative risk measure is the maximum risk

associated with all the vectors in a given cell.

(iii) Competitive exclusion model The relative risk

associated with the vector of highest relative abundance is

identified with the relative risk of the cell. Let al0k~ max
l

alk.

Then:

Wk~wl0k: ð5Þ

Since the relative abundances were identified with relative

probabilities of occurrence, this model assumes that the vector

that has the highest predicted probability of occurrence will

displace all others. This assumption is similar to that about

a dominant vector incorporated in the risk maps of Kiszewski et al.

[8]. However, as studies of malaria transmission have identified

the presence of more than one significant malaria vector within

some regions [37,38] there is again reason to doubt the validity of

this assumption in many contexts.

Sensitivity Analysis
A sensitivity analysis was performed to determine the robustness of

our results to variation in the values of the parameters included in

the models. For each of the 100 niche models produced for each of

the Anopheles species, 10 sets of HBI values were obtained by

drawing randomly from a uniform distribution over the interval

defined by the minimum and maximum measured HBI values for

each species. For each of the three models, 1 000 relative risk

values were produced for each cell using the 100 niche models, the

random HBI values, and the actual human population densities.

The standard deviation of the relative risk values of each cell was

calculated and used to identify areas of high sensitivity.

RESULTS
The need to set aside 25% of the records of each Anopheles species for

testing purposes resulted in the production of niche models for only

those 17 (out of 29) species for which four or more records were

available. Data representing the accuracy of the niche models are

provided in Table 3. Of these 17 niche models all but one possessed

an AUC greater than 0.75. However, only 10 of the niche models

possessed a p value less than 0.05 at a threshold of 0.10. As would be

expected, the p values of the niche models were closely correlated

with the number of records upon which the models were based.

Niche models with an AUC greater than 0.75 and a p value less than

0.05 were produced for A. arabiensis, A. coustani, A. funestus, A. gambiae,

A. melas, A. merus, A. moucheti, A. nili, and A. quadriannulatus. Figure 2

presents maps of the predicted geographical distributions of these

species. Darker regions are those of greater relative probability of

occurrence while lighter areas are those in which the relative

probability of occurrence is small.

Two different tests were performed to determine the contribu-

tions of each of the environmental parameters to the niche models.

In the first test, the AUC of each niche model was calculated using

each of the environmental parameters individually. Those

parameters that resulted in the highest AUC were interpreted as

those which possessed the most information regarding the niche of

a species. In the second test, the AUC of each niche model was

calculated after omitting each of the environmental parameters

one at a time. The effects of omitting each parameter were

determined by comparing the resulting AUC to the actual AUC of

the model. Those parameters for which the difference between

these values was highest were interpreted as possessing the most

information not present in the other environmental parameters.

The results of these two tests are provided in Table 4. As can be

seen, there was no clear pattern in the contributions of the

environmental parameters. The niches of different species

appeared to be determined by different parameters. Over the

entire data set of ten species, none of the parameters appeared to

be significantly more important than any other parameter.

Data representing the HBI values of the Anopheles species are

provided in Table 5. HBI values were available for 9 of the 10

Table 3. Accuracy of the Niche Models
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species AUC Omission Rate p Value

A. arabiensis 0.909 0.0722 ,1.0E-6

A. coustani 0.952 0.000 6.22E-3

A. funestus 0.948 0.0529 ,1.0E-6

A. gambiae 0.914 0.0782 ,1.0E-6

A. hancocki 0.987 0.000 0.145

A. marshallii 0.856 0.000 0.226

A. melas 0.993 0.00715 ,1.0E-6

A. merus 0.988 0.0114 ,1.0E-6

A. moucheti 0.993 0.000 3.86E-3

A. nili 0.979 0.000 2.19E-3

A. paludis 0.977 0.000 0.0157

A. pharoensis 0.869 0.245 0.145

A. pretoriensis 0.656 0.000 0.508

A. quadriannulatus 0.941 0.154 ,1.0E-6

A. rufipes 0.853 0.000 0.0924

A. squamosus 0.920 0.000 0.641

A. ziemanni 0.879 0.333 0.170

100 niche models were produced for each of the species listed in column (i).
Column (ii) lists the average area under the curve of each model. Column (iii)
lists the average omission rate of each model. Column (iv) lists the average p
value of each model.
doi:10.1371/journal.pone.0000824.t003..
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species for which niche models were produced. An HBI value for

