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ABSTRACT

Coalescent theory provides a powerful framework for estimating the evolutionary, demographic, and
genetic parameters of a population from a small sample of individuals. Current coalescent models have
largely focused on population genetic factors (e.g., mutation, population growth, and migration) rather
than on the effects of experimental design and error. This study develops a new coalescent/mutation
model that accounts for unobserved polymorphisms due to missing data, sequence errors, and multiple
reads for diploid individuals. The importance of accommodating these effects of experimental design and
error is illustrated with evolutionary simulations and a real data set from a population of the California sea
hare. In particular, a failure to account for sequence errors can lead to overestimated mutation rates,
inflated coalescent times, and inappropriate conclusions about the population. This current model can
now serve as a starting point for the development of newer models with additional experimental and
population genetic factors. It is currently implemented as a maximum-likelihood method, but this model
may also serve as the basis for the development of Bayesian approaches that incorporate experimental
design and error.

THE genealogy for a small random sample of
sequences is influenced by a large number of

evolutionary, demographic, and genetic factors for its
population. By making a few basic assumptions, coa-
lescent theory provides the framework to estimate the
probabilities of these genealogies and their associated
population parameters (Hudson 1990; Donnelly and
Tavaré 1995; Hein et al. 2004). Current coalescent mod-
els continue to emphasize population genetic factors
such as mutation, varying population size, migration,
and divergence time. These models are implemented
with both maximum-likelihood (ML) and sampling-based
(e.g., Markov chain Monte Carlo, MCMC) approaches.
Although exact, the former is generally practical or
even possible only for the simpler models (i.e., those
that account for a single factor) and smaller data sets.
In turn, although approximate, the latter can usually
accommodate more complex models and larger data
sets. The sampling-based methods often rely on a Bayes-
ian setting, where parameters are integrated over their
ranges and expected values are obtained (rather than
ML estimates).

In contrast to this emphasis on population genetic
factors, the effects of experimental design and error on a
coalescent study have been largely ignored (Felsenstein

2004). Most current coalescent models assume that hap-

lotype data are available for diploids and that sequence
variation is sampled in an unbiased manner. However,
haplotypes are not always available, particularly for
nuclear markers, and single-nucleotide polymorphisms
(SNPs), for example, are often ascertained in ways
that can bias their subsequent analysis. In light of these
facts, new coalescent models have been introduced to
account for these effects of experimental design (Kuhner

and Felsenstein 2000; Kuhner et al. 2000; Nielsen

2000).
This study develops a new coalescent/mutation

model that accounts for unobserved polymorphisms
due to missing data; for sequence errors due to cloning,
sequencing, and recording artifacts; and for multiple
sequencing reads from the same diploid individuals
(Figure 1). The development of this new model begins
with the standard model for reproduction of Fisher

(1930) and Wright (1931) for an unstructured pop-
ulation with discrete nonoverlapping generations and
identical individual fitness. A mutation process is then
introduced according to the infinite-sites model (Kimura

1969). Thereafter, the additional effects for unobserved
polymorphisms, sequence errors, and multiple reads are
incorporated. The utility of this new model is evaluated
with evolutionary simulations and a real data set of nu-
clear gene sequences from a population of the Califor-
nia sea hare (Aplysia californica). The latter is particularly
relevant, since it was the primary motivation for the
development of this new model and its specific factors
for experimental design and error.
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NEW MODEL FOR EXPERIMENTAL DESIGN
AND ERROR

Coalescence and mutation: We begin with a short
review of the infinitely many-sites model for calculating
genealogical tree probabilities of Griffiths (1989) and
Griffiths and Tavaré (1995) upon which our new
model for experimental design and error is based.
Under the Fisher/Wright model, �2N generations is
the expected time to the most recent common ancestor
(MRCA) for two randomly sampled alleles from a
haploid population of 2N individuals. Thus, if time is
scaled by a factor of 2N generations (and N is large),
then 1 unit of time can be set to this expectation and
time can now be measured as continuous rather than
discrete. Working backward in this scaled continuous
time, the waiting time for a coalescence of two alleles in
a population sample of n is then exponentially distrib-
uted with an intensity of n(n � 1)/2. Scaling time in
similar ways allows these expectations to be extended to
a wide range of other discrete-time models, including
those for a large diploid population with equal numbers
of males and females (Kingman 1982).

