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ABSTRACT

Selective DNA pooling (SDP) is a cost-effective means for an initial scan for linkage between marker
and quantitative trait loci (QTL) in suitable populations. The method is based on scoring marker allele
frequencies in DNA pools from the tails of the population trait distribution. Various analytical approaches
have been proposed for QTL detection using data on multiple families with SDP analysis. This article
presents a new experimental procedure, fractioned-pool design (FPD), aimed to increase the reliability of
SDP mapping results, by ‘‘fractioning’’ the tails of the population distribution into independent subpools.
FPD is a conceptual and structural modification of SDP that allows for the first time the use of
permutation tests for QTL detection rather than relying on presumed asymptotic distributions of the test
statistics. For situations of family and cross mapping design we propose a spectrum of new tools for QTL
mapping in FPD that were previously possible only with individual genotyping. These include: joint
analysis of multiple families and multiple markers across a chromosome, even when the marker loci are
only partly shared among families; detection of families segregating (heterozygous) for the QTL;
estimation of confidence intervals for the QTL position; and analysis of multiple-linked QTL. These new
advantages are of special importance for pooling analysis with SNP chips. Combining SNP microarray
analysis with DNA pooling can dramatically reduce the cost of screening large numbers of SNPs on large
samples, making chip technology readily applicable for genomewide association mapping in humans and
farm animals. This extension, however, will require additional, nontrivial, development of FPD analytical
tools.

ACHIEVING reasonable statistical power of designs
for detecting marker–quantitative trait loci (QTL)

linkage for QTL of small effect is difficult and requires
large mapping populations, with consequent high cost
of marker genotyping. Similar situations also arise in
association studies based on linkage disequilibrium
(LD). A cost-effective solution to reduce costs associ-
ated with genotyping large mapping populations is to
replace individual genotyping by DNA analysis in pools
of individuals coming from the high and the low tails
of the mapping population distribution. This concept,
referred to as ‘‘tail analysis’’ (Hillel et al. 1990;
Dunnington et al. 1992; Plotsky et al. 1993), ‘‘bulked
segregant analysis’’ (Giovannoni et al. 1991; Michelmore

et al. 1991), or ‘‘selective DNA pooling (SDP)’’ (Darvasi

and Soller 1994), was proposed for QTL analysis and for
testing of linkage between markers and a major gene.
Darvasi and Soller (1994) provided a detailed quan-
titative analysis of this procedure, based on comparing
marker allele frequency (which can be obtained by den-
sitometry) in the pooled DNA samples; a number of

authors have proposed useful corrections to obtain
reliable estimates of SNP allele frequencies in pools
(Visscher and Le Hellard 2003; Zou and Zhao 2004,
2005; Craig et al. 2005). The SDP procedure can readily
be extended to situations, such as half-sib or full-sib de-
signs, where the mapping population consists of several
families. It was applied for genome scanning for QTL
affecting milk production traits using microsatellite markers
(Lipkin et al. 1998; Mosig et al. 2001).

Various approaches have been proposed for obtain-
ing QTL position and its confidence interval with SDP
(Dekkers 2000; Carleos et al. 2003; Brohede et al.
2005; Johnson 2005). Among the problems with such
analyses are varying proportion of family founders
heterozygous at both the QTL and the markers; hetero-
geneity of the families with respect to QTL effects; dif-
ferent information content of different marker loci;
allele sharing between the founder sires and dams of the
families; varying proportion of shared marker loci among
families, laboratories, and populations; effects of popu-
lation admixture; variation of PCR efficiency for marker
alleles; and the use of asymptotic, difficult-to-justify ap-
proximations of test-statistic distributions. Wang et al.
(2007) provide least-squares and maximum-likelihood
generalizations of Dekkers (2000) and address a number
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of the shortcomings of existing methodology. Recently,
DNA pooling analyses using SNP markers have also been
employed in some human mapping studies based on
populationwide association tests or involving compari-
son of pools of healthy and affected individuals (Sham

et al. 2002; Butcher et al. 2004; Schnack et al. 2004;
Brohede et al. 2005; Tamiya et al. 2005). These SNP-
based association tests are also subject to many of the
statistical limitations listed above. When analyses are
based on individual selective genotyping, analytical solu-
tions are available for most of these problems (Lander

and Botstein 1989; Darvasi and Soller 1992; Ronin

et al. 1998). This is not the case when the analyses are
based on SDP. Thus, despite many publications sup-
porting pooling analysis, concerns remain about the
reliability of the marker–QTL associations obtained in
this way.

A ‘‘fractioned-pool’’ approach, in which the tails of
the population distribution are randomly allocated
among a number of independent subpools, has been
considered by a few authors, with the objective of ob-
taining an empirical standard error for estimates of
marker allele frequencies in pools (e.g., Sham et al. 2002),
or for optimization of pool number/pool size, from
the viewpoint of amplification fidelity (Brohede et al.
2005). In the present article, the fractioned-pool con-
cept is extended to provide a complete analytical sys-
tem for QTL linkage mapping analysis by selective
DNA pooling, termed fractioned-pool design (FPD)
(Figure 1). The FPD removes many of the above statis-
tical limitations. The FPD analysis is not limited by an
assumption of normal distribution of the trait. However,
the tails of trait distribution (corresponding to high
and low trait values) must contain a sufficient number
of individuals to achieve a reasonably high detection
power.

For the first time in selective DNA pooling, the FPD
allows QTL detection based on permutation tests rather
than on assumed asymptotic distributions of test statis-
tics and estimation of confidence intervals for QTL
position and effect based on jackknife or bootstrap re-

sampling techniques. It also allows estimating the test
statistic more accurately than in the case of a single pool
per tail. The proposed method is illustrated using Monte
Carlo simulations. Successful validation of the FPD for
genomewide studies of quantitative variation opens a
new perspective for highly reliable and cost-efficient
large-scale QTL analysis, unattainable by standard SDP
analytical procedures.

STANDARD SELECTIVE DNA POOLING APPROACH
TO QTL MAPPING

The experimental material for QTL mapping based
on SDP consists of individuals selected from the tails of
the mapping population trait distributions. The proce-
dures considered here are suitable for mapping popu-
lations composed of full- or half-sib families or multiple
families within F2 or BC populations. The simulated
examples employed to illustrate the proposed method-
ology correspond to multiple half-sib daughter families
(e.g., a population based on artificial insemination as
found in dairy cattle). Each family consists of the prog-
eny of a different sire and is represented by some given
number of daughters per tail selected out of all pheno-
typed daughters of that family.

Assume that a sire is heterozygous at a QTL affecting
trait value, and designate as a positive sire QTL allele the
sire QTL allele increasing trait value and as a negative
sire QTL allele the sire QTL allele decreasing trait value.
Then the frequency of the positive sire QTL allele will be
higher in the group of daughters having high trait value
and lower in the group of daughters having low trait
value; the opposite will be true for the negative sire QTL
allele. Through hitchhiking effects, this difference in
the frequency of the positive and negative sire QTL
alleles in groups with high and low trait values produces
a parallel difference in the frequency of sire marker
alleles at marker loci heterozygous in the sires that are in
coupling linkage to these heterozygous QTL. Analyzing
sire marker-allele frequency differences at several
marker loci enables the position of the QTL on the
chromosome to be estimated.

