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ABSTRACT

Since the functional state of a protein–protein interaction network depends on gene expression, a fundamental question is what
relationships exist between protein interaction network and gene regulation. In particular, microRNAs have recently emerged
as a major class of post-transcriptional regulators that influences a large proportion of genes in higher eukaryotes. Here we show
that protein connectivity in the human protein–protein interaction network is positively correlated with the number of
microRNA target-site types in the 39 untranslated regions of the gene encoding the protein and that interacting proteins tend to
share more microRNA target-site types than random pairs. Moreover, our results demonstrate that microRNA targeting
propensity for genes in different biological processes can be largely explained by their protein connectivity. Finally, we show
that for hub proteins, microRNA regulation complexity is negatively correlated with clustering coefficient, suggesting that
microRNA regulation is more important to inter-modular hubs than to intramodular ones. Taken together, our study provides
the first evidence for global correlation between microRNA repression and protein–protein interactions.
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INTRODUCTION

Interactions between proteins provide a mechanistic basis
for most biological processes in an organism. Recent ad-
vances in biotechnology, such as high-throughput yeast
two-hybrid screen, have allowed scientists to start building
proteome-wide protein–protein interaction or ‘‘interactome’’
maps (Uetz et al. 2000; Ito et al. 2001; Giot et al. 2003; Li et al.
2004; LaCount et al. 2005; Rual et al. 2005; Stelzl et al.
2005). Conventionally, a protein–protein interaction map
is represented as a static network, in which each node
represents a protein and each edge represents a protein–
protein interaction. In reality, the protein–protein interac-
tion network (PPIN) is a dynamic entity: The functional
state of the network depends on the expression of protein
nodes (Han et al. 2004; Vidal 2005), which is intrinsically
controlled by different regulatory mechanisms through
time and space.

In higher eukaryotes, microRNAs (miRNAs) have
emerged as an abundant class of regulatory genes that
regulate protein expression (Lim et al. 2003; Ambros

2004; Bartel 2004). These z22 nucleotide (nt) endog-
enous noncoding RNAs can repress gene expression post-
transcriptionally by binding to the 39 untranslated regions
(39 UTRs) of their target messages. The critical region in a
miRNA is the nucleotides 2–7 from the 59 end, the so-called
‘‘seed’’ region, which usually requires perfect W–C base
pairing to recognize target genes (Lewis et al. 2003;
Brennecke et al. 2005). In the last several years, different
methods have been developed to predict miRNA targets at
the genome-wide level with a relatively high accuracy
(Lewis et al. 2003; Stark et al. 2003; John et al. 2004;
Kiriakidou et al. 2004; Rehmsmeier et al. 2004; Chan et al.
2005; Grun et al. 2005; Krek et al. 2005; Lewis et al. 2005;
Rusinov et al. 2005; Lall et al. 2006). More recently, several
studies have revealed a greater impact of miRNAs on gene
expression and evolution than previously thought (Farh
et al. 2005; Lim et al. 2005; Stark et al. 2005; Sood et al. 2006).

In the post-genomic era, a crucial task in molecular
biology is to understand gene regulation in the context of
biological networks. Recently, two studies about miRNA
regulation of cellular networks have been published (Cui
et al. 2006, 2007). However, the relationship between PPIN
and miRNA regulation remains virtually unknown. Since
proteins fulfill their functions largely through PPIN, it is
important to study this relationship and understand how
the dynamics of PPIN is influenced by miRNAs.
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RESULTS

Global correlation between miRNA regulation
and PPIN

The most important property of a protein node in a PPIN
is its connectivity, which is defined as the number of links
the node has to other nodes. In general, this statistic quan-
titatively measures functional complexity of a protein node
in the PPIN. To gain a global view of miRNA regulation on
PPIN, we studied the relationship between protein con-
nectivity and miRNA regulation complexity, using the
largest available human PPIN data set (CCBS1-LCI) (Rual
et al. 2005) and the miRNA target predictions from Tar-
getScanS (Lewis et al. 2005), a leading program in the field.
Interestingly, we found a highly significant positive cor-
relation between the connectivity of a protein and the
number of miRNA target-site types in the 39 UTRs of the
gene encoding the protein (Spearman’s rank correlation,
Rs = 0.30, P < 2 3 10�118, N = 6165). As shown in Figure 1,
the average number of target-site types for a group of genes
dramatically increases with their protein connectivity.