The infinite-sites model can now be added to this
standard coalescent model to incorporate a mutation
process, whereby only a single mutation can occur at any
homologous position (Kimura 1969). Thus, a maxi-
mum of only two nucleotides can occur at any site,
thereby allowing for the recoding of each sequence as a
vector of 0’s and 1’s (with the former designating the

ancestral state). Furthermore, our mutation process
assumes that all mutations are neutral (Kimura 1983).
With time scaled as above, the total expected divergence
time between two sequences is 4N generations given
that the expected time to their MRCA is 2N generations.
Thus, the scaled mutation rate is equal to the expected
number of mutations between two sequences (u¼ 4Nm,
where m is the mutation rate per gene per generation).

Incorporating missing data and unobserved poly-
morphisms: Let S refer to the ordered set of n
sequences, s1, s2, . . . , sn, at a particular time in the
genealogy. Each sequence is now defined as a triplet, s¼
(a, g, s), with its three entries representing its allele
configuration (vector of 0’s and 1’s), pattern of missing
data, and total number of singletons (unique derived
variants or 1’s due either to mutations or to sequence
errors), respectively. As one works backward in time, S
will change as mutations are accounted for and identical
alleles coalesce (Figure 2). In particular, this means that
a will be redefined for alleles with the most recent
derived mutations and s will be updated since these
mutations are counted as singletons as one works back-
ward toward the MRCA.

In turn, let g refer to a series of closed intervals that
summarizes what regions are known for each sampled
sequence relative to their full-length alignment (Figure
3). For a complete sequence, g ¼ (0:1). For any partial
sequence (i.e., one with missing data), g is represented by
narrower closed intervals on this 0:1 scale. As one works
backward in time and coalescent events occur, g is then
calculated for each common ancestor as the union of g for
its two coalescing sequences. Finally, let jsj represent the
total available length for an extant or ancestral sequence,
which is calculated as the sum of its closed intervals in g.
This tracking of total available lengths allows for the later
introduction of a correction factor for mutations that are
overlooked because they occur within a missing region of
the sequences (see below). In these ways, the known and
missing regions of sequences, along with the potential to
observe mutations, are accounted for as one works back-
ward in time to the MRCA for the sampled sequences.

For now, we assume that all singletons are due to mu-
tations (those reflecting sequence errors are accounted
for in the next section). We furthermore assume that
the allele configurations are known, even for those
missing regions of the sequences. This assumption is
allowed since we can sum over all possible states at the
variable sites in the missing regions of the partial se-
quences (see below). If ai ¼ aj and si ¼ sj ¼ 0, then si

and sj are combinable (si� sj) since their known regions
are identical. In contrast, incombinable sequences dif-
fer by one or more mutations that must have occurred
since their common ancestor. Thus, only combinable
sequences can coalesce given that the next event (as
always, working backward in time) is not a mutation. If si

and sj do indeed coalesce, then the sequence for their
common ancestor (sij) must be identical to si and sj. As

Figure 1.—Incorporating factors for experimental design
and error into the standard coalescent models with popula-
tion genetic parameters (e.g., for mutations). (A) Current co-
alescent models have focused on the effects of population
genetic processes on the genealogy for a population sample
of alleles. (B) The new model builds on the standard models
by incorporating factors for the experimental determination
of the allele sequences. Specifically, it acknowledges that the
multiple sequences for the sampled alleles can include errors
and missing regions and that the assignment of their different
reads to the two homologs of a diploid can remain uncertain
even when the individual source of each read is known. By ac-
commodating these facts, better estimates of the population
genetic parameters can be provided by accounting for unob-
served polymorphisms due to missing data and sequence er-
rors. The open circles and dashed lines refer to an allele of a
sampled individual that is never sequenced.
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sij should now have missing regions only where both si

and sj lack information, sij ¼ (a, gi [ gj, 0), an initial
condition that is defined only when si � sj.

Under the infinite-sites model, if the next event is a
mutation then the mutation must also be a singleton,
even if it is shared among multiple extant sequences
(Figure 2). If shared among the extant sequences, then
under the infinite-sites model, this mutation must have
arisen in the branch leading to their common ancestor.
If si of the current set of sequences is selected for this
next mutation and si . 0, then its immediate ancestor
before the mutation can be denoted as si9¼ (ai, gi, si� 1).
Furthermore, define ai(S) ¼ (S \{si}) [ fsi9g and bij(S) ¼
(S \{si, sj}) [ {sij} as the current set of sequences before
this mutation and before the split of si and sj, re-
spectively. As before, the bij(S) definition requires that
any unique mutations (i.e., 1’s) for sij be removed from
its a and accounted for instead by its s and that any
regions known for only one sequence of the current set
be removed from g (Figures 2 and 3).