It is convenient to denote the two pools as high (H)
and low (L), respectively, and the two sire alleles at the
linked marker locus m (m ¼ 1, . . . , M) as alleles Am and
Bm, respectively. Using this notation, we define the
statistic Dm as a characteristic of sire allele divergence
in the two tails,

Dm ¼ ½ðFHAm � FLAmÞ � ðFHBm � FLBmÞ�=2 ð1Þ

(Lipkin et al. 1998), where FHAm is the frequency of
allele Am in the high pool, and FHBm, FLAm, and FLBm

are defined accordingly. When there are only two alleles
at the marker locus as in the case of SNP markers, FAm

and FBm are in perfect negative correlation, and hence
only one of the alleles need be included in estimating

Figure 1.—Constructing multiple subpools. Trait distribu-
tion in each family is divided into three parts: individuals with
high or low trait values that make up the high and low tails
and individuals with intermediate trait values. At each tail, in-
dividuals are grouped randomly into subpools. NT character-
izes the number of individuals with corresponding trait values
in a family. L1, L2, L3, and L4 are low-tail subpools; H1, H2,
H3, and H4 are high-tail subpools.
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Dm. However, when there are multiple alleles at the
marker locus as in the case of microsatellite markers,
FHAm and FHBm are not perfectly correlated, and hence
both contain independent information on Dm. In this
case, the accuracy of estimation of D is improved by
averaging estimates from both alleles as shown in (1).
The estimate from allele Bm is given a minus sign in (1)
because changes due to a linked QTL in allele Bm are in
opposite direction to those in allele Am, as noted above
(see Lipkin et al. 1998 for details).

To illustrate how the QTL substitution effect influen-
ces the expected value of D-statistics, consider a single-
QTL case for the half-sib design. Let QTL q be diallelic
with sire QTL genotype A(q)B(q) and equal frequencies
of alleles A(q) and B(q) in the dam population. In this
situation, the proportions of QTL genotypes in the
progeny are 25% A(q)A(q), 50% A(q)B(q), and 25%
B(q)B(q). Let the targeted quantitative trait be normally
distributed with residual variance s2 and mean value
dependent on QTL genotype: m � d for B(q)B(q), m for
A(q)B(q), and m 1 d for A(q)A(q). For 10% cutoff tails of
trait distribution and allele substitution effect of QTL
d/s ¼ 0.3, 0.2, and 0.15, the expected value of D(q)

(defined analogously to Dm) will be 0.26, 0.17, and 0.14,
respectively. Assume further that marker locus m is
triallelic with alleles Am, Bm, and Cm; the sire’s haplotypes
are AmA(q) and BmB(q); allele frequencies in the dam
population are 0.25 for Am, 0.25 for Bm, and 0.5 for Cm;
and marker and QTL alleles in the dam population are
in linkage equilibrium. Then, if marker m is coincident
with QTL q ½i.e., marker allele Am is inherited from the
sire only with A(q) and Bm only with B(q)�, the expectation
of Dm should be half of D(q) (i.e., 0.13, 0.085, and 0.07 for
d/s ¼ 0.3, 0.2, and 0.15, respectively).

For detecting the chromosomes with QTL effects,
one can consider for every marker m the statistic x2

m

taken over all F families heterozygous for the marker m,

x2
m ¼ Sf D2

f ;m=Var Df ;m ; ð2Þ

where Var Df,m is the sampling variance of Df,m for the
f family at the m marker. When the selected trait is not
affected by the tested chromosome (H0 hypothesis), x2

m

is presumed to follow a x2-distribution with d.f. ¼ F
(number of families), enabling a x2-test for the presence
of a QTL linked to the marker (Weller et al. 1990).

THE ANALYTICAL SYSTEM OF FPD

By joint analysis of these sire marker-allele frequency
differences, Dm, at several marker loci, one can estimate
the chromosomal position of the detected QTL. For one
or several families heterozygous for the same QTL,
fitting a function of chromosomal positions for observed
Dm values at the polymorphic marker loci can be used for
estimation of the QTL position (similar to the proce-
dures described by Kearsey 1998 and Ronin et al. 1999).

Single-QTL model: For a single-QTL situation, the
expectation of statistic Dm is proportional to (1 � 2rm),
where rm is the recombination rate between the marker
m and the QTL q. In (1) the sign of statistic Dm depends
on which of the two sire marker alleles was designated
Am and which was designated Bm. In what follows we
assume that marker haplotypes of sire are known and
marker alleles from one haplotype are designated by Am

and from another by Bm, m ¼ 1, . . . , M, where M is the
number of marker loci included in the haplotype (note
that FPD methods also apply in the case of unknown
phases; see Unknown marker linkage phase in the sire
below). Value rm depends on location of marker m and
unknown location (x(q)) of the putative QTL on the
chromosome. Hence the expectation of Dm can be
represented as

EDm ¼ l½1� 2rmðxðqÞÞ�; ð3Þ

where l is the (expected) value (henceforth ‘‘l-value’’)
of D for a marker that coincides with the QTL, and
rm(x(q)) is the recombination rate between the marker
and the QTL and will be zero for a marker located at x(q).
Assuming absence of interference, rm can be calculated
using the Haldane model, rm(y)¼ 0.5(1� exp{�0.02y}),
where y is the map distance in centimorgans between xm

and the unknown coordinate x(q) of the QTL (Figure 2).
The information on all markers scored for the same

chromosome can be combined to derive the unknown
coefficients l and x(q). These parameters can be esti-
mated (analogously to Wang et al. 2007) using a standard
least-squares approach (by minimizing the following
criterion):

SmfDm � l½1� 2rmðxðqÞÞ�g2=Var Dm ���!
xðqÞ;l

min: ð4Þ

The sampling variance of Dm (Var Dm) can be calculated
by ways reviewed in Sham et al. (2002) and Brohede et al.
(2005). Employment of expression (3) by using crite-
rion (4) can be represented in terms of a standard linear
model,

Dm ¼ l½1� 2rmðxðqÞÞ�1 em

Figure 2.—One QTL on the chromosome. Expectation of
the statistic D for markers situated at various locations on the
chromosome. Value ED is calculated by formula (3) (using the
Haldane model of recombination). Height of the graph at
the QTL position x0¼ x(q) is a characteristic of the QTL effect
on markers in this family (family l-value).
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(Wang et al. 2007), or in matrix notations, D ¼ Xl 1 e.
Here values em are residuals, including both sampling
and technical errors, with variance equal to Var Dm; D, X,
and e are vectors of Dm, ½1 � 2rm(x(q))� and em cor-
respondingly, m ¼ 1, . . . , M, and M is the number of
markers. The test statistic, calculated at given putative
QTL position, can then be written as x2¼Sm{Dm� l ½1�
2rm(x(q))�}2/Var Dm. However, because the correlations
between values of Dm for linked markers are not taken
into account in (4), the statistical quality (sampling
variance) of the estimates obtained by this criterion is
not optimal. We therefore use a more general optimi-
zation criterion that does take correlations into account.

Let em in the linear model be correlated with cor-
relations defined by matrix G. Then, using a generalized
least-squares approach, parameters can be estimated by
minimizing the following criterion (for simplicity of
designation, we write it in matrix form):

ðCðD� XlÞÞ9G�1CðD� XlÞ ���!
xðqÞ;l

min: ð5Þ

Here C is the diagonal matrix of (Var Dm)�0.5. For a given
x(q) putative position of the QTL q parameter l min-
imizing criterion (5) is equal to (X9C9G�1CX)�1X9

C9G�1CD. Coefficients of matrix G can be calculated
using correlation coefficients defined under the hy-
pothesis of no QTL in the chromosome.