In view of considerable noise in current protein–protein
interaction data and miRNA target prediction, we carried
out further analyses to examine the validity of the above
correlation. First, to see whether the observation is robust
for different data sets, we performed the same analysis on
four different PPIN data sets (Rual et al. 2005; Stelzl et al.
2005) using two different sets of miRNA target predictions
(TargetScanS and PicTar) (Krek et al. 2005; Lewis et al.
2005). As shown in Table 1, all the analyses gave very con-
sistent results, supporting a strong positive correlation
between the number of miRNA target-site types and pro-
tein connectivity. Second, because the miRNA target pre-
diction programs we used strongly rely on the length and
sequence conservation of 39 UTRs, it is important to rule

out the possibility that the above correlation is a side effect
of variations in 39 UTR length and conservation across
genes in the PPIN. Through the analyses of 39 UTRs, we
found that the increasing tendency of number of miRNA
target-site types with protein connectivity cannot be ex-
plained by the corresponding variations in 39 UTR length
and conservation (Supplemental Fig. S1). Finally, using
independent mRNA expression data, we studied the rela-
tionship between mRNA tissue expression range and miRNA
regulation complexity, since tissue expression range can be
regarded as another index for functional complexity of a
gene. For this purpose, we extracted mRNA expression
profiles from the Human Expression Atlas (Su et al. 2004)
and calculated the number of tissues in which a gene is
expressed. Again, we found a highly significant positive
correlation between mRNA tissue expression range and the
number of miRNA target-site types (Spearman’s rank
correlation, Rs = 0.21, P < 2 3 10�140, N = 14,285). In
fact, for a group of proteins with a similar tissue expression
range (x), the average number of target-site types (y) in the
39 UTRs of their coding genes can be quantitatively pre-
dicted (y = 0.0225x + 1.774, R = 0.93, P < 2 3 10�3) (Fig. 2).
This observation is also consistent with a very recent study
showing a similar trend in fly and mouse (Yu et al. 2007).
Taken together, our results indicate that proteins with more
interacting partners tend to be regulated by more miRNAs.

Given the positive correlation between protein connec-
tivity and the number of miRNA target-site types, one
would expect that interacting proteins tend to share more
miRNA target-site types than a randomly chosen protein
pair, because across the whole PPIN, proteins with a higher
connectivity have, on average, more target-site types, and by
definition, are involved in more interactions than proteins
with a lower connectivity. With this in mind, we investi-
gated whether interacting proteins tend to be coregulated by
more miRNAs, compared with the situation where their
target-site patterns are randomized. For this purpose, we
constructed a Gene-by-TargetSite matrix for genes encoding
protein nodes in the PPIN, which contains the information
about whether a target site of a given miRNA family is
present in a given node. Then we introduced two indexes:
(1) the number of protein interacting pairs that share at
least one type of target site and (2) the total number of the
target-site types shared by interacting partners. To estimate
their statistical significance, we generated 10,000 control
Gene-by-TargetSite matrices by randomly shuffling the
miRNA-TargetSite profile for each gene. We found that,
compared with random expectation, both the number of
interacting pairs that share at least one type of target site
(observation 451 versus expectation 314, Z-score = 9.9, P <
10�24) and the total number of the target-site types shared
by interacting partners (observation 698 versus expectation
409, Z-score = 15.4, P < 10�54) are significantly higher.
These results suggest a role of miRNA regulation on the
coordination of interacting proteins in PPIN.