A. plaudis could not be found in the literature. The HBI values of

the remaining species were observed to vary significantly, with

mean values ranging between 0.011 for A. quadriannulatus and 1.00

for A. merus. The values averaged to obtain the mean HBI value

were likewise found to vary for different species, with standard

deviations as high as 0.269 for A. melas and 0.241 for A. arabiensis.

Figure 3 depicts the relative risk maps constructed using the

additive, minimax, and competitive exclusion models. Cells in

each map were assigned a value between 0 and 1, with

0 representing no risk and 1 representing maximal relative risk.

The resulting relative risk values were found to congregate closely

to either 0 or 1. To ease the visual discernment of the relative risk

faced in different regions, the maps in Figure 3 plot the natural

logarithm of the relative risk values.

In general the relative risk maps produced by the three relative

risk models were quite similar. As can be seen in Figure 3, the

maps produced from the minimax and competitive exclusion

models were nearly identical. These maps differed slightly from the

relative risk map produced using the additive model as the relative

risk in the additive model was more closely restricted to the areas

of high population density. As can be seen in comparing Figure 1

with Figure 3, population density appears to have been the

primary determinant of the relative risk of malaria in each of the

three models. Areas of high human population density were found

to be those in which the relative risk of malaria was greatest. The

sole exception to this was in North Africa in which high human

population densities were accompanied by relatively low relative

risk values.

The sensitivity of the additive model was observed to be less

than that of the competitive and minimax models. The standard

deviations in the relative risk values ranged from 0 to 0.144 for the

additive model to 0 to 0.280 for the competitive model and 0 to

0.279 for minimax model. In each model the majority of cells

possessed a standard deviation less than 0.001. In the additive

model 98.9% of cells had a standard deviation less than 0.001,

while the percentages for the competitive and minimax models

were 97.7% and 98.5%, respectively. Most cells were thus robust

to variation in the parameter values. There was no clear pattern

observed in the distribution of sensitivity across the landscape.

While relative risk was concentrated in areas of high human

population density, sensitivity was not.

DISCUSSION
As explained below, our relative risk maps are preliminary and

must be treated with due caution. However, the methodology

developed here can be used to construct relative risk maps for

other infectious diseases, with the risk models modified to reflect

the presence of multiple agents and reservoirs, more complicated

modes of transmission, and other relevant ecological factors.

Because, as we and others have shown [9,11,16,17], niche models

of acceptable accuracy based on climatic and topographic

parameters (as determined by the internal tests of software

packages as well as from comparisons of maps produced by

experts—see below for more discussion) can be constructed with

sparse data, this methodology shows promise for the construction

of relative risk maps for infectious diseases even when data are

limited and not easily collected. Some suggestive recent work

argues that, besides climatic and topographic factors, land use and

land cover change influence the spread of malaria [39,40]. The

models presented here used land cover as one of the explanatory

variables in the niche models; in future work we plan to include

land use and to explore the effects of land cover in more detail,

using a finer classification of land cover types.

A variety of different climatic and topographical factors were

important for predicting the distributions of different species.