For example, if sire alleles at markers m1 and m2 are
not presented in the dam population and there are no
technical errors, then the correlation coefficient looks
like r ¼ Corr(Dm1

;Dm2
) ¼ 1 � 2r, where r is the re-

combination rate between markers m1 and m2. The
estimated l-value can serve as a test statistic combining
the information from multiple markers along the
chromosome. In our simulations correlations were
obtained analytically using only recombination distance
between markers and frequencies of the two sire alleles
in dam population: r ¼ Corr(Dm1

;Dm2
) ¼ (1 � 2r)Var

D0/Var D, where Var D0 and Var D are analytical
estimations of variances of the D-value in the cases of
zero and nonzero frequencies of sire alleles in the dam
population. Alternatively, correlations among Dm values
can be estimated using the maximum-likelihood method
(Wang et al. 2007).

In the same manner it is possible to combine the
information from several families with respect to a given
chromosome, assuming that all sires that are heterozy-
gous at a QTL on that chromosome are heterozygous at
one and the same QTL with respect to location (x(q)),
although the size of the QTL effect may vary among
sires. Thus, for the one-QTL assumption and multiple
families and letting lf represent the l-value for the f-sire
Equation 3 will be modified as

Df ;m ¼ lf ½1� 2rf ;mðxðqÞÞ�: ð3aÞ

Correspondingly, the estimation criterion will be

Sf SmfDf ;m � lf ½1� 2rf ;mðxðqÞÞ�g2=Var Df ;m ����������!
xðqÞ ;lf ;f¼1;...;F

min

ð4aÞ

or, taking into account the correlation between values of
D for linked markers,

Sf ðCf ðDf � Xf lf ÞÞ9G�1
f Cf ðDf � Xf lf Þ ���������!

xðqÞ;lf ;f ¼1;...;F
min:

ð5aÞ

Using this expression, the unknown parameters can be
obtained in the following way. At each of the chromo-
somal positions x ¼ x(i) taken consecutively with some
step (e.g., 1 cM), values lf, f ¼ 1, . . . , F, can be found
analytically. For every family, the r value in (3a) is
calculated using recombination distance between loca-
tion of marker m and current location x(i). Then, the
position minimizing the criterion can be taken as the
best position x(q).

After fitting the model (3a), by using criteria (4a) or
(5a), the statistic S(lf)2 can serve to conduct an overall
permutation test (see below), instead of using the
asymptotic x2-properties of statistic (2). If we assume
one QTL in the chromosome common to all QTL-
heterozygous sires, then lf will represent the expected
value of the test statistic at the marker locus coinciding
with (or closest to) the QTL. All other segregating
markers for this sire f will display a decreasing function
of the distance between the marker and the QTL.
Hence, an immanent property of our approach (similar
to the model of Kearsey 1998 or Ronin et al. 1999) is
that for single QTL, lf represents the approximation of
D at the presumed position x0 coinciding with the QTL.
Thus, lf ‘‘absorbs’’ the information of all markers of the
sire, and statistic S(lf)2 does this cumulatively across
sires, by fitting one and only one QTL position, due to the
assumption of one shared QTL.

QTL detection based on FPD permutation tests:
Employment of the FPD allows new types of tests for
QTL detection, based on permutation of subpools, as an
analog of permutations of individual trait or genotype
scores in selective genotyping analysis. These tests do
not depend on assumptions as to asymptotic distribu-
tion of the test statistics and provide a spectrum of useful
analytical options. In particular, these tests can be em-
ployed for detecting chromosomes with QTL effects,
discriminating between sires homozygous and hetero-
zygous for the detected QTL, and comparing and con-
trasting hypotheses about one-, two-, or more QTL per
chromosome. The simplest of the proposed permuta-
tion tests is based on random reshuffling of the in-
dividual subpools between tails of the trait distribution.
This process is repeated many times, and each time the
test statistics are recalculated. In general terms, the
proportion of permuted test statistics that are greater
than the observed test statistic is the type I error of the
test (Doerge and Churchill 1996). If H0 {no QTL
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effect} is correct for a particular marker, such a permu-
tation will not have an appreciable effect on the level of
the test statistics. Thus, in most cases the observed test
statistic will lie well within the range of permuted
statistics. If the H1 alternative is correct, reshuffling will
destroy the marker–trait (i.e., marker–tail) connection.
This will be manifested as a strong reduction of the test
statistics in the majority of permutation runs. Thus, the
observed test statistic in this case will exceed all but a
small fraction of the permuted statistics. The test can be
applied to any of the possible test statistics: x2

m from
Equation 2, estimated l from Equations 4 or 5, or S(lf)2

from (4a) or (5a).
The total number of different reshuffling configura-

tions per family, Rf, is a function of the number of
subpools per tail. In the case of the same number of
subpools for the high and low tails, S,

Rf ¼ 0:5
2S
S

� �
� 4S�1:5:

In the case of an unequal number of pools per tail,

Rf ¼
SL 1 SH

SL

� �
¼ SL 1 SH

SH

� �
;

where SL is the number of low-trait subpools and SH is
the number of high-trait subpools. Thus, for S ina the
range 4–8 pools per tail, Rf varies from 35 to 6435.
Clearly, the total number of configurations with multi-
ple families is a product of corresponding numbers for
families R ¼

Q
fRf. Even for a minimal S ¼ 4, a design

with five families will give R ¼ 355 � 5.2 3 107

combinations. The number of combinations is impor-
tant, because the lowest possible P-value in permutation
is equal to 1/R.

Detecting chromosomes with QTL effects: Tests based
on x2

m: The significance of QTL effect for marker m in
several families can be estimated as the proportion of
random permutation runs of pool configurations,
having test statistic value x2

m (Equation 2) $ x2
m obtained

on initial nonreshuffled data. To set significance levels
when a number of markers are considered on the same
chromosome, it is necessary to correct for multiple
comparisons, e.g., by controlling the false discovery rate
(FDR) (Benjamini and Hochberg 1995) or the pro-
portion of false positives (PFP) (Fernando et al. 2004).

Alternatively, a chromosomewise test can be proposed
analogous to the approaches applied in standard in-
terval mapping under individual genotyping. In that
case, for each set of k marker intervals, interval analysis is
conducted and the maximum (across intervals) LOD
value (max LODk) or the maximum F-test (max Fk) for
regression-based models is calculated. Then, the signif-
icance of the putative QTL effect of the tested chromo-
some is estimated as the proportion of permutation runs
(i.e., samples corresponding to H0 obtained by random
reshuffling of the trait scores relative to the multilocus

marker genotypes), where max LODk/Fk was equal to or
higher than the max LOD/Fk value calculated for the
nonreshuffled data (Doerge and Churchill 1996).
Applying this approach to the FPD analysis, instead of
max LOD we can employ max x2 ¼ maxmx2

m calculated
for the nonreshuffled and reshuffled configurations of
subpools, where maxmx2

m is the value for the marker for
which x2 is at a maximum. Note that in the case of max
x2-statistics, the fitted model does not include any pa-
rameters characterizing QTL effect and position, since it
is based on single-marker analysis. In contrast, the max
LOD/Fk test is preceded by building a genetic model
that depends on unknown parameters and obtaining
maximum-likelihood (least squares, in the case of the
regression model) estimates of the parameters.