We now find the probability of observing S by direct
calculation from the recursion:

PcðSÞ ¼
2

jSj ð jS j � 1Þ1 u
P

i jsi j
X

i

X
j .i:sj�si

PcðbijðSÞÞ

1
u

jS jð jS j � 1Þ1 u
P

i jsi j
X

i:si .0

jsi jsi

mS
PcðaiðSÞÞ:

ð1Þ

Figure 2.—Illustration of how singletons are transferred
from a to s for the n sequences of S as mutation and coales-
cent events are accounted for, working backward in time. At
the top, the history for four sampled sequences (bars at the
bottom of the tree, with bars further up the tree representing
their common ancestors) is shown with asterisks and solid
circles highlighting their derived mutations at four polymor-
phic sites (v1–v4). Three different times in this history are
highlighted with A corresponding to the present. At time
A, two matrices are shown for the four extant sequences, be-
fore and after the transfer of their singletons to s. In these two
matrices, rows correspond to a for the four sampled sequen-
ces (as listed in the same order from top to bottom as pre-
sented from left to right in their genealogy), columns refer
to polymorphic sites v1–v4, and ‘‘0’’ and ‘‘1’’ distinguish be-
tween the ancestral and derived states at these variable posi-
tions. As illustrated here, all singletons in the left matrix are
transferred to their corresponding s in the right matrix, with
the latter now tracking these unique mutations. Time B then
highlights an older point in the genealogy prior to the muta-
tion events at polymorphic sites v2 and v3. Thus, at this time,
only two polymorphic sites (v1 and v4) occur among the four
sequences of S. The derived mutation at v1, which represents a
singleton of the fourth extant sequence, continues to be
tracked by its s ¼ 1. Finally, time C is highlighted, because
it represents a point prior to the first coalescent event in
the genealogy. As a result of this coalescent event, n ¼ 3 with
the first two rows for the first two sampled sequences in matrix
B now replaced by the single first row for their common an-
cestor in the two C matrices. Correspondingly, the shared de-
rived mutation for the first two extant sequences in matrix B
now constitutes a singleton of their ancestral sequence. Thus,
as before, this singleton is transferred from a to s for their
common ancestor to further track this now unique mutation.
This process of accounting for mutations, coalescences, and
singletons as one works backward in time continues until
the MRCA of the four sampled sequences is reached.

Figure 3.—Illustration of how g is determined for both ex-
tant and ancestral sequences as one works backward in time
toward their MRCA. The history for four sampled sequences,
each with missing data, is shown with their known and un-
known regions represented as solid and open bars. The
full-length alignment for these four extant sequences is
1000 bases. The first number for each sampled sequence
marks the relative alignment position at the end of its un-
known region (if any) to its left. For example, the leftmost
sampled sequence is missing the first 200 bases of the full-
length alignment. In turn, the following interval in parenthe-
ses corresponds to its g ½i.e., its summary of known regions as
scored over the closed interval of (0:1) for the full alignment�.
Thus, g ¼ (0.2:1.0) for the first extant sequence. As one works
backward in time and coalescent events are accounted for, g is
then calculated for each ancestral sequence as the union of g
for its two coalescing sequences ½e.g., g¼ (0.2:1.0) for the com-
mon ancestor of the two leftmost sampled sequences�. In
these ways, known and unknown regions of both extant
and ancestral sequences are tracked back to the MRCA of
the population sample.
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The final step is Pc({(0, g, 0)}) ¼ 1 for any g. Working
backward in time, the expected waiting times for both
a coalescence and an observed mutation are exponen-
tial, with their scaled rates equal to jS j(jSj � 1)/2 and
u=2

P
i jsi j, respectively (given no allele information).

The use of
P

i jsi j in the latter factor reflects the fact that
mutations are observed only when they occur within the
known regions of the sequences.

The probability that the next (observed) event is a
specific coalescence is

1

jS j ð jS j � 1Þ=2 1 u=2
P

i jsi j
; ð2Þ

which is the first factor of the first term in Equation 1. If
indeed a coalescent event occurs, then it can happen
only between combinable sequences as indicated by the
double sum.