FIGURE 1. A positive correlation between protein connectivity and
number of miRNA target-site types. Error bars indicate the standard
deviations from the mean values.
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Biological basis of miRNA targeting propensity
in PPIN

It has been reported that miRNAs have different pro-
pensities to target messages in different biological processes
or functional categories (Bartel 2004; Lewis et al. 2005;
Stark et al. 2005). For example, in animals, miRNA target
genes have a strong propensity to be involved in regulatory
and development processes, whereas genes in biosynthesis
tend to avoid miRNA regulation. However, the basis of
miRNA targeting propensity at the system level remains
unclear. To address this question, we first used GO term
analysis to identify the biological processes where genes
strongly favor or avoid miRNA targeting. Then we studied
the connectivity distributions of genes in these different
processes. As shown in Table 2, genes in the biological
processes with strong miRNA targeting propensity have a
significantly higher connectivity than other genes, whereas
genes in the processes with strong target avoidance tend to
have fewer interacting partners. The results suggest that
miRNA targeting propensity can be largely explained by the
functional behavior of proteins in PPIN.

miRNA regulation of hub proteins

Highly connected proteins, i.e., hub proteins, play a
dominant role in maintaining the functionality of the PPIN
(Jeong et al. 2001; Barabasi and Oltvai 2004). For hub
proteins, besides connectivity, clustering coefficient is an-
other important characteristic, which is defined as the ratio
of the number of existing links among a node’s neighbors
and the maximum possible number of links among them.
(In contrast, for poorly connected nodes, clustering coef-
ficient is much less informative. For instance, nodes with
‘‘0’’ or ‘‘1’’ connectivity have a ‘‘0’’ clustering coefficient by
definition.) In general, hub proteins with a high clustering
coefficient are likely to be intramodular hubs, while hub
proteins with a low clustering coefficient tend to be inter-
modular hubs that coordinate different functional modules.

In this study, we focused on the top 5%
of protein nodes with the highest con-
nectivity ($8) and used a multiple vari-
able regression analysis to evaluate the
relative impacts of connectivity and clus-
tering coefficient on miRNA regulation
complexity of these genes. We found
that the number of miRNA target-site
types of a gene encoding a hub protein
is significantly negatively correlated
with clustering coefficient (N = 340,
F-statistics = 5.2, P < 0.02). To illustrate
this point clearly, two contrasting
examples are shown in Figure 3: As an
intramodular hub, MCM3, which is a
subunit of the prereplication complex,

contains no miRNA target sites; whereas, as an intermodular
hub, MAPK14, which is involved in a wide variety of
cellular processes such as proliferation, differentiation,
transcription regulation, and development, contains 11
types of miRNA target sites. This result suggests that
different types of hub proteins have different miRNA target-
ing propensity: regulation by miRNAs is more important
in the behavior of intermodular hubs than in that of
intramodular ones.

DISCUSSION

Our study reveals a positive correlation between protein
connectivity and miRNA regulation complexity; namely,
for proteins with more interacting partners, their genes
tend to be regulated by more miRNA types. This may
reflect a general connection between functional complexity
of proteins and miRNA regulation of their coding genes.

FIGURE 2. A positive correlation between mRNA expression range
and number of miRNA target-site types. The overall tendency is
shown with the line from a least squares regression, y = 0.0225x +
1.774, R = 0.93, P < 2 3 10�3, where y is the average number of
miRNA target-site types and x is the number of mRNA expressed
tissues, which ranges from 0 to 73. Error bars indicate the standard
deviations from the mean values.