Significance of the putative QTL effect of the tested
chromosome can also be estimated by the P-value of the
highest significant marker on the chromosome (taking
into account the problem of multiple comparisons).
Individual P-values for marker m can be calculated by a
permutation test (using test statistic x2

m) or a x2-test
(Weller et al. 1990). Using the FDR approach (Benjamini

and Hochberg 1995) to control for multiple compar-
isons, we denote corresponding significance thresholds by
TFDR

ðIÞ for the permutation test and TFDR
ðIIÞ for the x2-test,

respectively.
Permutation test based on lf: The permutation test

based on x2
m takes into account all markers on a chro-

mosome, but information contained in the relative loca-
tions of the markers is ignored. In standard individual
genotyping schemes, single-marker analysis and interval
analysis are close with respect to QTL detection power
at moderate to high marker density. However, at low
marker density, interval analysis is more powerful. This
is due to the fact that loss of power caused by QTL–
marker recombination can be estimated as �r/2 and
�r2/4, for single-marker analysis and interval analysis,
respectively.

It was found that in FPD, as in standard QTL mapping
analysis based on individual genotyping, hypothesis
testing is more efficient and flexible, if conducted on
the basis of fitting a mapping model aimed at QTL
detection or at discriminating between more complex
situations (such as single or multiple QTL on a chro-
mosome, mode of QTL action and interaction, and
linkage vs. pleiotropy as sources of genetic correlation).
In this context, by including marker positions, models
(3a), (4a), and (5a) presented above allow extracting
the information about QTL presence and location on
the tested chromosome through joint analysis of linked
markers. As shown by simulation (Table 1), power of the
max x2-test is less than that of the S(lf)2 test. Pre-
sumably, this is due to the fact that the max x2-test does
not utilize all of the information potentially contribut-
ing to QTL detection power. Thus, for a single-family
analysis, the estimated l-value (from Equation 4 or 5)
would be the preferred statistic for the permutation test.
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For multiple-family analysis statistics, S(lf)2 and
maximum lf across all families (maxf jlfj), with family-
specific least-squares estimates of l-values being derived
from (3a) and (4a) (or 5a), can serve to conduct the
overall experimentwise permutation test across families
and markers of the analyzed chromosome. In the FPD
methodology, each marker is represented in (4a) ½or in
(5a)� by its position relative to the unknown location of
the putative QTL, rather than by its name. Conse-
quently, there is no need for full coincidence of poly-
morphic marker loci among the families. In principle,
the system will work even with zero overlapping of
polymorphic marker loci among families. This is an
important advantage of the proposed methodology over
the standard SDP methodology (Darvasi and Soller

1997), in which the test statistics is calculated for each
marker locus across families polymorphic for the
marker, and it is not possible to compensate for markers
at which the sire is homozygous by including informa-
tion from neighboring heterozygous markers.

Detecting sires heterozygous at the QTL: For analysis of a
single family, f, within a multiple-family analysis, the
estimated value of jlfj or maxmx2

f ;m can be used as a test
statistic for the permutation test. The significance of a
sire f is then determined as the proportion of permu-
tations of the runs made over all families, where the
statistic of QTL effect jlfj was greater than that for
nonreshuffled data. Sires of families where the test
statistics (jlfj or maxmx2

f ;m) are not significant can be
taken to be homozygous at the QTL. On this basis, sires
can be subdivided into two groups, QTL homozygous
and QTL heterozygous.

Estimating the confidence interval of QTL position:
bootstrap/jackknife analysis: One of the major param-
eters characterizing the detected QTL is the accuracy of
the estimated parameters, especially of QTL position, as
given by its standard error or confidence interval. The

most common way to evaluate confidence interval of
QTL position within the framework of individual or
selective genotyping is by using resampling procedures
such as bootstrap or jackknife (Ronin et al. 1998). The
95% confidence interval of QTL location can then be
taken as the narrowest interval that includes 95% of the
resampling-based estimates of QTL position. Alterna-
tively, the confidence interval of QTL location can be
characterized by mean value �xðqÞ, standard error (SE),
and standard deviation (SD) of the resampling-based
estimates. The proposed FPD methodology, for the first
time, allows resampling procedures to be applied for
DNA pooling analysis. As in the individual genotyping
application of these procedures, multiple samples are
generated from the initial data set by sampling subpools
within tails with return (bootstrap analysis) or without
return ( jackknife analysis). Each such sample is treated
using the same model that was applied to the total sam-
ple, and the variation of the derived parameters among
the samples is employed to get a SD for each estimated
parameter and (if needed) a SE for its mean value. The
only difference in application of these procedures in
FPD is that pools are resampled instead of individuals.

With new chip-based technologies of SNP analysis, a
high number of densely spaced polymorphic markers
may become available for FPD or interval-mapping anal-
ysis. In this case, the resampling procedure may be mod-
ified to include simultaneous resampling of markers
within chromosomes and subpools within tails so that
different jackknife or bootstrap runs may include not
fully coinciding sets of markers for a given family.

Simulation data: To illustrate the proposed method-
ology we simulated situations corresponding to multiple
half-sib daughter families (a population based on arti-
ficial insemination, e.g., dairy cattle). Each family con-
sists of the progeny of a different sire, with each sire
family being represented by a certain number (10% of

TABLE 1

Effect of number of markers (M) under the FPD on the confidence interval (C.I.) of QTL location, comparisonwise error
rate (P-value), and statistical power, according to the test for significance and standardized allele substitution effect at

the QTL (d/s), using simulated data

C.I. P-value Power

d/s M D SD S(lf)2 maxjlj max-x2 TFDR
ðIÞ TFDR

ðIIÞ S(lf)2 (%) max-x2 (%)

0.2 25 4.1 3.1 0.003 0.053 0.007 0.015 0.074 99 56
13 5.1 3.3 0.002 0.030 0.008 0.018 0.076 99 59
7 6.4 3.6 0.004 0.049 0.006 0.016 0.061 98 64

0.15 25 4.9 5.2 0.008 0.104 0.056 0.067 0.250 92 27
13 6.3 5.2 0.021 0.071 0.126 0.112 0.260 90 24
7 7.8 5.9 0.021 0.098 0.130 0.101 0.299 89 28

Tests of significance: S(lf)2, maxjlj, max-x2, TFDR
ðIÞ, and TFDR

ðIIÞ. See text for details. Power was calculated at P-value ¼ 5%.
Values D and SD characterize the center and size of the confidence interval obtained in jackknife iterations (see text). Parameters
of the simulations: chromosome length 120 cM. A single QTL was situated in position 40 cM. Number of families, F ¼ 10 (5
families, sire heterozygous at the QTL; 5 families, sire homozygous at the QTL); number of daughters per family, N ¼ 2000; pro-
portion of the population selected to each tail, 0.10; number of subpools per tail, S ¼ 4. Values are the mean based on 10 sim-
ulation data sets; for every data set, 500 permutations and 100 jackknife iterations were made.
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the total) of daughters per tail selected out of all
phenotyped daughters of that family. In our simulations
we used a normally distributed trait with constant
variance s2 and mean value depending on QTL geno-
type. Each of QTL q was assumed additive and diallelic
with alleles A(q) and B(q). Frequencies of alleles A(q) and
B(q) in dams were set to 0.50. Frequencies of marker
alleles in the dams were 0.25 Am, 0.25 Bm, and 0.25 Cm,
where Am and Bm are sire alleles and Cm represents all
other alleles. Am and A(q) are alleles of one of the hap-
lotypes of the sire for all m ¼ 1, . . . , M, q ¼ 1, . . . , Q; Bm

and B(q) are alleles of the other haplotype of the sire;
all loci are from one chromosome. Positions of loci
(markers and simulated QTL) on the chromosome are
defined by recombination distance from the most prox-
imal locus. In the same way we define position(s) for
putative QTL. Recombination events in the sire gamete
were simulated as independent for different parts of
the chromosome (recombination rate between loci was
calculated using distance on the linkage map and the
Haldane model). Linkage equilibrium among all alleles
(markers and QTL) was assumed in the dams.