The mutation process is modeled by the second term
in Equation 1. The first factor is for the probability that
the latest event is a mutation in a specific sequence,
whereas the sum is over all sequences with at least one
singleton. The si factor counts the number of singletons
and thereby possible sites for this mutation. Given that
the segregating sites are ordered, the probability is then
divided by mS, which denotes the number of variable
positions in S. As indicated above, the missing regions of
each sequence can be dealt with by summing over all
possible states for it, at those sites where a mutation is
observed among the other sequences. However, unlike
other coalescent/infinite-sites-mutation models, ours
also accounts for those mutations that go unobserved
since they occur in the missing regions of these partial
sequences. This class of unobserved mutations is once
again accounted for by jsi j, which represents the prob-
ability of a singleton occurring within an observed part
of si.

Apart from some combinatorial terms for labeling
and grouping, if jsi j ¼ 1 for all i, we note that our
starting Equation 1 is identical to Equation 1.4 in
Griffiths (1989) (see also Griffiths and Tavaré

1995). That is, both equations use recursion to calculate
the exact probability of a population sample of alleles
under the Wright/Fisher model for reproduction and
the infinite-sites model for mutation. This recursion is
guaranteed to converge, because each step leads to
fewer polymorphic sites or sequences, thereby leading
to the MRCA at some point. However, if the mutation
process does not obey the infinite-sites model, then this
recursion may converge onto an incorrect probability.

Incorporating sequence errors and multiple reads:
The infinite-sites process is now extended to include
sequence errors as well as mutations (i.e., only one error
or mutation can occur at any homologous position). A
uniform distribution of errors along the sequences is
assumed, with e denoting the expected number for a
full sequence. Thus, the total number of observed errors

is Poisson distributed with an intensity of l ¼ e
P

i jsi j
and the probability of observing i errors is

fði; lÞ ¼ li e�l

i!
: ð3Þ

Let v ¼ (v1, v2, . . . , vn) be an n-dimensional vector of
errors per sequence, let jvj be its sum of entries, and let
S� v be the set of sequences with vi singletons removed
from si. In calculating the probability of observing S,
sequence errors can now be accommodated as

PeðSÞ ¼
X

v

fð jvj ; lÞPcðS � vÞ 1

n jvj
mS

jvj

� ��1Y
i

si

vi

� �
:

ð4Þ

The first factor is for the probability of observing jvj er-
rors, whereas the second is for the coalescent/mutation
probability of the sequences without the errors (Equa-
tion 1). The last factors are for the probability that jvj
errors are distributed among the sequences as indicated
by v. The sum is over all nonnegative integers of the vi’s
where no sequence in S� v can have a negative number
of singletons.

As multiple reads of the same allele or haplotype
should at least be combinable, any discrepant nucleo-
tides among them can be attributed to sequence errors
rather than polymorphism. Thus, sequence errors can
be readily distinguished among the multiple sequenc-
ing reads for a haploid individual, but not for a diploid
or a polyploid one. The reason is that the different
multiple reads for a diploid or a polyploid individual
can vary due to allelic variation as well as sequencing
errors. This ambiguity is distinct from the problem of
identifying haplotypes from the direct sequencing of
PCR products from potential heterozygotes (Clark

1990). Instead, the problem here is concerned with
assigning the multiple individual reads of the haplo-
types for a diploid or a polyploid, as obtained from the
direct sequencing of its cloned DNA inserts, e.g., to its
two or more homologs.

To address this ambiguity due to the uncertain map-
ping of known multiple reads to homologs, let us as-
sume that each read was obtained from a cloned DNA
insert or a single haploid gamete and that each can be
matched to a specific individual but not to one of its
p alleles (with p ¼ 1 or 2 for haploid and diploid,
respectively). Now, order the pk alleles for k p-ploid in-
dividuals such that those for individual i are labeled
{p(i � 1) 1 1, p(i � 1) 1 2, . . . , pi} and then map the n
reads to this arrangement. Of the pnk alternative map-
pings, let F define the final set of valid f ’s where only
combinable reads are assigned to the same allele. In the
case of haploid individuals (p ¼ 1), F contains only a
single mapping of the various reads for each individual
to a single sequence.
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In the absence of sequence errors, the probability of
observing S can now be calculated as

PdðSÞ ¼
1

pn

X
f 2F

Pcð f ðSÞÞ; ð5Þ

where f (S) refers to a valid transformation of S reads to
the alleles of the p-ploid individuals. Multiple reads that
map to the same allele are then joined as in a coalescent
event. In contrast, when sequence errors can be present,
Pc( f (S)) in the above equation is replaced by Pe( f (S))
from Equation 4.

