Methods

Conrad: Gene prediction using conditional

random fields

David DeCaprio,' Jade P. Vinson,'-? Matthew D. Pearson,’ Philip Montgomery,'

Matthew Doherty,” and James E. Galagan'

"The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; ?Renaissance Technologies LLC,

East Setauket, New York, 11733, USA

We present Conrad, the first comparative gene predictor based on semi-Markov conditional random fields (SMCRFs).
Unlike the best standalone gene predictors, which are based on generalized hidden Markov models (GHMM:s) and
trained by maximum likelihood, Conrad is discriminatively trained to maximize annotation accuracy. In addition,
unlike the best annotation pipelines, which rely on heuristic and ad hoc decision rules to combine standalone gene
predictors with additional information such as ESTs and protein homology, Conrad encodes all sources of
information as features and treats all features equally in the training and inference algorithms. Conrad outperforms
the best standalone gene predictors in cross-validation and whole chromosome testing on two fungi with vastly
different gene structures. The performance improvement arises from the SMCRF’s discriminative training methods
and their ability to easily incorporate diverse types of information by encoding them as feature functions. On
Cryptococcus neoformans, configuring Conrad to reproduce the predictions of a two-species phylo-GHMM closely
matches the performance of Twinscan. Enabling discriminative training increases performance, and adding new
feature functions further increases performance, achieving a level of accuracy that is unprecedented for this
organism. Similar results are obtained on Aspergillus nidulans comparing Conrad versus Fgenesh. SMCRFs are a
promising framework for gene prediction because of their highly modular nature, simplifying the process of
designing and testing potential indicators of gene structure. Conrad’s implementation of SMCRFs advances the state
of the art in gene prediction in fungi and provides a robust platform for both current application and future
research.

[Supplemental material is available online at www.genome.org. Conrad is freely available at http:/ /www.broad.mit.

edu/annotation/conrad.]

An accurate annotation of the protein-coding genes in an organ-
ism’s genome is essential for downstream bioinformatics analy-
ses and the interpretation of biological experiments. The rapid
increase in the rate of genome sequencing has led to increased
reliance on automated annotation methods. These methods, al-
though considerably faster, are less accurate than manual cura-
tion, as shown by the recent EGASP project on the human ge-
nome (Guig6 et al. 2006; Harrow et al. 2006). More accurate
automated methods are therefore critically needed.

A key problem with automated methods has been that the
generative probabilistic models (generalized hidden Markov
models, GHMMs) underlying the most accurate gene predictors
cannot readily handle all of the diverse evidence available for
gene prediction. Most of these GHMM-based gene predictors use
only the genome sequence itself (Genscan, Burge and Karlin
1997; SNAP, Korf 2004; Augustus, Stanke et al. 2006; and GenelD,
Parra et al. 2000) or an alignment of two or more genome se-
quences (Twinscan, Korf et al. 2001; N-Scan, Gross and Brent
2006; ExoniPhy, Siepel and Haussler 2004). However, human cu-
rators routinely incorporate diverse data such as EST alignments,
protein homology, and comparative sequence into their deci-
sions. This additional evidence is often difficult to model proba-
bilistically, incorporates long-range effects, and may contain un-
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known dependencies with other evidence even if the model state
is held constant. Each of these properties poses problems for
GHMMs.

Several previous attempts have been made to improve au-
tomated gene predictions by incorporating additional evidence.
The most widely adopted solution is to create an annotation
pipeline that uses several different gene predictors to create pre-
liminary gene sets that are then consolidated into a single set of
predictions using the additional evidence. This consolidation in-
volves either scripts implementing ad hoc heuristics or formal-
ized tools such as Jigsaw (Allen et al. 2004; Allen and Salzberg
2005), ExonHunter (Brejova et al. 2005), or Glean (Elsik et al.
2007).

Applying an annotation pipeline to a new organism is gen-
erally a complex and labor-intensive process since each of the
tools in the pipeline will typically require some form of organ-
ism-specific training, which often requires assistance from the
original author of the tool. Instead of combining several complex
tools using heuristics, it would be preferable to have a single gene
prediction tool that is easily retrained for new genomes, incor-
porates any available data, and provides the highest available
accuracy given those data. Several theoretical extensions to
GHMMs have been proposed to handle this, including hand-
crafted heuristics for particular feature types (Yeh et al. 2001), a
mixture-of-experts approach applied at each nucleotide position
(Brejova et al. 2005), and decision trees (Allen et al. 2004; Allen
and Salzberg 2005). However, none of these extensions addresses
all of the problems above in a general way.