Each progeny genotype was simulated by indepen-
dently generating a haplotype inherited from the sire
and a haplotype inherited from a dam. The haplotype
inherited from the dam was simulated by randomly choos-
ing alleles for each locus proportionally to their fre-
quencies in the dams. The haplotype inherited from the sire
was simulated as follows: The allele in the most proximal
locus was chosen randomly from one of the two sire
alleles (with probability 0.5). This allele determined the
starting sire haplotype. The allele in every subsequent
locus on the chromosome was chosen with probability
1 � r from the same haplotype as in the previous locus
and with probability r from the alternative haplotype,
where r is the recombination rate between these two con-
secutive loci. The trait value for each simulated individual
in the progeny was set equal to the mean trait value for
the inherited QTL genotype plus a normally distributed
random value with mean zero and variance s2. In the
single-QTL case, mean trait value was defined as m �
d(q), m, and m 1 d(q) for genotypes B(q)B(q), A(q)B(q), and
A(q)A(q), correspondingly. Value d(q) was not necessarily
the same for all families. In the case of two QTL (q ¼ 1,
2), trait mean value was m� d(1)� d(2), m� d(2), m 1 d(1)�
d(2), m � d(1), m, m 1 d(1), m � d(1) 1 d(2), m 1 d(2), and
m 1 d(1) 1 d(2) for genotypes B(1)B(1)B(2)B(2),
A(1)B(1)B(2)B(2), A(1)A(1)B(2)B(2), B(1)B(1)A(2)B(2),
A(1)B(1)A(2)B(2), A(1)A(1)A(2)B(2), B(1)B(1)A(2)A(2),
A(1)B(1)A(2)A(2), and A(1)A(1)A(2)A(2), respectively. In
the simulations, QTL-genotype frequencies in the tails
of trait distribution for a given tail cutoff depend on the
proportion d/s ¼ dðqÞ=

ffiffiffiffiffi
s2
p

, rather than on the m-value
and s2. In our simulations we used m ¼ 0 and s2 ¼ 1.

Subdivision of the individuals in the tails of the trait
distribution into subpools was random. The number of
individuals in each subpool was equal if the number of

individuals in the tail was divisible by the number of
subpools; otherwise it could differ by one individual.
Simulated technical error standard deviation associated
with estimation of marker allele frequencies in a pool
was set at 0.02 (absolute value). For analysis of the
simulated data, the marker haplotypes of the sires were
assumed known.

Example of QTL analysis by FPD: The scheme of
QTL analysis by FPD for the case of a single QTL per
chromosome is illustrated using a simulated example
with six half-sib families, three segregating for sire
alleles at the simulated QTL (i.e., the sires of the families
are heterozygous at the simulated QTL) and three not
segregating for the sire alleles at the simulated QTL.
Results are shown in Figure 3.

Various numbers of markers were employed in the
different families (with some regions being represented
by neighboring but not coinciding marker loci), illus-
trating the ability of the FPD analytical system to deal
with cases when markers are not shared among families.
To simulate such a situation, we initially generated for
each family a high excess of markers with identical
chromosome positions. Then, the majority of markers
for each family were declared ‘‘homozygous,’’ and only
a small proportion of markers were randomly selected
to be ‘‘heterozygous.’’ A QTL with standardized allele
substitution effect d/s ¼ 0.3 was simulated at location
40 cM on the chromosome of 120 cM length. There
were 2000 daughters per family; a proportion 0.10 of
total daughters (i.e., 200 daughters) was selected for
each tail, and there were four subpools per tail. The
overall permutation test conducted after fitting the
estimation model (5a) gave significance P ¼ 0.009 (in
1000 permutations). P-values per family were respec-
tively 0.029, 0.029, 0.029, 0.94, 0.69, and 0.74 (based on
permutation tests within families, where only 35 possi-
ble different permutations exist for the 4 1 4 subpool
configurations). Corresponding P-values for the fami-
lies obtained in an experimentwise permutation test
were 0.018, 0.012, 0.023, 0.483, 0.344, and 0.428 (1000
random permutations). QTL positions estimated using
all six families or only the three families with significant
effect (P-value ,0.05) were 43.9 cM with standard
deviation of estimated position among runs (SD ¼
2.8) and 43.6 (SD ¼ 2.6), respectively (based on 500
jackknifes). On the basis of the jackknife procedure,
QTL detection power for the entire set of families was
estimated as follows. Threshold values of the test
statistics S(lf)2 were obtained from the permutation
test for significance levels 5 and 1%. QTL ‘‘detection
power’’ was then estimated as the proportion of jack-
knife runs where the test statistics exceeded the thresh-
old value at the chosen significance level. Calculated in
this way, estimated powers for P-values ¼ 0.05 and 0.01
were 99 and 82%, respectively.

Comparing the quality of mapping for different num-
bers of markers: A few more examples with single-QTL
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chromosomes were simulated with 10 sire families (5
with sire heterozygous and 5 with sire homozygous at the
QTL), with two standardized allele substitution effects
at the QTL (0.2 and 0.15) situated at position x(q) ¼ 40
cM, and with three marker densities (9, 13, and 25
evenly spaced markers per 120-cM chromosome) (Table
1). Population size, proportion selected to the tails, and
number of subpools per tail were as in Figure 1. Table 1
presents the results for the six parameter combinations,
with 10 independent Monte Carlo data sets simulated
for each combination; for every simulated data set 500
permutations of subpools and 100 jackknife iterations
were made. For each of the 10 simulated data sets we
calculated the standard deviation of the difference
between estimated QTL position �xðqÞ and the simulated
one x(q) ¼ 40 cM among the 100 jackknife iterations.
The mean of these standard deviations across all 10 data
sets, denoted SD, characterizes the size of the confi-
dence interval of estimated QTL position. In addition,
for each data set we calculated the difference between
the mean of estimated QTL position based on the 100
iterations and the simulated position. The mean square
of these differences, denoted D, characterizes the shift
of the center of the confidence interval relative to the
true value. Table 1 shows that increasing the number of
markers reduces D more efficiently than SD. As one
would expect, SD (and hence the size of the confidence
interval) is higher in the case of d/s¼ 0.15 compared to
d/s ¼ 0.2 (5.4 vs. 3.3).

Table 1 also allows a comparison of different methods
of testing the significance of QTL effect. Among the
model-free tests based on x2

m , max-x2, TFDR
ðIÞ, and TFDR

ðIIÞ,
the best results seem to be provided by the permutation
test for max-x2 statistics (for d/s ¼ 0.2) and by the
TFDR

ðIÞ test also based on permutations (for d/s¼ 0.15).
According to the presented results, the TFDR

ðIÞ test based
on permutations gave a much higher level of signifi-
cance than the TFDR

ðIIÞ test based on x2-asymptotic approx-
imation (P-values were lower by an order of magnitude).