Full algorithm: The complete algorithm for the new
model uses expectation maximization for parameter op-
timization (Durbin et al. 1998). Nevertheless, it remains
computationally intensive, since it requires sums over
all missing data, error configurations, allele mappings,
and ancestral states. Fortunately, the algorithm also
benefits from its infinite-sites assumption that allows for
only certain allele matches, missing configurations, and
ancestral states and for some numbers of singletons
as sequence errors for particular mappings. A further
acceleration is gained by the reuse of partial results in
computer memory and by the reduction of the ML op-
timization for u and e from a two- to a one-dimensional
search in effect. The latter is achieved by rewriting the
total probability of the data as a sum over the probabil-
ities for different numbers of sequence errors:

PðSÞ ¼
X

i

PðS j i errorsÞfði; lÞ: ð6Þ

Since P(S j i errors) is independent of e, P(S) can now
be more efficiently calculated for a given u in the ML
optimization of e. (An implementation of the algorithm
is available upon request from B.K.)

EVOLUTIONARY SIMULATIONS AND
A. CALIFORNICA DATA

To evaluate the new model, evolutionary simulations
were conducted according to standard methods (Hein

et al. 2004). Two hundred data sets apiece were sim-
ulated for either 8 or 16 sequences of length 500 from a
single population. The baseline conditions for these
simulations were those of the standard Fisher/Wright
and infinite-sites models with u¼ 1 or 2. To this baseline,
sequence errors and/or missing data were incorporated
as four or eight randomly placed errors among the 8
and 16 sequences, respectively (for an expected e value
of 0.5), and by the removal of the starting 150 sites for 4
or 8 of the 8 and 16 total sequences, respectively. In
addition, in the trials with 8 sequences, missing data
were also simulated by removing the first 200 sites from
2 sequences and the last 200 from 2 others. Estimates of
u and e (when appropriate) were then obtained for the
200 data sets of each tested combination with the stan-

dard coalescent/mutation model and the new model
that accounts for experimental design and error. Sim-
ulating the sequences as independent samples of the
population (rather than as multiple reads of diploid in-
dividuals) allowed for more direct tests of the effects of
unobserved polymorphisms due to missing data and
sequence errors.

The standard model underestimated u in all of the
simulated cases with missing data but no sequence
errors (Table 1). These underestimates were significant
in all of these cases, except for the nearly significant
result with 8 sequences, u ¼ 1, and missing data (I)
(simulations A3, B2, B3, C2, and D2 vs. A2, respectively).
The standard model ignores unobserved polymorphisms
due to missing data, which thereby leads to these un-
derestimates of u. As expected of a systematic bias due
to model failure, this problem was more pronounced
for the larger samples (cf. the significant underesti-
mate of u ¼ 1 for simulation C2 with 16 sequences vs.
the nearly significant outcome for its counterpart A2
with 8 sequences).

Conversely, the standard model overestimated u when
sequence errors occurred (simulations A4–A6, B4–B6,
C3, and D3 in Table 1). These highly significant over-
estimates were evident even when opposed by the un-
derestimates of u due to missing data and unobserved
polymorphisms (simulations A5, A6, B5, and B6). The
standard model erroneously attributes singletons due
to sequence errors to mutations, which thereby results
in these highly significant overestimates of u.

In contrast, the new model significantly underesti-
mated u when the sequences were error free (simula-
tions A1–A3, B1–B3, C1, C2, D1, and D2 in Table 1). For
a related reason, the new model also significantly
overestimated e as greater than zero in these simula-
tions. The related reason for these significant under-
and overestimations is that the mutations of error-free
sequences may at times be attributed to sequence er-
rors by the new model. To avoid this problem of over-
parameterization, a statistical test of the null hypothesis
that e¼ 0 can first be performed (e.g., with a likelihood-
ratio test; Huelsenbeck and Rannala 1997). If this null
hypothesis cannot be rejected, then Equation 1 can be
used instead of Equation 4 in the full algorithm to
eliminate sequence errors as an explanation for the
singletons.