TABLE 1. Positive correlations between protein connectivity and miRNA regulation estimated
from different PPIN and miRNA target data sets

PPIN data set TargetScanS 163 miRNA families PicTar 178 miRNAs

Rual et al. (2005) N = 6165c N = 6530
LCIa Rs = 0.36d P < 7e�171 Rs = 0.37 P < 1e�200
CCSB-HI1b Rs = 0.38 P < 2e�191 Rs = 0.41 P < 2e�239
CCSB-HI1+LCI Rs = 0.30 P < 2e�118 Rs = 0.32 P < 2e�146
Stelzl et al. (2005) N = 1418 N = 1226

Rs = 0.27 P < 9e-24 Rs = 0.27 P < 1e�21

aLCI, Literature-curated interactions in Space-I as annotated in Rual et al. (2005).
bCCSB-HI1, Y2H interactions in Space-I as annotated in Rual et al. (2005).
cN, the number of genes used in the analysis.
dRs, Spearman rank correlation coefficient.
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It has been suggested that miRNA can influence protein
production of target genes in a qualitative or quantitative
way (Bartel 2004). For some target genes, the so-called
‘‘switch targets,’’ miRNAs reduce their protein expression
to a negligible level in certain cell types where they should
not be expressed. In this case, miRNA regulation is equiv-
alent to a switch between ‘‘on’’ and ‘‘off.’’ For other mes-
sages called ‘‘tuning targets,’’ miRNAs can adjust their
protein output to allow customized expression in different
cell types (Bartel 2004). From either point of view, proteins
with more interacting partners would be under stronger
selective pressure to be associated with more complex
miRNA regulation: (1) without corresponding miRNA re-
pression, expression of a protein with more interacting
partners at undesirable time or place may lead to a more
severe fitness effect, because it has a potential to interfere in
more interactions; (2) genes with many interactions may
require a more tight control of protein production at the
post-transcriptional level, thereby exerting protein inter-
actions accurately and efficiently. Consistently, our results
also suggest that intermodular hub proteins are more likely
to be under miRNA regulation than intramodular hubs.
Again, this can be attributed to the functional difference
between these two types of hub proteins: intramodular hub
proteins interact with most of their partners simulta-
neously, while intermodular hubs tend to bind different
partners at different time and place. Therefore, intramod-
ular hubs would have relatively less pressure to achieve
expression diversity. Moreover, our study offers a new per-
spective to understand functional bias of miRNA targets.
Previously known miRNA targeting propensity for genes in
different biological processes can be largely explained by
their connectivity, which highlights the role of PPIN as a
platform to understand gene regulation.

Analyzing miRNA targets in the context of PPIN also
provides important insights into how the dynamics of a

biological system can be efficiently controlled. In a higher
eukaryotic cell, first transcriptional regulation determines
mRNA expression specificity and level, then miRNAs, as
‘‘micromanagers of gene expression’’ (Bartel and Chen
2004), regulate protein output, and finally proteins fulfill
their functions through the interaction network. During
this process, ‘‘output’’ macromolecules from a given step
immediately become the inputs in the next step. As dem-
onstrated in present and previous studies (Cui et al. 2007;
Yu et al. 2007), large-scale coordination exists at every step:
Broadly expressed mRNAs tend to be regulated by more
miRNA types; broadly expressed miRNAs tend to regulate
more target genes (Supplemental Materials); and proteins
with more interacting partners tend to be associated with
more extensive miRNA regulation. Moreover, we found the
genes of two interacting proteins tend to be under similar
miRNA regulation, which parallels the previous finding
that genes encoding interacting proteins tend to have
similar mRNA expression profiles (Ge et al. 2001; Li et al.
2004; Rual et al. 2005; Wuchty et al. 2006). Via such global
or local coordination, a biological system can efficiently
control various functional states and improve the perfor-
mance of each component.