In this paper, we address these problems by applying the
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theoretical framework of conditional random fields (CRFs) (Laf-
ferty et al. 2001) to the problem of gene prediction. Unlike
GHMMs, CRFs are capable of incorporating evidence that con-
tains long-range effects and unknown dependencies without re-
quiring any probabilistic modeling of the observation data. A
specific CRF variant called semi-Markov conditional random
fields (SMCRFs) (Sarawagi and Cohen 2005; Vinson et al. 2006)
can exactly reproduce the predictions of a GHMM but is strictly
more expressive: The generative features inherited from GHMMs
can be combined with discriminative features representing new
evidence, and all features regardless of origin are treated equally
by the SMCRF framework.

SMCREFs can not only incorporate new evidence more easily
than a GHMM, but might also be able to make more accurate
predictions from the same information. SMCRFs are an example
of discriminative modeling, in which one directly models the
conditional probability Pr(Y|X) of hidden states given observa-
tions, while GHMMs are an example of generative modeling, in
which one models the joint probability Pr(Y,X) of hidden states
and observations (Ng and Jordan 2001). Although GHMMs have
been the dominant approach to gene prediction since 1997
(Burge and Karlin 1997), discriminative modeling has also been
attempted. The gene predictor GAZE (Howe et al. 2002) uses the
same concepts as CRFs but is based on a much earlier theoretical
framework of conditional maximum likelihood (Stormo and
Haussler 1994). Culotta et al. (2005) performed a proof-of-
concept study using standard CRFs, and Gross et al. (2006) pre-
sented a training algorithm to maximize an approximation of the
nucleotide accuracy of the posterior decoding.

The gene predictor CRAIG (Bernal et al. 2007) used SMCRFs
and demonstrated improvements over single-genome gene pre-
dictors using several benchmark data sets, but did not use com-
parative information and was not more accurate than the best
comparative gene predictors. CRAIG is trained using an online
large-margin algorithm and uses feature sets developed from
scratch. Our approach, Conrad, differs from CRAIG in three im-
portant respects. First, Conrad uses genome comparisons and, as
shown below, actually improves upon the state of the art for the
species studied. Second, Conrad uses features inherited from
GHMMs as a starting point, building on existing research and
enabling direct comparisons of generative versus discriminative
approaches. Third, we introduce a novel training method called
maximum expected accuracy (MEA), which allows us to optimize
a measure of accuracy specific to gene prediction.

We implement the SMCRF framework with the conditional
maximum likelihood (CML) and MEA training algorithms in the
gene predictor Conrad. An earlier version of Conrad lacking the
MEA training and semi-Markov capability was presented in Vin-
son et al. (2006). Conrad’s implementation applies machine
learning and software engineering principles toward the goal of
creating a single, easily trained gene predictor accurate enough to
replace existing complex annotation pipelines. Conrad can be
used to predict protein-coding genes using a genome sequence or
an alignment of related species, but is configurable and allows
full control over the data and features in the model and the
algorithms for training and inference. It can thus be extended to
incorporate additional data and used as a platform for further
research in gene prediction or the application of SMCRFs to other
problems. Conrad is written entirely in Java and is freely avail-
able under the GPL open-source license.

We tested Conrad on two fungal genomes, and on each it
outperformed the most accurate available gene predictor. On the

human pathogen Cryptococcus neoformans Conrad outperforms
Twinscan, previously the most accurate gene predictor trained
for C. neoformans. On Aspergillus nidulans, Conrad outperforms
Fgenesh, the gene predictor used in the reference GenBank an-
notation. Using controlled experiments we demonstrate how
these performance improvements result from the theoretical ad-
vantages of SMCRFs. We first show that for gene prediction the
discriminative training methods of SMCRFs outperform the gen-
erative methods of GHMMs and then demonstrate that the
SMCRF’s ability to incorporate additional data enables a further
enhancement in accuracy.

Methods

Conrad is implemented using the theoretical framework of con-
ditional random fields. CRFs express the conditional probability
Pr(Y|X) of a set of hidden states Y given observation X (Sutton
and McCallum 2006). A CRF assigns a probability to the hidden
states Y by normalizing a weighted exponential sum of feature
sums Fj:

1
Pr(YIX) =7 exp( > w,F,(Y,X))

features;j

Zy(X) = Zexp( > wai(Y,X)),
Y featuresj

where w; denotes the weight for feature sum F;, and Z,,(X) is the
normalizing constant. For gene prediction, we assume that the
hidden states Y are linearly structured as a vector of labels
YuY2Y3- -+ Va, With one label such as “exon” or “intron” per
nucleotide of the sequence to be annotated. Equivalently, Y can
be represented as a segmentation of the nucleotide sequence into
a variable number p of intervals (t;,u;,v;)%, with starts t;, stops u;,
and labels v;:

Y=yays- - ¥ O Y=(tyu,v)i,
L=1 w=t; u,+1=t; u,=nm v Fv
V= Vew1 = Vg2 = =V = Vi

and where restrictions on the allowed transitions v;_; — v; en-
sure that all gene structures are plausible. For example, the tran-
sition from “intergenic” to “exon” can only occur at an ATG start
codon (see Supplemental material). In this paper, we use both the
label y4,y,,v3, - - -, ¥, and interval (t,u;v;)%_ representations for Y
as appropriate. Equations involving only X and Y are general
statements that do not depend on the linear chain structure and
also apply to CRFs on arbitrary graphical models.

As with gene predictors based on GHMMs, we impose the
constraint that each interval (t,u;v;) interacts only with its im-
mediate neighbors. Thus, the feature sum F; can be written as a
sum of localized feature functions f;

14
F(Y,X) = 21 f(Viy, ty ity v, X).

This type of CRF is called a semi-Markov CRF (SMCRF)
(Sarawagi and Cohen 2005). To use an SMCRF to annotate a
genome sequence given observations X, one computes the seg-
mentation Y with the highest conditional probability Pr(Y|X).
The “inference algorithms” to compute this are essentially the
same as those used in GHMMs (see Supplemental material).
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The key issues in the application of SMCRFs to gene predic-
tion are the design of the feature functions f; and the selection of
the weights w;. Feature functions use the observations X to assign
a real value to each labeling of each possible interval and capture
properties of the observation data relevant for classification.
They are not required to be independent or have a probabilistic
interpretation. It is straightforward to use GHMM models as a
source of feature functions (which we call “generative features,”
see below), and we use a state of the art phylo-GHMM to provide
the core feature set for Conrad. By using this approach, we enable
Conrad to behave as either a GHMM or an SMCRF. We further
define a handful of “discriminative features” to capture informa-
tion from phylogenetic footprinting, insertion/deletion events in
multiple alignments, and EST alignments.

To select the weights for a CRF, one provides example an-
notations and uses a training algorithm to select weights that,
according to some criterion, perform best on the training data.
We discuss two training algorithms: CML, which is the algorithm
used most often with CRFs, and MEA, which we developed to
maximize accuracy measures that are specific to gene prediction.

Semi-Markov CRF equivalent of a phylogenetic GHMM

Currently, the best available predictors utilize a phylogenetic
GHMM with explicit state durations, which we will refer to as a
phylo-GHMM (Pedersen and Hein 2003; McAuliffe et al. 2004;
Siepel and Haussler 2004; Brown et al. 2005). We use this model
as the starting point for SMCRF development.

A GHMM is a model of the “joint probability” Pr(Y,X) of a
segmentationY = (t;,u;,v;)?_; and the observations X:

p-1 P
PIGHMM(Y/X) = ‘nleTv,-,v,-,rl HQV,—(Xt,-,u,-)r
i=1 i=1

where 7 are the initial probabilities, T is the transition matrix,
and Q,,Q,, - - -, Qy are the emission models, where Q,(X,,) is
the probability (including length distribution) of hidden state v
emitting the observed sequence X from f to u. The “conditional
probability” can be obtained by normalizing Prgpna(Y1X) =
Promm (Y. X)/PromandX), and it is the conditional probabilities of
a GHMM that are ultimately used for gene prediction.

The conditional probabilities of a GHMM are mathemati-
cally equivalent to an SMCRF using a single feature fgnn With
weight 1.0:

o log(Q,,(xy,,) +log(m,) ift;=1
forvm(Vier Vi by, X)) = lOg(Qvi(Xti,ui)) + lOg(Tv,»,l,vi) ift;>1

Wermm = 1.0

Instead of representing the entire GHMM with a single
SMCREF feature, we split the components of f;nn into a collec-
tion of simpler features, each with weight 1.0. We call the
features designed in this way “generative features” and split a
phylo-GHMM into the following 22 generative features (see
Supplemental material for more information on the features):

The five reference features model the nucleotide composition
of the reference sequence. Each feature outputs the log probabil-
ity of the current nucleotide based on a third-order Markov
model learned from the training data for a subset of the states.
The features do not include probabilities for nucleotides at the
edges of states, which are covered by the boundary features.

The three length features compute the log probability for
state length distributions of introns, exons, and intergenic re-

gions. Intergenic distances are modeled using an exponential dis-
tribution, and the exon and intron distributions are modeled as
a mixture of two gamma distributions.

