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Abstract
Eight members of a recently identified family of tetrahydrofuran-diols (THFDs), originating from
epoxyeicosatrienoic acids (EETs), were prepared stereospecifically from D-(+)-glucose. The THFDs
potently induced relaxation of pre-contracted bovine arteries.

Arachidonic acid is metabolized by the cytochrome P450 epoxygenase pathway into four
regioisomeric epoxyeicosatrienoic acids (EETs),1 whose varied contributions to homeostasis
and pathophysiology have attracted considerable attention.2 Secondary metabolism results in
even greater structural diversity by converting the EETs into vic-diols,3 S-glutathione adducts,
4 or more highly oxygenated products5 including a family of bioactive tetrahydrofuran-diols
(THFDs).6–8 It is unclear, at present, if the THFDs originate from completely enzymatic
processes9 or from spontaneous, nonenzymatic epoxide annulations (e.g., eq 1).10 To expedite
current structural and pharmacological investigations, we report herein the synthesis of eight
isomers of defined stereochemistry starting from an inexpensive member of the chiral pool and
their evaluations as vasomodulators. A structurally similar, but biosynthetically distinct class
of endogenous arachidonate tetrahydrofuran-diols,11 known collectively as isofurans,12 has
also been described and representative members prepared by chemical synthesis.13

Since the “mid-chain” THFDs, i.e., those derived from transannular cyclizations between
epoxides at the original Δ8,9- and Δ11,12-olefins, were found to be the most efficacious for
increasing intracellular free Ca2+ in rat pulmonary alveolar cells,6b our initial synthetic efforts
focused on this system. Our strategy (Scheme 1) utilized furanoside 1,14 readily obtained from
D-(+)-glucose, as a convenient starting point.15 Alkynylation of 1 using the dianion of
commercial 5-hexynoic acid and esterification of the adduct with diazomethane provided the
known homopropargylic alcohol 2.14 Benzoylation of 2 followed by reductive allylation at
the anomeric center induced with BF3·Et2O according to the method of García-Tellado16
afforded a chromatographically separable mixture (5:1) of 3 and its α-isomer 4 in good
combined yield.17 Sequential silylation of the newly liberated alcohol, OsO4 dihydroxylation
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of the terminal olefin, and cleavage of the resultant vic-diol converted 3 into the somewhat
labile aldehyde 5 which was immediately subjected to Wittig cis-olefination using n-
hexylidenetriphenylphosphorane in a non-polar solvent to minimize β-elimination. Semi-
hydrogenation of the acetylene over P-2 nickel18 and fluoride-induced desilylation gave 6.
Saponification of the esters in 6 delivered 8(R),9(S),11(R),12(S)-THFD (7) without incident
whereas Mitsunobu inversion19 at C(11) prior to saponification led to 8(R),9(S),11(S),12(S)-
THFD (8).

An analogous series of transformations as described in Scheme 1, when applied to α-isomer
4, yielded 8(R),9(S),11(R),12(R)-THFD (10) and 8(R),9(S),11(S),12(R)-THFD (11) by way of
methyl ester 9 (Scheme 2).

Regrettably, all attempts to access the 8(S)-series of THFDs via Mitsunobu inversion19 of
alcohol 2 or the derived 5(Z)-olefin were discouraged by a facile dehydration. Only minor
amounts of the desired 8(S)-ester could be obtained. Oxidation/reduction sequences through
the corresponding ketone as a means of establishing the S-alcohol were also stymied by poor
yields and/or migration of the adjacent olefin. Consequently, the known20 epimeric epoxide
12 (Scheme 3) was used to prepare benzoates 13 and 17 following the now well-established
protocols from Scheme 1. After chromatographic separation, 13 and 17 were elaborated into
14 and 18, respectively. In turn, these intermediates were advanced to 8(S),9(S),11(R),12(S)-
THFD (15)/8(S),9(S),11(S),12(S)-THFD (16) and 8(S),9(S),11(R),12(R)-THFD (19)/8(S),9
(S),11(S),12(R)-THFD (20), accordingly.