As to the basis of our study, the large-scale protein–
protein interaction and miRNA target prediction data we
used have proved to be useful for gaining biological know-
ledge (Farh et al. 2005; Rual et al. 2005; Sood et al. 2006).
Although these data sets are far from being complete and
may contain considerable noise, it is unlikely that incom-
pleteness or noise can totally distort our results. As to the
incompleteness of PPIN, a widely accepted assumption in
the field is that, as long as the PPIN is neither strongly
biased nor too small, the node-related statistics in general
(i.e., connectivity and clustering coefficient) should corre-
late well with the ones in the complete version. For false
positives in PPIN, as can be seen from consistent results

TABLE 2. Genes in the biological processes with strong miRNA targeting propensity or avoidance often show protein connectivity bias
in PPIN

GO Term Biological process Number of genes
P-value for target genes

overrepresentation
P-value for higher

protein connectivity

GO:0009987 Cellular process 3712 2e�5 1e�16
GO:0050789 Regulation of biological process 1159 2e�11 1e�16
GO:0007154 Cell communication 941 7e�15 1e�16
GO:0007275 Development 576 2e�16 2e�10
GO:0030154 Cell differentiation 159 5e�9 7e�7
GO:0046903 Secretion 102 1e�4 3e�3

GO Term Biological process Number of genes
P-value for target genes

underrepresentation
P-value for lower

protein connectivity

GO:0050896 Response to stimulus 675 1e�8 NS
GO:0009058 Biosynthesis 485 5e�10 5e�11
GO:0006118 Electron transport 117 1e�6 4e�8

NS, nonsignificant.
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across various data sets, this factor appears to have
no serious effects on our analysis. In fact, the strength of
large-scale data mining lies on reducing noise effect and
identifying general trends that would not have been dis-
covered otherwise. A similar comment applies to miRNA
target prediction data: although there is some uncertainty
in predicting miRNA targets for individual genes, the
overall signal inferred from thousands of genes would be
strong enough to reflect real biology. Finally, we note that
our study may significantly contribute to both PPIN and
miRNA research: On the one hand, by incorporating miRNA
targeting data, our results make important steps to reveal
the dynamic properties and organizational principles of
the human PPIN; on the other hand, this study also high-

lights the potential to improve current miRNA target pre-
diction by adding protein–protein interaction data.

MATERIALS AND METHODS

Analysis on miRNA regulation complexity and protein
connectivity in PPIN

We obtained protein–protein interaction data from Rual et al.
(2005). The authors used a stringent, high-throughput yeast two-
hybrid (Y2H) system to identify binary protein–protein interac-
tions in a ‘‘search space’’ (Space-I) defined by a z7200 3 7200
matrix of human protein-coding genes. Combining 2754 Y2H
interactions (CCSB-HI1) with 4067 literature-curated interactions
(LCI), they presented a PPIN containing 6726 edges (CCSB-
HI1+LCI). In the analysis, self-binding protein interactions were
excluded. We downloaded miRNA target gene predictions from
the TargetScanS Web server (version 3.1) (http://www.targetscan.
org/), which included miRNA target prediction for z17,000 genes
against 163 conserved miRNA families (corresponding to 238
miRNAs). In our analysis, we focused on those conserved miRNA
target sites (across human, mouse, rat, and dog), because (1) they
have been conserved in the long history of eutherian evolution
and may represent the most important target sites, (2) such a
requirement gives a relatively high signal-to-noise ratio (Lewis
et al. 2005), and (3) such a requirement largely reduces the
distraction of ‘‘neutral targets’’ (Bartel and Chen 2004), which
are under no selective pressure and are very likely to be non-
conserved. In the analysis, we used 6165 genes within the inter-
section between miRNA target prediction and PPIN data sets.
Since the underlying distributions of protein connectivity and
the number of miRNA target-site types were not normal, we
used Spearman’s rank correlation test to determine whether
there is a monotonic relation between two variables.