The model-based test using the S(lf)2 statistic instead
of max-x2 resulted in a further severalfold decrease in
P-values (see Table 1). In accordance with the ranking
of the test statistics for P-values, S(lf)2 also proved to be
superior with respect to detection power (i.e., resulting in
the lowest proportion of false-negative declarations in the
case of the given fixed P-value ¼ 0.05). Estimated power
of the test based on S(lf)2 was very high (�0.9 for d/s ¼
0.15 and $0.98 for d/s ¼ 0.20). When d/s ¼ 0.15,
estimated power of this test increased slightly with
increasing number of markers M. Estimated power of
the test based on max-x2 was also higher for d/s ¼ 0.20
than for d/s ¼ 0.15. Nevertheless, unlike S(lf)2, power
for this test did not increase with increasing M; indeed,
what may even be an opposite tendency was observed for
d/s ¼ 0.20). This observation can be explained as
follows: With increasing M, the probability that in
permutation runs, the x2

m value for one of the markers
will be higher than maxmx2

m in initial pool configuration
also increases. Conversely, increasing M also can increase
the power of this test if the additional markers belong to
the vicinity of the QTL (not shown).

Multiple linked QTL analysis—two or more QTL on
the chromosome: In the case of two or more QTL per
chromosome, expected D at the marker locus is defined
by the expected frequencies of sire alleles in the high
and low pools at the closest situated QTL and by
recombination rates between marker and QTL. Let K
be the number of QTL in the chromosome and de-
nominate the QTL according to their locations ½i.e., x(1)

, x(2) , . . . , x(K)�. The expectation of D for a marker at
location x can then be written in the form

EDf ðxÞ ¼
lf ;1ð1� 2rxðxð1ÞÞÞ; x # xð1Þ
lf ;K ð1� 2rxðxðK ÞÞÞ; x $ xðK Þ
Df ;xðqÞ ;xðq11Þ ðxÞ; x 2 ½xðqÞ; xðq11Þ�; q ¼ 1; . . . ;K � 1;

8<
:

ð6Þ

where

Figure 3.—QTL analysis of multiple families
with some nonshared markers. Six families with
2000 daughters each were simulated (three fam-
ilies with sire heterozygous for a single QTL situ-
ated at position 40 cM with allele substitution
effect d/s ¼ 0.3 and three families with sire ho-
mozygous at the QTL). Chromosome length
was 120 cM with 6–10 markers per family; a pro-
portion 0.10 of all daughters was selected to each
tail in each family. Individuals in both tails were
randomly subdivided into four sub-pools. (a) D-
value across the markers for each family (solid

and open squares, triangles, and diamonds represent D in families with QTL-heterozygous and -homozygous sires correspond-
ingly); (b) the results of jackknife resampling analysis (90% confidence intervals of l-values for each family are shown by vertical
lines, estimated in 500 jackknifes). The experimentwise P-value in a permutation test based on S(lf)2 was 0.012 (in 1000 permu-
tations). The corresponding experimentwise permutation test P-values per family were 0.018, 0.012, 0.023, 0.483, 0.344, and 0.428
Estimated QTL position on all six families or on three families with a significant (P-value ,0.05) l-value was 43.9 cM (SD ¼ 2.8)
and 43.6 (SD ¼ 2.6) cM, respectively. Estimated power for P-value ¼ 0.05 was 99%.
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Df ;xðqÞ;xðq11Þ ðxÞ ¼
lf ;q 1 lf ;q11

2ð1� rxðqÞ ðxðq11ÞÞÞ
ð1� rxðxðqÞÞ � rxðxðq11ÞÞÞ

1
lf ;q11 � lf ;q

2rxðqÞ ðxðq11ÞÞ
ðrxðxðqÞÞ � rxðxðq11ÞÞÞ:

Here lf,q is the characteristic of the qth QTL in family f,
and x(q) is the location of this QTL. Value rx(x(q)) is the
recombination rate between the marker loci situated in
positions x and x(q). The origin of Equation 6 is similar
to Equation 3 (for details see also Wang et al. 2007): Let
lf,1, . . . , lf,K be expectations for D-values of markers
coinciding with corresponding QTL. Assuming absence
of interference we can consider the expectation of
D-values separately for each interval between QTL. For
the two end intervals x , x(1) and x . x(K) Equation 6
has the same form as Equation 3. For other intervals
the absolute value of the expectation of D is reduced
by corresponding double recombination (double re-
combination is not a factor for the end intervals). The
estimation criterion for the regression method takes the
following form:

Sf SmfDf ;m � EDf ;mg2=Var Df ;m �����������������!
xðqÞ ;lf ;q ;f ¼1;...;F ;q¼1;...;K

min:

ð7Þ

Fitting the model by using criteria (7) can be expressed
in terms of the linear model

Df ¼ Xf lf 1 ef ;

where lf is a vector of lf,1, . . . , lf,K and coefficients
of matrix Xf are equal to corresponding multipliers in
Equation 6. Taking into account the correlation be-
tween values of D for linked markers and using the

generalized least-squares approach, the estimation cri-
terion takes the form

Sf ðCf ðDf � Xf lf ÞÞ9G�1
f Cf

ðDf � Xf lf Þ ���������������!
xðqÞ;lf ;q ;f¼1;...;F ;q¼1;...;K

min: ð8Þ

Here matrices G and C are like in Equation 5a. For given
putative QTL positions, vector lf of parameters lf,1, . . . ,
lf,K minimizing criterion (8) can be calculated as

l̂f ¼ ðX9f C9f G�1
f Cf Xf Þ�1X9f C9f G�1

f Cf Df :

Even in the case of only two QTL on the chromosome,
various situations can exist. These include heterozygos-
ity of different sires for one, two, or none of the QTL
and the linkage phase between the QTL (coupling vs.
repulsion) in the sires that are heterozygous for both
QTL. Thus, in addition to the foregoing tests of signifi-
cance, the situation with linked QTL calls for compar-
isons of H2 vs. H1 (two-QTL vs. single-QTL hypotheses)
for the entire data set as well as for each family. However,
in this article we demonstrate only the potential of the
FPD system to analyze linked QTL, leaving the detailed
analysis of various scenarios for a future publication.

The example, presented in Figure 4, is based on one
simulated data set of 10 families. Each sire was simulated
heterozygous for two linked QTL (half of the sires in
coupling phase and half in repulsion phase) with allele
substitution effects d/s ¼ 0.3 at locations 30 and 80 cM
on a chromosome of length 120 cM with 13 evenly
spaced markers (at positions 0, 10, 20, . . . , 120 cM).
Population size, proportion selected to the tails, and
number of subpools per tail were as in Figure 1. After
fitting a two-QTL model and using FPD analysis to

Figure 4.—Analysis with multiple-linked QTL. Simulated were 10 families heterozygous for two linked QTL, 5 in coupling and 5
in repulsion phase. Thirteen markers were evenly spaced on a chromosome of length 120 cM. QTL 1 and QTL 2 were simulated in
positions 30 and 80 cM, respectively. The allele substitution effect at both QTL in all 10 families was d/s¼ 0.3. Alleles at QTL 1 and
QTL 2 that came from dams were simulated as independent cases. The number of daughters per family was 2000; the proportion
of total population selected to each tail was 0.10. (a) D-values for all families and markers. Points corresponding to a given family
are connected by a line. (b) l-Values and their standard errors in 500 jackknifes for every family. Clear separation is observed
between the first five sires (QTL in coupling phase) and the last five sires (QTL in repulsion phase). (c) Simulated (solid circle)
and estimated (open circle) positions of QTL. The curve encloses the area where the position of QTL was estimated in $90% of
500 jackknifes {included points with integer coordinates (x, y) such that in $5 jackknifes, estimated QTL positions belonged in the
interval (x 6 0.5, y 6 0.5 cM).
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detect the two QTL, the estimated QTL positions were
within 2 cM from the simulated positions. Standard
errors in 500 jackknifes were 1.7 and 0.8 for QTL 1 and
QTL 2, respectively. The high quality of the analysis is
due to the high allele-substitution effects in the two QTL
and the relatively large map distance between them.
More diverse sires with respect to their QTL structure
(heterozygous at one, two, or none of the QTL) are also
treatable with relative ease within the framework of the
two-QTL FPD model.