The transition feature models the frequency of various state
transitions and corresponds to the transition matrix of a GHMM.
The only parameter fit from the training data for this feature is
the average number of exons per gene. All other parameters are
set to make the model symmetric so that genes on either strand
or in any frame are preferred equally.

The eight boundary features model nucleotide signals that
occur at state boundaries. These signals include splice donor and
acceptor signals and start and stop codons. Each of the eight
features returns the log probability of a PWM learned from the
training data for a specific boundary.

The five phylogenetic features incorporate data from multiple
species, one feature each for intergenic regions, introns, and the
three reading frames. Each feature returns the log probability of
a column in the multiple alignment (based on probabilistic mod-
els of nucleotide evolution) conditioned on the nucleotide in the
reference sequence.

The SMCRF model using only the reference, length, transi-
tion, and boundary features with weights fixed at 1.0 is called
ConradG-1. ConradG-1 exactly reproduces the conditional prob-
abilities of a GHMM and is comparable to single-genome gene
predictors such as Genscan (Burge and Karlin 1997), GenelD
(Parra et al. 2000), or Fgenesh (Salamov and Solovyev 2000).

The SMCRF models using all the generative features defined
above with weights fixed at 1.0 are called ConradG-2, ConradG-
3, etc, depending on the total number of species used by the
phylogenetic feature. These models exactly reproduce the condi-
tional probabilities of a phylo-GHMM, and ConradG-2 is com-
parable to the two-genome gene predictor Twinscan. Table 1
summarizes these models and the other models referenced in this

paper.

Training the weights using conditional maximum
likelihood (CML)

The traditional way of training the weights w; of a CRF is CML.
Assuming a single training sequence of training data (Y°,XY),
this is:

Wenr = arg max(log(Pr,, (Y°1X7)))

The function log( Pr,,(Y°|X°) is a concave function of w,
because its Hessian is the negative of the covariance matrix of the
random variables F;(Y,X°) when Y is drawn from Pr, (Y| X°). Thus,
log( Pr,,(Y°|X%)) is guaranteed to have a single local maximum
Wene, Which is also the global maximum.

In practice, one maximizes log( Pr,, (Y% X?%) using a gradi-
ent-based function optimizer (Zhu et al. 1994; Wallach 2003),
and the algorithms for computing the gradient depend on the
specific variant of CRF. For SMCRFs, computing the gradient in-
volves dynamic programming to perform a forward and back-
ward pass through the training data. The computation time is
linear in both the length of training data and the length of the
longest allowed interval (see Supplemental material).

We define the models ConradC-n (n = 1) to have the same
features as ConradG-n (reference, length, transition, boundary,
and phylogenetic features), but with weights trained by CML (see
Table 1 for the full list of models).
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Table 1. Definition of the various Conrad models Still other training methods have been
Training Accuracy No. of Additional propos?d for CRFs. One approach Is to

Model Type method function species features maximize the accuracy of the posterior de-

coding (Gross et al. 2006) by approximating

Conrads-1 SMCRF MEA Splice 1 — the step function by a steep sigmoid and

ConradG-2 GHMM Fixed - 2 N/A using gradient descent. Margin-based meth-

ConradC-2 SMCRF CML — 2 — L .

ConradN-2 SMCRE MEA Nucleotide 5 B ods for training CRFs in another context

Conrads-2 SMCRE MEA Splice 2 _ have been used in Taskar et al. (2003), and

ConradSFG-2 SMCRF MEA Splice 2 Gap/Foot for training SMCRFs for gene prediction in

ConradS-5 SMCRF MEA Splice 5 — Bernal et al. (2007).

ConradSFG-5 SMCRF MEA Splice 5 Gap/Foot

ConradSFGE-5 SMCRF MEA Splice 5 Gap/Foot/EST Discriminative features

The first character indicates the training method and subsequent characters indicate the presence
of various discriminative features. The final number indicates the number of species used, including
the reference. The type of model is either SMCRF or GHMM. The training method is either CML or

MEA for SMCRFs.

Training the weights using maximum expected accuracy (MEA)

To evaluate gene predictions one measures the accuracy of the
inferred segmentation. Conditional maximum likelihood indi-
rectly optimizes accuracy by maximizing the likelihood of the
correct segmentation as provided in the training examples. In
principle, we expect that directly optimizing the accuracy of the
inferred segmentation would improve performance. However,
this is intractable to optimize because altering the weights causes
different segmentations to be inferred, which result in discon-
tinuous changes in accuracy. To avoid this complication, we op-
timize the weights using an objective function defined as the
expected value of the accuracy over the entire distribution of
segmentations defined by the SMCRF. We call this training ap-
proach maximum expected accuracy (MEA).