The THFDs were tested for vasodilatory activity using bovine coronary arteries preconstricted
with the thromboxane-mimetic U-46619 (10–20 nM).21 All caused relaxation of the arteries
when used from 10−8–10−5 M (Figure 1A and 1B). In the same assay, the endogenous dilator
14,15-epoxyeicosatrienoic acid (14,15-EET) also relaxed coronary arteries over a similar
concentration range.22 Notably, THFD 10 (ED50 = 3.0 ± 0.11μM) and 14,15-EET (ED50 =
2.5 ± 0.10μM) were equally active while the other THFDs were less efficacious. These studies
indicate that, in this series, a trans-tetrahydrofuran skeleton and 11(R)-hydroxyl are necessary
for full agonist activity with respect to the parent EETs. The physiological significance of these
secondary metabolites and their utility as EET mimetics are under investigation and the results
will be published in due course.
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134.36, 165.80, 173.74. Compound 4: [α]D23 -19.6 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) δ
1.71 (apparent p, J ~ 7.2 Hz, 2H), 2.02 (ddd, J ~ 1.6, 6.8, 13.2 Hz, 1H), 2.09 (td, J ~ 4.4, 8.4 Hz, 1H),
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5,81 (m, 1H), 7.45 (apparent t, J ~ 7.6 Hz, 2H), 7.57 (apparent tt, J ~ 1.2, 7.2 Hz, 1H), 8.02–8.05
(apparent dd, J ~ 1.2, 7.6 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 21.92, 24.09, 25.94, 32.88, 33.99,
37.80, 51.64, 73.30, 74.16, 76.08, 77.66, 81.32, 83.33, 116.67, 128.54, 129.85, 130.42, 133.18,
135.40, 165.95, 173.79. Compound 6: TLC, EtOAc/hexane (1:4), Rf ~ 0.40; [α]D23 -23.0 (c 1.18,
CHCl3); 1H NMR (400 MHz, CDCl3) δ 0.87 (t, J ~ 7.2 Hz, 3H), 1.16–1.32 (m, 6H), 1.61–1.72 (m,
3H), 1.88–1.98 (m, 4H), 2.03–2.24 (m, 5H), 2.28 (t, J ~ 7.2 Hz, 2H), 2.41–2.55 (m, 2H), 3.65 (s, 3H),
3.76–3.81 (m, 1H), 4.10 (dt, J ~ 2.8, 5.6 Hz, 1H), 4.31 (dt, J ~ 6.0, 8.8 Hz, 1H), 5.27–5.51 (m, 5H),
7.44 (apparent t, J ~ 7.6 Hz, 2H), 7.56 (apparent t, J ~ 7.6 Hz, 1H), 8.01–8.04 (m, 2H); 13C NMR
(75 MHz, CDCl3) δ 14.25, 22.74, 24.84, 26.86, 27.52, 29.39, 29.58, 31.64, 32.12, 33.62, 36.16, 51.71,
74.88, 75.51, 78.67, 86.48, 124.24, 125.04, 128.56, 129.79, 130.53, 131.93, 133.02, 133.15, 166.02,
174.29. Compound 7: TLC, EtOAc, Rf 0.18; [α]D23 -26.5 (c 1.03, CHCl3); 1H NMR (400 MHz,
CDCl3) δ 0.88 (t, J ~ 6.8 Hz, 3H), 1.22–1.39 (m, 6H), 1.70 (q, J ~ 7.2 Hz, 2H), 1.78 (ddd, J ~ 4.0,