General scheme of FPD QTL analysis: To conclude
the analytical section, we present here a general scheme
of the proposed system of FPD QTL analysis (Figure 5).
The suggested integrative algorithm includes: (A) fit-
ting the mapping model, (B) an overall test of signif-
icance (using lf -value-based models for conducting
permutation tests), (C) detecting nonsignificant (QTL-
homozygous) sires, (D) removing the homozygous sires
and repeating the tests, (E) estimating QTL detection
power, and (F) conducting jackknife analysis to evaluate
the confidence interval for the estimated position of
detected QTL. This scheme can be further extended to
take into account the possibilities of multiple-linked-QTL
analysis, including: fitting multiple-linked-QTL models;
comparing multiple-linked and single-QTL models
(testing H0 vs. H1 and H2 and H1 vs. H2); detection of
sires heterozygous for zero, one, or multiple-linked QTL;
and estimating the confidence intervals of the chromo-
somal positions of the detected QTL.

Unknown marker linkage phase in the sire: In the
case of unknown marker–QTL linkage phase (sire
marker haplotypes), the algebraic sign of the statistic
Dm is not uniquely defined. For markers with unknown
phase these signs (plus or minus) can be found through
optimization of criteria (4), (5), (4a), (5a), (7), or (8)

(with the minimum now taken over all possible combi-
nations of signs). To make optimization in this case
more effective, some heuristics can be used. For a single-
QTL model where marker phase in the sire is not
known, it is reasonable to allocate the same sign (say,
plus) to the D-values for all markers. For the model with
two QTL on the chromosome, it is reasonable to con-
sider D-values changing sign no more than once, e.g.,
positive for the first m markers and negative for the
others (if the two QTL in the sire are in repulsive phases).
Optimization of the signs of D-values can result in an
increase in the false positive declaration rate. Indeed,
it can convert some families with noisy fluctuating
D-values around zero to have D-values of one sign. This
can greatly increase jlj and, hence, falsely cause a QTL-
homozygous family to be declared heterozygous. There-
fore, external information about linkage phases of the
maker loci reduces the proportion of false positive
families.

Choosing the number of subpools: The multiple-
pool approach was previously proposed as a means of
improving the quality of allele frequency estimates
(Sham et al. 2002; Brohede et al. 2005). Within this
framework, the problem of ‘‘optimal size’’ of pools was
primarily considered from the aspect of amplification
fidelity (Brohede et al. 2005) and as a way to obtain an
adequate estimate of variation of marker allele frequen-
cies Var Df,m (e.g., Sham et al. 2002). In the present study,
the number of pools affects the number of possible
different permutations and jackknifes and hence affects
P-values and power of the analysis.

To demonstrate the dependence of analysis quality on
the number of subpools per tail, a series of simulation
experiments were conducted. Situations with one,
three, and five families were simulated. The proportion
of individuals taken to the tails was 0.10 as in the
previous simulations. The individuals in the tails were
then randomly subdivided into four, six, or eight sub-
pools of equal size. The family sizes were 960 and 1920.
As above a chromosome of 120 cM length with 13 evenly
spaced markers was assumed, and the QTL was simu-
lated in position 40 cM with allele substitution effects
d/s ¼ 0.3, 0.2, and 0.15. For each parameter combina-
tion, 10 Monte Carlo data sets were simulated; for every
set 1000 permutations and 100 jackknife iterations
were made (with exactly one pool per tail per family
being excluded in each jackknife run). The results are
summarized in Table 2.

It was found that a higher number of subpools does
not reduce the standard error of estimated QTL loca-
tion, if the percentage of excluded pools is the same in
each jackknife iteration (not shown). However, if in
each jackknife iteration exactly one pool per tail is
excluded, SD and confidence intervals became smaller
with a higher number of subpools (Table 2) but less
robust (i.e., sampling variance of the confidence interval
center and its size are higher), because different runs

Figure 5.—The general scheme of QTL analysis by the FPD
method.

2620 A. Korol et al.



are more dependent. This can explain why value D does
not always decrease with increasing number of subpools S.
In contrast, P-values decreased asymptotically with the
number of subpools until some limit determined by
QTL allele substitution effect, number and proportion
of QTL-polymorphic families, number of daughters
per family, proportion of daughters taken to each tail,
number and positions of markers on the chromosome,
and technical error of densitometric estimation of pool
frequencies. Results summarized in Table 2 demon-
strate the variation of P-value and power of the analysis
that can be achieved in different situations. As expected,
better results were obtained in situations with a greater
number of families, a greater number of progeny per
family, and a greater allele substitution effect d/s of
QTL. The unexpected smaller D and SD for the one-
family situation in the case of d/s ¼ 0.15 (compared to
d/s ¼ 0.2) can be explained by a shortcoming of
criterion (5a): In the case of absence of or very small
QTL effect, the difference in the criterion values for
different x(q) is very small; and the smallest value tends
to be observed for x(q) close to the average marker
position (60 cM in our situation). In other words, under
H0, the estimated position is not uniformly distributed
along the chromosome (not shown). Note that the
lowest possible P-value in permutation is equal to 1/R,
where R is the number of different permutations. If we
are ‘‘satisfied’’ with P-values $a, then no more than 5/a

different permutations are needed. Hence, in the case

of only one family we need�S¼ log4R 1 1.5¼ log4(5/a) 1

1.5 subpools. For the experimentwise permutation test
in F similar families we need S ¼ log4(R)1/F 1 1.5 ¼ 1/F
log4(5/a) 1 1.5 subpools per tail, per family. Thus, from
the point of view of maximizing the number of different
permutations, it is more effective to analyze more
families than to make more subpools per family. The
relative cost of additional families, subpools, markers, and
desired QTL detection power and mapping accuracy
defines a cost-effective strategy for the initial genome scan
for QTL by FPD. Clearly, the above aspects of amplification
fidelity and estimation of variation of marker allele fre-
quencies considered by Brohede et al. (2005), Sham et al.
(2002), and other authors should also be an important
part of designing FPD experiments.