Given training data (Y°,X°), one can define the accuracy of a
path Y = y,y,y5- - -y, to be the similarity between Y and Y° given
X°. Similarity can be defined using metrics relevant for a given
application, and we consider similarity functions S that can be
evaluated as a sum of dinucleotide comparisons between the hid-
den paths:

n
S(Y'YOfXO) = 21 S(Yi—1/YnY?—1/J’?;XO,i)~
i

Given §, we define the objective function A as the expected

value of S, and select weights to maximize A:

Apiea) = E(S(Y,Y°,X%) = D Pr,(YIX%)S(Y,Y°,X°)
Y

Whiga = argml/naX(AMEA(W))

We can efficiently compute gradients of the objective func-
tion Aypa(w) (see Supplemental material) and use a gradient-
based function optimizer to find a local maximum. Since the
objective function A,;;,(w) is not a concave function of w and we
are not guaranteed to find the global maximum, we set the initial
weights using the results of CML training.

For our application to gene prediction, we define the simi-
larity function Syycirormpe to be the number of nucleotides at
which the hidden state is correct, and Sgp; ;¢ to be the number of
nucleotides called correctly plus 200 times the number of splices
called correctly. We define the SMCRF models ConradN-n and
ConradS-n to have the same features as ConradG-n, with weights
trained by MEA with similarity functions Sxyc;poripe and Ssprice
respectively (see Table 1 for the full list of models).

Discriminative features are those feature
functions that do not have a probabilistic
interpretation. The ability of SMCREFs to in-
corporate discriminative features is what
enables them to incorporate evidence that
contains long range effects or unknown dependencies, or is sim-
ply difficult to model probabilistically. The SMCRF training al-
gorithms described above (except for the GHMM “training
method” of fixing the weights at 1.0) will assign optimal feature
weights to any real valued feature functions, not just those that
correspond to valid probability models. This is the key distinc-
tion that allows SMCRFs to take advantage of diverse evidence for
gene prediction that has not been possible to incorporate into
phylo-GHMMs.

We designed two groups of discriminative features to repre-
sent information that is routinely used by manual curators to
refine gene predictions but has so far been difficult to incorporate
in phylo-GHMM-based gene predictors, and one group of fea-
tures as a positive control that has been successfully imple-
mented in GHMMs. These discriminative features are all 0-1 in-
dicator functions, but this is purely for convenience and is not a
requirement of either the SMCRF framework or our implemen-
tation in Conrad.

The six gap features capture information from the pattern of
gaps in a multiple alignment that is not captured by the phylo-
genetic features or by phylo-GHMMs:

feapexoniz(Viey, Vil X)) =

w [1if v;=exon and the multiple alignment X has a gap
2 of length 1 or 2 (mod 3) with a boundary at position k

k=ti | 0 otherwise

fGAP,EXONO/fGAP,INTRON‘l ZIfGAP,INTRONOIfGAP,INTERGENIC] 2 and

foap,inTERGENICO ar€ defined similarly.

Gaps in a multiple alignment are indicative of insertions or
deletions (indels) in the evolutionary history of one of the
aligned species, and occur rarely in functionally conserved re-
gions of a genome such as exons. In particular, those indels that
are not a multiple of three disrupt the translation of a protein and
almost never occur in exons (Kellis et al. 2003). The most sys-
tematic attempts at incorporating multiple alignment gaps in a
phylo-GHMM have been the one made by Siepel and Haussler
(2004), which only represents the case of phylogenetically
simple, nonoverlapping gaps, and Gross and Brent (2006), which
only has sufficient data to train a first- or second-order model of
the columns in a multiple alignment and thus cannot exploit the
crucial mod-3 length of gaps.
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The three footprint features per species indicate the positions
at which each species is aligned:

1 if v; = exon and species S

uj

froor.exon(ViyValyti, X) = 2, 1 1s aligned at position k
k=t | 0 otherwise

froor,ivrron @04 froor intergenic are defined similarly.

Coding sequences are more likely to be aligned than non-
coding regions for two reasons. First, they are less likely to have
been deleted in the evolution of the informant species. Second,
the coding regions tend to be more conserved and there-
fore easier to align than noncoding sequences, although this
also depends on the method of sequence alignment. These ef-
fects are not captured in phylo-GHMMs. One approach is to
treat the absence of an informant species in the alignment as
missing information (Siepel and Haussler 2004). Another is to
extend the alphabet of four nucleotides to include “gap” or
“unaligned” as in Gross and Brent (2006), but this approach
requires manually tuning a “conservation score coefficient”
(usually between 0.3 and 0.6) to achieve the best predictive
performance. SMCRF footprint features require no manual tun-
ing, because the proper weights are set automatically during
training.