Levine et al. [23] report similar variable results for the three

Anopheles species that they model. These results have the

Figure 2. The distributions of 10 malaria vectors in Africa. Distributions are provided for: (a) A. arabiensis; (b) A. coustani; (c) A. funestus; (d) A.
gambiae; (e) A. melas; (f) A. merus; (g) A. moucheti; (h) A. nili; (i) A. paludis; (j) A. quadriannulatus.
doi:10.1371/journal.pone.0000824.g002
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implication that, to predict malaria vector species distributions,

simple ecological heuristic rules (for instance, those incorporating

optimal precipitation and/or temperature) will likely be unreliable

and should be replaced with predictions of niche models based on

as complete a set of environmental parameters as possible. Rogers

and Randolph [41] have also noted the lack of relatively simple

heuristic rules.

A perhaps not unexpected result is that the most important

determinant of relative risk for malaria was human population

density, assuming as we do here for Africa that (i) ecological and

Table 4. Contributions of the Environmental Parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species Parameters Producing the Largest AUC When Included Separately Parameters Producing the Smallest AUC when Omitted

A. arabiensis Temperature
Seasonality,
0.772 (0.008)

Mean Temperature of
Wettest Quarter, 0.760
(0.007)

Annual Precipitation,
0.746 (0.007)

Precipitation of
Warmest Quarter,
0.890 (0.006)

Altitude, 0.893 (0.006) Precipitation of
Wettest Month,
0.894 (0.006)

A. coustani Temperature
Seasonality,
0.902 (0.007)

Temperature Annual
Range, 0.825 (0.008)

Precipitation of
Wettest Quarter,
0.796 (0.008)

Precipitation of
Coldest Quarter,
0.892 (0.012)

Altitude, 0.905 (0.008) Temperature
Seasonality,
0.927 (0.008)

A. funestus Precipitation of
Wettest Month,
0.838 (0.003)

Temperature
Seasonality, 0.831
(0.003)

Temperature
Annual Range,
0.830 (0.003)

Precipitation of
Wettest Month,
0.926 (0.004)

Minimum Temperature
of Coldest Month,
0.935 (0.004)

Precipitation of
Warmest Quarter,
0.938 (0.003)

A. gambiae Mean Temperature
of Coldest Quarter,
0.794 (0.005)

Minimum Temperature
of Coldest Month,
0.780 (0.013)

Precipitation of
Wettest Month,
0.838 (0.003)

Altitude,
0.891 (0.006)

Precipitation of
Warmest Quarter,
0.898 (0.004)

Annual Precipitation,
0.901 (0.005)

A. melas Altitude,
0.961 (0.020)

Mean Temperature
of Wettest Quarter,
0.937 (0.020)

Precipitation of
Wettest Month,
0.911 (0.007)

Precipitation of
Coldest Quarter,
0.987 (0.005)

Precipitation of
Warmest Quarter,
0.989 (0.006)

Landscape,
0.990 (0.003)

A. merus Precipitation of
Driest Month,
0.922 (0.012)

Precipitation of
Coldest Quarter,
0.912 (0.029)

Altitude, 0.884
(0.012)

Precipitation of
Warmest Quarter,
0.982 (0.005)

Altitude,
0.982 (0.004)

Mean Temperature
of Driest Quarter,
0.984 (0.008)

A. moucheti Temperature Annual
Range, 0.980 (0.016)

Mean Diurnal Range,
0.965 (0.036)

Isothermality,
0.965 (0.036)

Landscape,
0.985 (0.003)

Precipitation of
Coldest Quarter,
0.990 (0.005)

Mean Temperature
of Driest Quarter,
0.991 (0.009)

A. nili Temperature Annual
Range, 0.982 (0.016)

Mean Diurnal Range,
0.966 (0.036)

Isothermality,
0.966 (0.036)

Mean Temperature
of Wettest Quarter,
0.9623 (0.004)

Precipitation of
Coldest Quarter,
0.968 (0.004)

Min Temperature of
Coldest Month,
0.973 (0.003)

A. paludis Temperature Annual
Range, 0.984 (0.017)

Mean Diurnal Range,
0.968 (0.036)

Isothermality,
0.968 (0.036)

Temperature Annual
Range, 0.970 (0.004)

Precipitation of Coldest
Quarter, 0.974 (0.004)