6.0, 13.2 Hz, 1H), 2.03 (apparent q, J ~ 7.2 Hz, 2H), 2.08–2.16 (m, 3H), 2.17– 2.24 (m, 2H), 2.28 (t,
J ~ 7.2 Hz, 2H), 2.35 (t, J ~ 7.2 Hz, 2H), 3.82–3.86 (m, 2H), 4.09–4.16 (m, 2H), 5.35–5.57 (m,
4H); 13C NMR (75 MHz, CDCl3) δ 14.26, 22.75, 24.65, 26.66, 27.63, 29.43, 31.02, 31.70, 31.96,
33.52, 33.76, 71.51, 75.73, 80.85, 86.31, 124.23, 126.32, 131.39, 133.41, 178.83; MS (AP-LC) m/
z 354 (M+, 100 %). Compound 8: TLC, EtOAc, Rf ~ 0.29; [α]D23 15.3 (c 0.96, CHCl3); 1H NMR
(400 MHz, CDCl3) δ 0.88 (t, J ~ 6.8 Hz, 3H), 1.24– 1.40 (m, 6H), 1.65–1.78 (m, 2H), 2.00 (dd, J ~
3.2, 12.8 Hz, 1H), 2.04–2.26 (m, 7H), 2.34 (t, J ~ 7.2 Hz, 2H), 2.38–2.51 (m, 2H), 3.61(td, J ~ 2.4,
7.2 Hz, 1H), 3.88 (apparent t, J ~ 6.4 Hz, 1H), 5.40–5.55 (m, 4H); 13C NMR (75 MHz, CDCl3) δ
14.27, 22.79, 24.65, 26.66, 27.17, 27.55, 29.50, 31.73, 31.94, 33.46, 34.31, 71.21, 72.01, 80.07, 83.77,
125.12, 125.93, 132.21, 132.71, 178.56; MS (AP-LC) m/z 354 (M+, 100 %). Compound 9: TLC,
EtOAc/hexane (1:1), Rf ~ 0.52; [α]D23 -26.5 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) δ 0.87
(t, J ~ 10.0 Hz, 3H), 1.19–1.39 (m, 6H), 1.59–1.70 (m, 4H), 2.00–2.20 (m, 6H), 2.27 (t, J ~ 10.0 Hz,
2H), 2.31–2.58 (m, 4H), 3.64 (s, 3H), 3.82–3.86 (m, 1H), 4.30 (br s, 1H), 4.41 (dt, J ~ 9.2, 12.0 Hz,
1H), 5.24 (dt, J ~ 7.2, 9.2 Hz, 1H), 5.29–5.53 (m, 5H), 7.41–7.46 (m, 2H), 7.52–7.57 (m, 1H), 7.99–
8.03 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 14.22, 22.70, 24.81, 26.81, 27.44, 27.56, 29.36, 29.53,
31.65, 33.57, 37.35, 51.67, 72.97, 75.61, 77.86, 83.01, 124.55, 125.01, 128.56, 129.76, 130.45,
131.89, 132.90, 133.15, 166.09, 174.24. Compound 10: TLC, MeOH/CH2Cl2 (1:9), Rf ~ 0.28;
[α]D23 -12.4 (c 1.10, CHCl3); 1H NMR (400 MHz, CDCl3) δ 0.88 (t, J ~ 6.8 Hz, 3H), 1.22–1.40 (m,
8H), 1.71 (apparent p, J ~ 7.2 Hz, 2H), 1.93 (dd, J ~ 6.0, 13.2 Hz, 1H), 2.24–2.22 (m, 7H), 2.35 (t, J
~ 7.2 Hz, 2H), 2.38–2.49 (m, 2H), 3.84–3.94 (m, 2H), 4.19–4.24 (m, 1H), 4.33 (t, J ~ 3.2 Hz, 1H),
5.36–5.55 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 14.25, 22.75, 24.71, 26.71, 27.59, 29.44, 29.88,
31.01, 31.70, 33.65, 34.78, 72.33, 73.05, 80.09, 83.42, 124.65, 126.33, 131.48, 132.95, 179.00; MS
(AP-LC) m/z 354 (M+, 100 %). Compound 11: TLC, MeOH/CH2Cl2 (1:9), Rf ~ 0.29; [α]D23 16.9
(c 1.00, CHCl3); 1H NMR (400 MHz, CDCl3) δ 0.89 (t, J ~ 6.8 Hz, 3H), 1.22–1.40 (m, 7H), 1.62–