The difficulty of incorporating diverse information in a
GHMM comes not from incorporating any one type of informa-
tion, but in combining many types of information within the
same model. For example, Twinscan captures information similar
to the gap and footprint features by extending a single genome
GHMM with a conservation track modeled with a high-
order Markov model. However, this approach does not generalize
naturally to multiple phylogenetically related species and lacks
the realism of evolutionary models of nucleotide substitu-
tion. Conversely, phylo-GHMMs such as N-Scan or ExoniPhy
exploit phylogenetic relationships and evolutionary models of
nucleotide substitution but, as described above, fail to fully cap-
ture the gap and footprint features. A second example is hexamer
composition and CpG frequency: The former is indicative of
the state of a stretch of nucleotides, the latter is indicative of a
nearby translation start site, but the two are intimately related
and difficult to combine in the same GHMM. In contrast, a CRF
provides a consistent mechanism that allows any available fea-
ture functions to be combined in a model and trained appropri-
ately.

The nine EST features relate the alignment of ESTs to the
states and transitions of the hidden sequence, and resemble
those in Wei and Brent (2006). ESTs are experimentally deter-
mined sequences of randomly sampled mRNA and provide
strong evidence for the transcription of a sequence. However,
ESTs are usually partial and also contain the untranslated regions
bounding each coding sequence. The nine EST features capture
information about individual base and splice junction agreement
with ESTs and account for the fact that multiple EST alignments
at a given position will often disagree. The exon and splice ac-
ceptor indicator features are defined as follows:

fest,Exon,consisTENT(Vie1, Vi by 15, X ) =

Ui {1 if v;=exon and ¢, = exon}

i |0 otherwise

fest spLice_accepror(Vit, Vi Lyt X) =

1 if v;_; = intron and v; = exon
and ¢,_; = intron and ¢, = exon
0 otherwise

where ¢, is an additional observation indicating the EST evidence
available at each position. The other seven features are defined
similarly (see the Supplemental material for full details on the
EST features).

We name SMCRF models containing discriminative features
by appending a letter to the end of the model name for each
feature, using F, G, and E for footprint, gap, and EST features,
respectively (see Table 1 for the full list of models). Discrimina-
tive features can only be used with the SMCRF models (those
trained with CML or MEA) and not the GHMM models (those
with weights fixed at 1.0).

Conrad training

We implemented the theoretical framework described above in
the gene predictor Conrad. To train each SMCRF model one sup-
plies a model parameter file (a list of features and a training
method) and a set of training data (which includes both hidden
sequences and observations). Conrad first uses the training data
to learn numerical parameters for the features, such as the intron
length distribution, the position weight matrix for the splice
sites, and the rates of nucleotide sequence evolution. Conrad
then trains the feature weights (if CML or MEA is specified) or
sets the feature weights to 1.0 (to reproduce a GHMM), and saves
the learned feature parameters and feature weights as a trained
SMCRF model, which can be used to make predictions on new
input data. To evaluate the trained SMCRF models, we generated
Conrad predictions on a testing set and measured the accuracy of
the predictions. Detailed instructions for running Conrad are
available at the Conrad Web site (http://www.broad.mit.edu/
annotation/conrad).

Experimental design

For our cross-validation experiments, we created a reference set
of high-confidence genes in each organism by selecting genes
from the GenBank annotation that had full EST support along
their entire length and an open reading frame of at least 100
bases. For C. neoformans, we additionally required that each gene
have at least two exons. Each reference gene, along with 200
bases of padding on each side, was treated as a separate sequence.
For each desired training set size, we created 10 random train-test
partitions of this reference set. We then performed specific com-
parisons using this cross-validation framework. For each model,
we measured sensitivity and specificity at the nucleotide, exon,
and gene levels as described in Burset and Guigd (1996) for each
of the partitions (see Supplemental material for full details on the
training and testing sets).