Precipitation of Driest
Quarter 0.976 (0.004)

A. quadriannulatus Precipitation of
Warmest Quarter,
0.874 (0.003)

Precipitation of
Wettest Quarter,
0.863 (0.002)

Mean Temperature
of Driest Quarter,
0.856 (0.003)

Mean Temperature
of Driest Quarter,
0.913 (0.007)

Precipitation of
Warmest Quarter,
0.932 (0.006)

Mean Temperature
of Coldest Quarter,
0.934 (0.007)

Column (i) lists the 10 Anopheles species for which niche models were constructed. Columns (ii–iv) list the three parameters that produced the largest AUC when taken
individually. These parameters are listed in decreasing order from (ii) to (iv) on the basis of their associated AUC values. Thus column (ii) lists the environmental
parameter that possesses the most information regarding the niche of each species. Columns (v–vii) list the three parameters that produced the smallest AUC when
omitted. These parameters are listed in increasing order from (ii) to (iv) on the basis of their associated AUC values. Thus column (v) lists the environmental parameter
that possesses the most information not possessed by the other parameters regarding the niche of each species. Average AUC values are provided next to each
environmental parameter with the standard deviation of the values provided in parenthesis.
doi:10.1371/journal.pone.0000824.t004..
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Table 5. Human Blood Index Values
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species Mean Standard Deviation References

A. arabiensis 0.526 0.241 [67,71,85,101,103,108,111,181–194]

A. coustani 0.157 0.019 [52,101]

A. funestus 0.844 0.191 [67,111,129,146,184,185,191,195–199]

A. gambiae 0.815 0.159 [54,85,103,108,129,155,181,184,185,188–193,200]

A. melas 0.576 0.269 [54,103,181]

A. merus 1.00 - [191]

A. moucheti 0.931 0.080 [103,129,184]

A. nili 0.949 0.055 [52,129,184]

A. paludis - - -

A. quadriannulatus 0.011 - [183]

A list of the species is included in column (i). Columns (ii) and (iii) list the mean and standard deviation of the HBI values for each species. A list of the references from
which the HBI values were drawn is provided in column (iv).
doi:10.1371/journal.pone.0000824.t005..
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demographic factors rather than control measures are the

determinants of risk and (ii) parasite densities are sufficiently high

for disease spread. The extent of the effect of population density in

this analysis is likely a result of the multiplicative nature of our risk

models. However, this effect cannot be regarded solely as an

artifact of the admitted simplicity of these models as any plausible

model of infectious disease transmission should include the hu-

man population as a multiplicative factor. This dependence on

population density has the implication that the expected local

increase of population density due to increased urbanization [42],

especially in Africa [43], will increasingly exacerbate the risk of

malaria unless control measures are implemented [39].

Turning to the details of our results, with a few notable

exceptions, the distributions for the niche models in Figure 2

closely follow the previously proposed distributions of most

modeled species. This can be seen by comparing by region the

vector distributions provided in Figure 2 with those previously

presented in the literature.

The niche models of vectors within West Africa appear to

coincide quite closely with the expert-based distributions of the

modeled vectors within this region. Haworth [34] identified A.

arabiensis, A. coustani, A. funestus, A. gambiae, and A. nili as primary

and secondary malaria vectors in West Africa. This is consistent

with the niche models of Figure 2 in which these three species are

shown to possess extremely high relative probabilities of

occurrence within this region. Haworth [34] also identified A.

melas, A. moucheti, and A. paludis as vectors with limited presence in

West Africa. This is consistent with the models in Figure 2 in

which these species have limited distributions in parts of that

region. In addition, Gillies and Coetzee [44] presented this region

as containing A. arabiensis, A. gambiae, and A. melas, while White

[45] reported the region as containing A. arabiensis, A. gambiae, A.

melas, and A. funestus. The distributions of these species within this

region provided by these two sources were thus consistent with the

niche models of Figure 2.