1.78 (m, 2H) 1.92–2.30 (m, 10H), 2.35 (t, J ~ 6.8 Hz, 2H), 3.85–3.90 (m, 1H), 4.03 (t, J ~ 7.2 Hz,
1H), 4.07 (d, J ~ 5.6 Hz, 1H), 4.15 (dt, J ~ 2.8, 9.2 Hz, 1H), 5.34–5.55 (m, 4H); 13C NMR (75 MHz,
CDCl3) δ 14.25, 22.74, 24.66, 26.68, 27.58, 29.42, 31.31, 31.69, 31.89, 32.82, 33.60, 72.20, 74.48,
80.54, 87.13, 124.47, 125.99, 131.89, 132.88, 178.69; MS (AP-LC) m/z 354 (M+, 100 %). Compound
13: TLC, 3% MeOH/CH2Cl2, Rf ~ 0.26; [α]D23 1.1 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) δ
1.68 (s, 1H), 1.75 (apparent p, J ~ 7.2 Hz, 2H), 1.90–2.00 (m, 3H), 2.16–2.21 (m, 2H), 2.33– 2.41
(m, 3H), 2.59–2.74 (m, 2H), 3.65 (s, 3H), 3.86 (td, J ~ 2.8, 6.4 Hz, 1H), 4.12 (apparent q, J ~ 2.8 Hz,
1H), 4.70 (td, J ~ 4.0, 8.4 Hz, 1H), 5.07–5.14 (m, 2H), 5.19 (td, J ~ 4.0, 6.8 Hz, 1H), 5.82–5.94 (m,
1H), 7.42 (apparent t, J ~ 7.6 Hz, 2H), 7.55–7.60 (m, 1H), 8.06–8.09 (m, 2H); 13C NMR (75 MHz,
CDCl3) δ 18.32, 21.81, 24.07, 32.95, 36.51, 38.64, 51.76, 73.58, 75.28, 76.24, 77.47, 81.38, 85.85,
117.62, 128.57, 129.94, 130.17, 133.29, 134.38, 166.17, 174.00. Compound 14: [α]D23 11.9 (c 0.9,
CHCl3); 1H NMR (400 MHz, CDCl3) δ 0.87 (t, J ~ 7.1 Hz, 3H), 1.16–1.38 (m, 6H), 1.65 (quintet, J
~ 7.3 Hz, 2H), 1.88–2.18(m, 6H), 2.23–2.41 (m, 4H), 2.54 (t, J ~ 6.3, Hz, 2H), 3.65 (s, 3H), 3.81
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(ddd, J ~ 3.2, 6.2, 7.6 Hz, 1H), 4.05–4.09 (m, 1H), 4.37 (dt, J ~ 3.9, 7.0 Hz, 1H), 5.17 (dt, J ~ 3.9,
6.6 Hz, 1H), 5.40–5.56 (m, 4H), 7.40–7.47 (m, 2H), 7.53–7.60 (m, 1H), 8.04–8.08 (m, 2H); 13C
NMR (75 MHz, CDC13) δ 14.23, 22.73, 24.84, 26.81, 27.63, 29.45, 29.54, 31.67, 32.18, 33.63, 36.57,
51.69, 74.79, 75.46, 77.98, 86.26, 124.49, 125.20, 128.56, 129.91, 130.38, 132.08, 132.93, 133.18,
166.36, 174.31. Compound 15: [α]D23 -10.0 (c 0.7, CHCl3); 1H NMR (400 MHz, CDCl3) δ 0.88
(t, J ~ 7.0 Hz, 3H), 1.24–1.40 (m, 6H), 1.70 (quintet, J ~ 7.0 Hz, 2H), 1.85 (apparent ddd, J ~ 2.8,
5.9, 13.1 Hz, 1H), 1.93–2.06 (m, 3H), 2.12 (apparent q, J ~ 5.7 Hz, 2H), 2.22–2.30 (m, 4H), 2.36 (t,
J ~ 7.3 Hz, 2H), 3.47 (apparent q, J ~ 6.1 Hz, 1H), 3.83 (dt, J ~ 10.4, 3.0 Hz, 1H), 4.04–4.13 (m 2H),
5.36–5.56 (m, 4H); 13C NMR (75 MHz, CDC13) δ 14.26, 22.75, 24.57, 26.64, 27.64, 29.43, 31.71,
32.11, 32.22, 33.31, 36.98, 73.72, 75.96, 80.56, 86.14, 124.20, 126.51, 131.23, 133.35, 178.66.