C. neoformans has a 19 Mb genome containing ~7000 genes
with complex gene structures averaging six exons per gene. It is
an ideal test case due to deep EST sequencing of strain JEC21
(Loftus et al. 2005) and the availability of genomes for four
closely related strains (var. grubii H99, var. gatti R2635, var. gatti
WM276, var. neoformans B-3501A), which we aligned using
MULTIZ and TBA (Blanchette et al. 2004). Our total reference set
size was 1105 genes. To evaluate the effects of training sets size,
we created partitions with training sets sizes of 50, 100, 200, 400,
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600, 800, and 1000 genes. To evaluate the effectiveness of differ-
ent weight training methods, we compared models with the
same feature sets. To evaluate the effects of feature selection, we
held the training method constant and compared the models
using different combinations of features. Because ESTs were used
in the construction of the reference set of genes, the EST feature
served as a positive control: We had a strong expectation that the
EST feature should lead to improved performance on the refer-
ence gene set (Wei and Brent 2006). We also measured the effect
of training set size on testing accuracy and the size of the gener-
alization gap (the difference between performance on the train-
ing and testing sets).

A. nidulans has a 30 Mb genome with >10,000 genes. We
divided the reference set of 574 genes into 10 random partitions
with 300 training genes and 274 test genes. We then examined
the effects of several different choices of informant species
among nine fully sequenced genomes from the Aspergillus clade.

To benchmark Conrad against other gene predictors, we per-
formed chromosome/genome testing on both organisms. The
reference gene sets are highly accurate and useful for cross-
validation, but any meaningful comparison of gene callers must
be done using full chromosomes and evaluated against a data set
not biased toward any particular gene predictor. We compared
Conrad to the two most accurate gene predictors that have been
trained for C. neoformans (Twinscan and GenelD) by running
each on chromosome 9 and comparing results against all avail-
able EST data. Conrad was trained on the set of 1048 reference
genes not on chromosome 9. GenelD was retrained using the full
set of trusted genes by R. Guigé and F. Camara (pers. comm.) and
an updated version of Twinscan was run for us on chromosome
9 by M. Brent and R. Brown (pers. comm.). On A. nidulans, we
compared Conrad to Fgenesh on the entire genome, once again
comparing results against all available EST data. Conrad was
trained on the entire reference set and Fgenesh was trained by
Softberry (Salamov and Solovyev 2000).

Results

Semi-Markov CRF training approaches

Our cross-validation experiments on C. neoformans demonstrate
the relative performance of Conrad models using various feature
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sets, training methods, and training set sizes. The results of these
experiments are presented in Figure 1. For each model, Figure 1
shows the gene sensitivity (percentage of reference genes com-
pletely correct in the testing set) across different training set sizes
and the full set of testing accuracy statistics for models trained on
the 600-gene training sets. The models are grouped according to
the data they use for prediction. Those models that use all avail-
able input data perform the best, followed by the two-species
predictors using various training methods and then the single-
species predictor.

The middle group of models in Figure 1 all use the same
two-species alignments and feature set but differ in their training
methods, enabling a direct comparison of GHMM (generative)
versus SMCRF (discriminative) training approaches. The three
discriminative training methods outperform generative training
on all metrics except nucleotide sensitivity where all methods
achieve similar performance. At the gene level, the discrimina-
tive approaches are on average 8.4% more sensitive (61.1% com-
pared to 52.7%) and 6.9% more specific (61.2% compared to
54.1%) than generative training. For exons, discriminative train-
ing improves sensitivity by 3.5% (85.8% versus 82.3%) and speci-
ficity by 3% (90% vs. 87%).

The performance of the different discriminative training
methods was essentially equivalent. Conditional maximum like-
lihood training (ConradC-2) had gene sensitivity and specificity
averaging 61.3% and 61.8% with standard deviations of 2.6%
and 2.8%, respectively. The other methods had specificities
within 0.5% (61.1% for ConradN-2 and 60.8% for ConradsS-2)
and sensitivities within 1.0% (61.0% for ConradN-2 and 60.8%
for ConradS-2). Exon and nucleotide statistics for these models
were also within a percentage point. The discriminative training
methods showed similar performance even on more complicated
models incorporating additional species and features, and so
only the results for the “S” models (MEA with splice bonus) are
presented for those models.

The performance of all of the training methods has a con-
sistent profile as the number of genes in the training set changes.
Consistent with previous findings (Allen and Salzberg 2005),
training methods reach full accuracy at ~600-800 genes and suf-
fer only a nominal reduction in accuracy using just 200-400
genes. The dotted lines in Figure 1 show the performance of the
ConradC-2 and ConradSFG-5 models on their training set, and