In Southeast Africa and Madagascar the niche models again

correspond closely to expert-based distributions. Haworth [34]

identified A. arabiensis, A. coustani, A. funestus, A. gambiae, A. merus,

and A. paludis as the primary and secondary malaria vectors within

the region. In Figure 2 these species have high relative

probabilities of occurrence in the region. Moreover, the distribu-

tions within this region of A. arabiensis, A. gambiae, and A. merus, as

presented by Gillies and Coetzee [44], and the distributions of A.

arabiensis, A. gambiae, A. funestus, and A. merus, as presented by White

[45], were consistent with the niche models in Figure 2.

While the correspondence between the niche models produced

in this analysis and the expert-based distributions of the Anopheles

species was quite strong in most regions, discrepancies between

these distributions are found in Central Africa. Gillies and Coetzee

[44] presented the distributions of A. arabiensis and A. gambiae as

stretching across Central Africa. However, these distributions

conflict with the niche models of Figure 2, in which both vectors

have low probabilities of occurrence throughout this region. In

slight contrast to Gillies and Coetzee, White [45] depicted both A.

gambiae and A. funestus as present in Central Africa, while depicting

A. arabiensis as largely absent from the region. While this

distribution of A. arabiensis agrees with the niche models of

Figure 2, the proposed distributions of A. gambiae and A. funestus do

not. Levine et al. [23] found both A. arabiensis and A. gambiae to be

distributed throughout Central Africa, unlike what is seen in

Figure 2. Similar results were obtained by Lindsay et al. [20] who

found the climate throughout Central Africa to be suitable for

both of these species. Rogers et al. [22] obtained results similar to

those of both Levine et al. and Lindsay et al. with respect to the

distribution of A. gambiae, yet found A. arabiensis to be largely absent

from Central Africa (which thus agrees with Figure 2).

These discrepancies may simply be a result of the general lack of

distributional data for Anopheles species in Central Africa. Fewer

than 10 occurrence records within this region were available for

use in the present analysis, with the other analyses likewise lacking

Figure 3. The distribution of malaria relative risk in Africa. Three different types of risk were calculated as follows: (a) the probability of occurrence
of each vector in each cell was multiplied by both the human population density of the cell and the HBI of the vector. The relative risk of malaria in
the cell was calculated as the sum of these values; (b) the vector possessing the maximum probability of occurrence was identified for each cell. Its
probability of occurrence was multiplied by its HBI and the human population density of the cell. The relative risk of malaria in the cell was calculated
as the product of these three values; and (c) the probability of occurrence of each vector in each cell was multiplied by the human population density
of the cell and the HBI of the vector. The relative risk of malaria in the cell was calculated as the maximum of these values. The maps plot the natural
logarithm of the relative risk.
doi:10.1371/journal.pone.0000824.g003
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much data for the region. If the niche models produced by Maxent

are excessively conservative, then the low probability of occur-

rence associated with A. gambiae in Central Africa may be

a consequence of the lack of any occurrence data for the species

in this region. However, given the current absence of records of

Anopheles species within Central Africa, the attribution of a low

relative probability of occurrence to both A. arabiensis and A.

gambiae within the region may be a correct prediction. The high

AUC values associated with the niche models produced in this

analysis support this claim. Field data from Central Africa are

required to resolve the discrepancies between our predictions and

other distributional maps..

Some other discrepancies appear to indicate that our models are

an improvement over previous proposed distributions. For

example, Coetzee [46] criticized the niche models of Levine et al.

[23] for predicting the occurrence of A. quadriannulatus in areas of

central Botswana that are supposed to be too arid for the species.

She also questioned proposed distributions of Lindsay et al. [20] for

including A. arabiensis in arid parts of South Africa. In contrast with

these distributions, the niche models in Figure 2 predict small

relative probabilities of occurrence for A. quadriannulatus and A.

arabiensis in central Botswana and South Africa, respectively. While

our results thus avoid these criticisms, since Levine et al.’s criticisms

were meant to illustrate the general shortcomings of computer

modeling, our results also argue against excessive skepticism about

computational approaches in epidemiology.