To test the robustness of our results, we performed the analysis
using additional PPIN and miRNA target data sets. (1) We used
CCSB-HI1 and LCI protein–protein data separately. These two
data sets have different merits and drawbacks: CCSB-HI1 is not
biased toward any particular biological interest, while LCI is
largely free of technical false positives. Our results appear not to
be influenced by these potential confounding factors. (2) We used
independent protein–protein interaction data from Stelzl et al.
(2005), which presents a PPIN of 1705 nodes using Y2H. (3) We
used another set of miRNA targets from PicTar, another leading
prediction program. We obtained PicTar targets from the UCSC
Genome Browser, which covered target prediction for z15,000
genes (after converting RefSeq transcripts into genes) against 178
miRNAs. We found very consistent results as using the Target
ScanS predictions. Through the rest of this study, we focused on
CCSB-HI1+LCI PPIN and TargetScanS miRNA target data sets,
since they are much more extensive.

For mRNA expression range analysis, we used the second
version of the Gene Expression Atlas (Su et al. 2004), which
contained the mRNA expression patterns of human genes across
73 normal tissues. We downloaded the data and its annotation
from the NCBI GEO database and calculated mRNA expression
level as described elsewhere (Farh et al. 2005). We used an AD
value of 200 as the threshold calling a gene ‘‘expressed in a given
tissue,’’ because a value below 200 largely reflects background

FIGURE 3. miRNA regulation of different types of hub proteins. (A)
An example of intra-modular hub. MCM3, which is a subunit of the
pre-replication complex, contains no miRNA target sites. (B) An
example of inter-modular hub. MAPK14, which is involved in a wide
variety of cellular processes, contains 11 types of miRNA target sites.
The interactions among proteins are shown as lines.

Liang and Li

1406 RNA, Vol. 13, No. 9



noise (Su et al. 2002; Yang et al. 2005). In the analysis, we used
14,285 genes within the intersection between mRNA expression
and miRNA TargetScanS prediction data sets.

To find whether interacting proteins tend to share more target-
site types, we first constructed a 6165 3 163 Gene-by-TargetSite
matrix: for a gene and a miRNA family, if the gene contained the
miRNA target site, it was marked ‘‘1,’’ otherwise, ‘‘0.’’ Then we
generated 10,000 control Gene-by-TargetSite matrices by ran-
domly shuffling the miRNA-TargetSite profile for each gene. This
shuffling allowed us to consider target-site patterns separately
from the number of target-site types, because the latter was
maintained constant for each gene in the randomization process.
For each index, the probability of the observed value was derived
from the empirical background distribution.

GO term analysis

To study miRNA targeting propensity in the PPIN, we used the
GO Term Mapper Web server at Princeton University (http://
go.princeton.edu/cgi-bin/GOTermMapper). Among the 6165
genes, 4813 genes were annotated into different biological pro-
cesses by the default GOA slim file (a list of general GO terms).
For each biological process, we performed a Wilcoxon rank test
to determine whether the number of miRNA target-site types of
genes in the process is significantly different than the remaining
genes. To count the effect of multiple testing, 0.002 was used to
call a biological process with strong miRNA targeting propensity
(or avoidance), which is equivalent to the conventional threshold
(0.05) after Bonferroni correction. Then for each of the identified
nine slim GO terms, we used a Wilcoxon rank test (one-tailed) to
test whether there is a corresponding variation (significantly
higher or lower) in terms of protein connectivity of genes in the
biological process.

Multiple variable regression analysis of hub proteins

The clustering coefficient of a node i is calculated as Ci =
2ni/k(k�1), where n is the number of links connecting the k neigh-
bors of node i to each other. To study the impacts of connectivity
and clustering coefficient on miRNA regulation of hub proteins,
for 340 hub proteins (connectivity $8), we performed a multiple
variable linear regression analysis among the number of miRNA
target-site types (y), protein connectivity (x1), and clustering
coefficient (x2). The forward selection algorithm was used to
choose variable(s) based on Akaike Information Criterion (the
lower bound was set to contain no variable, and the upper bound
was set to contain both variables). F-test was used to determine
the statistical significance of a correlation, which is known to be
robust for non-normal distributions.

SUPPLEMENTAL DATA

Supplemental material can be found at http://pondside.uchicago.
edu/zlilab/downloads/Liang&Li_RNA_suppl.pdf.
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