Furthermore, there was also a slight tendency for the
new model to underestimate u and overestimate e when
e¼ 0.5 (simulations A4–A6, B4–B6, C3, and D3 in Table
1). In particular, there were four cases using 8 sequences
where such under- and/or overestimations were signif-
icant (simulations A4, A5, B4, and B6). However, in
contrast to the systematic bias for the standard model
(see above), these under- and overestimations were less
pronounced for the cases with the larger samples (cf.
the insignificant outcomes for simulations C3 and D3
using 16 sequences vs. the significant results for their
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counterparts A4 and B4 using 8 sequences). The reason
here is that these under- and overestimations are due to
sampling errors (rather than systematic bias), whereby
the larger samples provide extra information for the
resolution of both sequence errors and mutations.

The new model was next evaluated with the real
sequences and multiple reads for a population of
A. californica under investigation at The Whitney Labo-
ratory for Marine Bioscience, University of Florida (L. L.
Moroz and A. B. Kohn, unpublished data). Three
different clones, each carrying the FMRF gene, were
selected from the plasmid genomic libraries for six
individuals of this population. Each insert was then
sequenced as a pair of single passes starting from both
ends of an internal segment of 1731 bp for the protein-
coding region of this nuclear gene (Figure 4). These
pairs of passes overlapped in the middle for nine
sequences, but at most by only 58 bases.

The relatively high ratio of singletons (44) to shared
polymorphisms (10) for the 18 reads of the six individ-
uals suggested that sequence errors are a major source
of variation in this data set (Figure 4). Correspondingly,
the joint estimation of u and e by the new model proved
too time consuming for these 18 sequences, primarily
because of their interval of 0–44 possible errors to sum
over in their likelihood calculations (see below). Thus, a
two-step procedure was instead adopted, whereby the
number of errors was first ML estimated, followed by the
determination of u for this specific ML value. In turn,

e was calculated as the ML number of errors divided byP
jsi j for the original sequences. In this way, ML es-

timates of e ¼ 2.52 (or 42 errors for the 18 complete
and partial sequences) and u ¼ 6.32 were obtained for
this data set with the new model. Given these ML
estimates for 1731 positions, nucleotide diversity, or p,
and the error rate were calculated as 0.0037 mutations/
site and 0.0015 errors/site, respectively. As these 18
reads were based on single sequencing passes, their error

Figure 4.—Summary of the available data for the 18 se-
quencing reads from six individuals (ind.) of A. californica.
Forty-four singletons and 10 shared polymorphisms occur
among these 18 sequences (the tick marks and x’s, respec-
tively). At position 736, three nucleotides (C, G, and T) are
found in violation of the infinite-sites model and its maximum
of 2 bases per site. Thus, in the analysis of these 18 sequences,
this position was divided into two separate ones for its G vs. T
singletons (as marked).

TABLE 1

Simulated results, summarized as the averages plus or minus twice the standard deviations for 200 data sets each

Standard coalescent/mutation model: New model

Evolutionary simulations u u e

A1 u ¼ 1, 8 sequences 1.016 6 0.107 0.747 6 0.107 0.072 6 0.015
A2 With missing data (I) 0.918 6 0.101 0.682 6 0.105 0.094 6 0.019
A3 With missing data (II) 0.892 6 0.102 0.692 6 0.111 0.091 6 0.021
A4 With e ¼ 0.5 3.280 6 0.145 0.908 6 0.137 0.534 6 0.028
A5 With missing data (I) and e ¼ 0.5 2.733 6 0.147 0.822 6 0.131 0.550 6 0.033
A6 With missing data (II) and e ¼ 0.5 2.519 6 0.144 0.868 6 0.135 0.526 6 0.037

B1 u ¼ 2, 8 sequences 2.064 6 0.177 1.602 6 0.167 0.108 6 0.027
B2 With missing data (I) 1.830 6 0.156 1.555 6 0.164 0.116 6 0.030
B3 With missing data (II) 1.828 6 0.160 1.555 6 0.172 0.132 6 0.030
B4 With e ¼ 0.5 4.510 6 0.208 1.901 6 0.213 0.542 6 0.037
B5 With missing data (I) and e ¼ 0.5 3.808 6 0.187 1.869 6 0.216 0.540 6 0.047
B6 With missing data (II) and e ¼ 0.5 3.635 6 0.194 1.833 6 0.221 0.561 6 0.047