Finally, the possibly questionable assumptions underlying our

preliminary relative risk maps deserve explicit emphasis. The most

important of these is that the relative abundances of species can be

estimated using the relative probabilities of occurrence predicted

by niche models. The relative risk maps based on the minimax

model and, especially, the competitive exclusion model are less

affected by this assumption than that based on the additive model

as, in the former models, the relative probabilities of occurrence of

the various vectors species were not aggregated. However, before

the predictions of any of these models are fully accepted, the

relationship between the predicted relative probabilities of

occurrence of these species and their actual distributions must be

empirically tested. The importance of such a test extends beyond

epidemiology and will be relevant to all disciplines that use niche

models (including conservation biology). It is essential to test this

assumption for a wide variety of vector species before recommend-

ing its adoption. If the assumption holds, then absolute

abundances, drawn from a portion of the area under investigation,

can be used to calibrate the relative abundance predictions of the

niche models, thus allowing for the determination of absolute

abundances across the landscape for use in the risk models.

If the assumption does not hold, the situation is more difficult.

In almost all epidemiological contexts, at the landscape or at larger

scales, it is unlikely that the absolute abundances of vector species

can be empirically measured for the entirety of the region of

concern. It may be possible to obtain some measurements, and use

traditional interpolation techniques such as splining and kriging to

acquire estimates for other regions within the geographical

boundaries of the measured cells. These can then be used along

with the niche models to extrapolate across the landscape using

statistical techniques such as regression to other areas that are

predicted to be suitable (by the niche models) for the vector

species. However, the accuracy of these traditional interpolation

techniques in epidemiological contexts must likewise be empiri-

cally tested.

In addition to this primary assumption a number of secondary

assumptions were made regarding the relationships between the

vectors considered in this analysis. One such assumption was that

the variable risk posed by P. vivax and P. falciparum could be

ignored. As these two parasites differ both in the risk that they pose

to humans [47] and in their geographical distribution [48], this

assumption should be questioned. In this analysis the assumption

was mandated by a lack of data on the varying abilities of most

vectors to transmit these two parasites. A more complete analysis

will require the explicit incorporation of the differential risk posed

by these two parasites.

It was also assumed that the efficiency with which malaria

parasites were transmitted, both to and from humans, is the same

both for different vectors and in different regions. Since trans-

mission efficiency varies between both species [49,50] and regions

[51], it should be explicitly included for a credible assessment of

malaria risk. It was not included in this analysis due to a lack of

data.

A similar caveat is needed with respect to the HBI values.

Though each HBI value was treated as a species-specific

parameter, these values are environmentally influenced. Measured

HBI values for a species obtained at one region vary substantially

from those measured at other regions, with the variation often

depending primarily on the availability of human blood meals

[52]. In addition, the data used to derive the HBI values used here

were not obtained by random sampling; thus, there is reason to

question whether these HBI values adequately reflect the varying

anthrophilicity of the vectors. The spatial heterogeneity of HBI

values also questions the use of a single HBI value for a vector.

However, our sensitivity analysis shows that including such spatial

heterogeneity would likely have had little impact upon the results.

Relative risk would still have been shown to be concentrated in

areas of high population density. Nevertheless, a more precise

representation of malaria risk should consider such heterogeneity.

The questionable simplifying assumptions made in the con-

struction of the preliminary relative risk maps presented in this

paper show that to construct large-scale risk maps that go beyond

the predicted relative probabilities of vector species presence will

require much more data, and data of different types (including, for

instance, abundance and transmission efficiency data) than what

are now available in the literature. Furthermore, the use of more

sophisticated transmission models than those on which Equa-

tions (1) and (2) are based will only require even more data. For

disease risk analysis, research geared towards the acquisition of

such data remain a high priority.
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