Correlations between D-values and quality of the
analysis: Taking into account correlations between D-
values for linked markers, i.e., using a generalized least-
squares method (Equations 5, 5a, and 8), will probably
not increase the QTL detecting power and accuracy of
the QTL position estimates in the majority of practical
situations. When substitution effects, number of daugh-
ters per family, and number of families are small, the
sampling variance of Dm is high relative to its expected
value. Taking the correlations into account will increase
the sampling variance and reduce the expected value
for each marker (Montgomery and Peck 1992). This
makes the analysis less robust. The least-squares optimi-
zation criterion, when H0 is true, follows a x2-distribution

TABLE 2

Effect of number of subpools per tail (S) under the FPD on characteristics D and SD of the confidence interval for QTL
location, comparisonwise error rate (P-value), and statistical power, according to number of families (F), number of

daughters per family (N), and standardized allele substitution effect at the QTL (d/s), using simulated data

D SD P-value Power at P ¼ 0.05

F N d/s S ¼ 4 S ¼ 6 S ¼ 8 S ¼ 4 S ¼ 6 S ¼ 8 S ¼ 4 S ¼ 6 S ¼ 8 S ¼ 4 (%) S ¼ 6 (%) S ¼ 8 (%)

1 1920 0.3 10.4 10.1 10.3 4.7 4.0 3.5 0.056 0.007 0.005 — 79 89
0.2 14.1 14.0 13.7 14.6 12.0 10.7 0.083 0.043 0.028 — 32 56
0.15 11.0 10.3 11.1 11.6 8.8 6.7 0.156 0.135 0.110 — — —

3 960 0.3 4.7 3.8 3.5 5.4 4.9 3.2 0.003 0.003 0.002 59 89 94
0.2 10.3 12.1 12.0 11.4 7.1 6.9 0.030 0.021 0.023 30 52 52
0.15 14.6 14.7 14.9 19.2 15.7 13.2 0.195 0.203 0.208 — — —

3 1920 0.3 2.9 3.1 3.2 1.9 1.5 1.2 0.001 0.001 0.001 94 99 99
0.2 5.7 5.2 5.4 4.4 3.4 3.0 0.003 0.002 0.003 56 82 92
0.15 10.7 10.1 10.1 6.9 5.6 5.1 0.028 0.024 0.011 46 72 76

5 960 0.3 2.7 2.9 2.9 2.6 1.8 1.6 0.001 0.001 0.001 87 99 99
0.2 5.7 5.8 5.4 5.3 4.3 3.3 0.013 0.009 0.006 44 63 71
0.15 14.3 15.1 14.9 12.0 9.6 8.4 0.081 0.070 0.067 — — —

P-values and power were calculated using the permutation test based on S(Af)2 (see text). Power was calculated for the thresh-
old of the statistics corresponding to P-value ¼ 0.05 (shown only for situations where the observed experimentwise P-value did not
exceed 0.05). Characteristics D and SD of the confidence interval for QTL location were obtained from the jackknife iterations.
Parameters of the simulations: chromosome length 120 cM. A single QTL was situated at position 40 cM. Number of markers M ¼
13. Proportion of population selected to each tail, 0.10. One subpool per tail was excluded in each jackknife. Values represent
mean of 10 simulation data sets; for every data set 1000 permutations of subpools and 100 jackknife iterations were made to es-
timate P-value, power, D, and SD.
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with degrees of freedom equal to the number of terms
in the sum. Parameters minimizing this criterion also
maximize the likelihood function, but the difference
between the criterion values for different putative QTL
positions is small (not shown). Nevertheless, by taking
the correlations into account, we reduce the confidence
interval and discrepancy between the estimated and
simulated QTL positions (data not shown).

DISCUSSION AND PROSPECTS

Genomewide scans for the detection of marker–QTL
linkage or linkage disequilibrium for QTL of small
effect require large mapping populations and hence
involve a high cost of marker genotyping. Even more
challenging are the requirements of population size
from the viewpoint of QTL mapping accuracy. In family-
based analysis, the confidence intervals for the estimated
QTL chromosomal position are of tens of centimorgans
even for QTL of moderate effects (Darvasi and Soller

1997; Ronin et al. 2003). A cost-effective solution is to
replace individual genotyping by DNA analysis in pools
using individuals from the tails of the trait distribution
(Hillel et al. 1990; Darvasi and Soller 1994) or al-
ternative phenotypic groups in the case of discontinu-
ous variation (Giovannoni et al. 1991; Michelmore

et al. 1991). To increase the fidelity of pooling analysis,
Dekkers (2000) proposed a method of joint treatment
of multiple markers by scanning a chromosome with a
sliding window (see also Johnson 2005 for further
developments in LD QTL analysis).

Although the idea of using a multiple-pool design has
been discussed previously (Sham et al. 2002; Brohede

et al. 2005), the objectives of those studies were to im-
prove the quality of the allele-frequency estimates and
corresponding variances. In addition to these uses, the
proposed FPD system utilizes the multiple-pool design
to provide a wide spectrum of new analytical options that
were previously possible only with individual genotyp-
ing. These new options are of special importance in the
light of accumulating evidence on reliability of pooling
analysis with SNP chips. Combining SNP microarray
analysis with DNA pooling can reduce dramatically the
cost of screening large numbers of SNPs on large sam-
ples, making chip technology applicable for genome-
wide association mapping in humans and farm animals
(Butcher et al. 2004; Brohede et al. 2005; Craig et al.
2005). The FPD analysis relaxes some of the previous
limitations of the pooling analysis by utilizing the infor-
mation provided by multiple subpools within tails. This
allows a flexible analytical system in QTL detection
based on resampling procedures (permutations, boot-
straps, and jackknifes), rather than on asymptotic as-
sumptions (Sham et al. 2002; Carleos et al. 2003),
enabling evaluation of the confidence interval of QTL
position and discriminating between different hypoth-
eses of trait genetic architecture.

Allowing for resampling analysis via the FPD does
come at a cost of requiring multiple subpools per tail. In
the situations when multiple traits are analyzed, indi-
viduals need to be separated into subpools in the tails
of trait distribution for every trait. In these situations
the number of subpools may be close to the number of
individuals in the mapping population (if traits are not
strongly correlated), thereby reducing the advantage
of the pooling method. Another disadvantage is that
this method only partially utilizes haplotype information
compared to individual selective genotyping. However,
a partial solution to this problem could be provided by
using multivariate tails of the multidimensional trait
distribution rather than trait-specific tails (Ronin et al.
1998).

The proposed methodology allows joint analysis of
multiple families and multiple markers across a chro-
mosome, even if the markers are only partly shared (or
even not shared at all) among families. Resampling pro-
cedures permit confidence intervals to be constructed
for family-specific l-values. These intervals allow iden-
tification of families for which the founder sire was
homozygous at the QTL. The FPD analysis permits ex-
tension to cases of two or more QTL on the same
chromosome. All this provides cost-effective options for
sequential family- and region-specific increase of marker
density to improve the QTL mapping resolution and
accuracy and to reduce type I (false positive) and type II
(false negative) errors. Of special interest is the exten-
sion of pooling methodology to genome expression
analysis (Alba et al. 2004; Kendziorski et al. 2005). The
cautious optimism of pooling RNA expressed by these
authors can be considered as justifying the extension of
the FPD to RNA analysis.

The major advantage of population-based rather than
family-based mapping is in its potential for fine and
ultra-fine mapping due to accumulation of historical
recombination events. Recent findings on the existence
of linkage disequilibrium block and estimates of the
sizes of these blocks establish a basis for LD (association)
mapping. Still, for loci with small to moderate effects on
the target traits one of the major limiting factors is the
size of the effect and not the degree of recombination
(diversity of haplotypes). Consequently, very large sam-
ple sizes are required making pooling analysis extremely
attractive. Therefore, we plan to extend the fractionated
pooling design to LD-based QTL analysis.
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