C1 u ¼ 1, 16 sequences 0.952 6 0.093 0.775 6 0.088 0.029 6 0.007
C2 With missing data (I) 0.862 6 0.084 0.719 6 0.085 0.038 6 0.008
C3 With e ¼ 0.5 4.891 6 0.132 0.934 6 0.109 0.503 6 0.012

D1 u ¼ 2, 16 sequences 1.865 6 0.138 1.623 6 0.140 0.037 6 0.009
D2 With missing data (I) 1.711 6 0.127 1.565 6 0.139 0.046 6 0.012
D3 With e ¼ 0.5 6.048 6 0.179 1.866 6 0.171 0.501 6 0.016

Missing data (I) refer to the simulations where the first 150 bases were removed from half of the total sequences in each data set.
Missing data (II) correspond to the simulations with 8 sequences where the first 200 sites of 2 sequences and the last 200 positions
of 2 others were removed. The simulations with 16 sequences and both missing data and errors remain unavailable, since they
proved too computationally intensive (see text).
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rate of 0.0015 was �15 times greater than the accepted
cutoff of 0.0001 for finished sequences (Richterich

1998).
The computational complexity for a particular data

set is strongly influenced by its number of segregating
sites, with more variable positions involving more choices
as one works back through the coalescent/mutation
recursion (Equation 1). The coalescent/mutation pro-
cess introduces a large variance in the number of seg-
regating sites due to the heterogeneity in both the total
branch length of the genealogy and the Poisson mu-
tation process (Hudson 1990; Felsenstein 2004). In
the evolutionary simulations with 16 sequences, u ¼ 2,
and missing data (D2 in Table 1), the full-likelihood
calculations had a median computation time of 29 CPU
sec on a computer using a single core of an Intel Quad-
Core Xeon X3210 CPU at 2.13 GHz. In contrast, 53 CPU
hr were required for the most complex of these data
sets, and indeed, the full-likelihood calculations for 16
sequences with both missing data and sequence errors
proved too time consuming. In turn, the A. californica
data set was even more complex given the need to sum
across its 44 singletons and ambiguous haplotype assign-
ments, uncertain error specifications, ancestral states,
and missing data (Equations 4 and 5). Thus, its likeli-
hood evaluations necessitated the two-step procedure
that still took several CPU hours to complete.

DISCUSSION

In this study, sequence errors are modeled as unique
events of single reads that are primarily due to cloning,
sequencing, and recording inaccuracies. Thus, when
sequence errors are not accounted for, they are misin-
terpreted as unique mutations in the terminal branches
of the genealogy (Felsenstein 2004). Correspondingly,
the coalescent times for the sequences are artificially
extended as their genealogy becomes more like that for
an expanding population (Harpending et al. 1998). In
conclusion, when sequences are error prone (e.g., as for
expressed sequence tags and other single-read data), a
failure to account for sequence errors can lead to over-
estimates of u and artificially older coalescent times
(Table 1). As a result, this failure can also lead to inaccu-
rate conclusions about the biology of the population.

The new model is presented as a starting point for the
further development of coalescent/mutation models
that account for experimental design and error. It is
presently designed to accommodate three specific ex-
perimental factors that are of particular interest to the
study of the A. californica data set. As for other starting
models, the new model currently overlooks other ex-
perimental and population genetic factors that are
regarded as less pertinent to its targeted goal (e.g., SNP
ascertainment bias, migration, and varying population
size for this laboratory population; see also below).

One obvious future direction for the new model is to
implement it as an MCMC or other sampling-based
procedure that will allow for the incorporation of addi-
tional experimental and population genetic factors.
This implementation of sampling-based procedures will
facilitate the study of ancestral recombination graphs
for the accommodation of missing data too and the
development of a Bayesian counterpart for posterior
probability testing (Griffiths 2001; Hein et al. 2004).
In particular, these advances will allow for predictions
about which of the three distinct reads for an in-
dividual A. californica map to the same allele and which
of its singletons therefore represent errors (Figure 4).
They will also account for recombination, which is
likely the most important factor overlooked in our pres-
ent analysis of the nuclear FMRF gene for this labo-
ratory population. Along these lines, this study also
encourages the further development of coalescent/
mutation models that account for experimental design
and error, but under a finite-sites process (Kuhner and
Felsenstein 2000; Kuhner et al. 2000; Nielsen 2000).
Here, these complementary finite-sites models will
benefit from the availability of existing phylogenetic
procedures for their accommodation of missing data
and sequence errors as well as site-to-site variation in
rates (Felsenstein 2004).
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