Compound 16: [α]D23 25.0 (c 0.68, CHCl3); 1H NMR (400 MHz, CDCl3) δ 0.88 (t, J ~ 6.7 Hz, 3H),
1.25–1.40 (m, 6H), 1.72 (quintet, J ~ 7.4 Hz, 2H), 1.83 (apparent dd, J ~ 14.0, 3.0 Hz, 1H), 2.07 (q,
J ~ 7.0 Hz, 2H), 2.14 (q, J ~ 6.7 Hz, 2H), 2.28–2.52 (m, 7H), 3.54 (ddd, J ~ 10.4, 5.5, 2.4 Hz, 1H),
3.65 (dt, J ~ 14.0, 2.8 Hz, 1H), 4.01 (td, J ~ 9.8, 2.8 Hz, 1H), 4.07 (dd, J ~ 5.5, 2.8 Hz, 1H), 5.40–
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Figure 1.
Relaxation of pre-contracted bovine arteries by THFDs and 14,15-EET.
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Scheme 1.
Reagents and conditions: (a) 5-hexynoic acid, n-BuLi (2 equiv), HMPA, 5°C for 1 h, then 23°
C for 12 h; CH2N2, 5% MeOH/Et2O, 23°C, 1 h, 60–65%; (b) PhC(O)Cl, DMAP, Et3N,
CH2Cl2, 23°C, 12 h, 97%; (c) Me3SiCH2CH=CH2/BF3·Et2O, CH2Cl2, 23°C, 18 h, 82% (α-/
β-isomers combined); (d) t-BuMe2SiCl, ImH, DMF, 50°C, 12 h, 95%; (e) OsO4 (2 mol %),
NMO, t-BuOH, 23°C, 12 h; (f) NaIO4/SiO2, CH2Cl2, 23°C, 1.5 h; (g) H3C(CH2)5PPh3Br, NaN
(SiMe3)2, PhCH3/THF (1:1), −90°C for 0.5 h, then warm to 23°C overnight, 70% over three
steps; (h) Ni(OAc)2, NaBH4, (H2NCH2)2, H2 (1 atm), EtOH, 23°C, 5 h, 85%; (i) n-Bu4NF,
THF, 23°C, 12 h, 70%; (j) LiOH, THF/H2O (3:1), 92%; (k) DEAD/PPh3/PhCO2H, THF, 1 h,
0°C, 93%.
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Scheme 2.
Reagents and conditions: (a) steps d-i from Scheme 1; (b) LiOH, THF/H2O (3:1), 23°C, 10 h,
92–96%; (c) DEAD/PPh3/PhCO2H, THF, 1 h, 0°C, 90–93%.
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Scheme 3.
Reagents and conditions: (a) 5-hexynoic acid, n-BuLi (2 equiv), HMPA, 5°C for 1 h, then 23°
C for 12 h; CH2N2, 5% MeOH/Et2O, 23°C, 1 h, 60–65%; (b) PhC(O)Cl, DMAP, Et3N,
CH2Cl2, 23°C, 12 h, 93%; (c) Me3SiCH2CH=CH2/BF3·Et2O, CH2Cl2, 23°C, 18 h, 80–82%
(α-/β-isomers combined); (d) steps d-i in Scheme 1; (e) LiOH, THF/H2O (3:1), 23°C, 10 h,
92–96%; (f) DEAD/PPh3/PhCO2H, THF, 1 h, 0°C, 90–93%.
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