Cross-validation performance using 600 gene training set

Model* Training No. of Additional Nucl. Nucl. Exon Exon Gene Gene
i method species features sens. spec. sens. spec. sens. Spec.
5. 80
= ConradSFGE-5 MEA-splice 5 Gap/Foot/EST 98.8 994 950 967 86.0 86.0
g ConradSFG-5 MEA-splice B Gap/Foot 98.1 984 894 924 701 70.2
8 704 ConradS-5 MEA-splice 8 — 98.0 981 873 911 646 649
[}
5 ConradSFG-2 MEA-splice 2 Gap/Foot 98.3 983 881 912 665 66.1
o 60 - ConradC-2 CML 2 — 979 982 856 902 613 618
ConradN-2 MEA-Nucleotide 2 — 98.0 98.1 86.0 90.0 611 61.0
50 ConradG-2 GHMM 2 — 947 984 823 870 527 541
ConradS-1 MEA-splice 1 977 973 815 866 533 533
I I I I I
200 400 600 800 1000 * Models in table are divided into three sets according to the input data they use: the top group uses all available
Training set size data; the second uses only a two-species alignment; and the third uses only the reference genome.
Figure 1. Performance of Conrad models in the C. neoformans cross-validation tests. The graph on the /eft shows average gene sensitivity (percentage

of reference genes completely correct in the testing set) across 10 replicates based on model and training set size. Solid lines are performance on the
test set, and dotted lines are performance on the training set (not all training sets are shown). The bars represent standard deviation across the replicates.
The table on the right shows the full set of testing accuracy statistics for the models on the 600-gene training sets.
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other models are similar. The difference between performance on
the training set and the testing set is known as the “generaliza-
tion gap.” We can see that it closes significantly for most models
by 400 genes and disappears completely with 600 genes. The
apparent drop in accuracy at 1000 genes likely results from in-
creased variability due to the small size of the test set (105) for
these trials.

The discriminative training methods are significantly
more computationally expensive than the generative meth-
ods due to the numerical optimization required. Our tests
were run on the Broad Institute compute farm, which consists of
200 Linux servers, each with two x86 processors between
2.5 and 3.2 GHz and 4-8 GB of memory. The GHMM took
an average of 39 CPU-seconds per megabase for training,
while CML averaged 6-8 CPU-hours and MEA averaged
8-12 CPU-hours per megabase depending on the number of
features used. Even with this roughly 1000-fold difference,
complex discriminative models can be trained on realistic
small genome data sets in a day or two on a standard PC. The
extra cost is incurred only during training, since the inference
algorithms for all approaches are identical, taking an average of
8.5 min/Mb.

Improved accuracy with discriminative features

The models in Figure 1 demonstrate the effects of feature selec-
tion. Increasing the number of species from one to two to five
improves gene sensitivity by 11.3%, from 53.3% to 60.8% to
64.6%. Incorporating the gap and footprint features, which use
the same input data as the generative phylogenetic models, fur-
ther improves sensitivity of the five species model by 5.5% to
70.1%.

By incorporating EST features into the model, we obtain
significant performance improvements. The ConradSFGE-5
model achieves gene sensitivity of 86.0%, a 15.9% improvement
over not having EST data. This model was trained using only half
of the EST data (EST data was removed from half of the genes), to
avoid overtraining effects, and tested using all EST data. We also
trained the model using the full complement of EST data, which
performed slightly better on the cross-validation set but did not
generalize as well during the whole chromosome testing (data
not shown).

Comparison with Twinscan and GenelD

We compared Conrad to GenelD (Blanco et al. 2003) and
Twinscan by training on isolated genes and predicting on a full
chromosome sequence, simulating a typical production annota-
tion. The results are presented in Table 2, which shows that
Conrad outperforms existing gene predictors using the same data
and is also capable of incorporating additional data to further
improve performance.

The ConradSFG-2 model uses the same input data as Twin-
scan, and outperformed it by 12.9%, with 78.4% gene sensitivity,
compared to 65.5% for Twinscan. Examining the various two-
species models allows us to dissect this performance improve-
ment. The ConradG-2 model implements a two-species phylo-
GHMM theoretically similar to Twinscan and achieves nearly
identical performance of 65.7%, supporting the hypothesis that
the performance improvements seen in other Conrad models are
the result of the theoretical advances and not simply implemen-
tation differences.

Using discriminative training improves performance. The
ConradS-2 model differs from ConradG-2 only in its training
method and achieves 5.4% better performance. Although the
cross-validation experiments showed very small differences be-
tween the various discriminative training methods, on the full
chromosome test we see a 4.2% difference between the various
discriminative methods, with MEA with the splice bonus out-
performing MEA using nucleotide accuracy, which in turn out-
performs conditional maximum likelihood. Since this was a
single experiment, we do not have a measure of the variability of
these estimates.

The selection of features in the model also affects perfor-
mance. The ConradSFG-2 model adds the gap and footprint
features to the ConradS-2 model and obtains a 7.3% gain in
performance. Moving from two species to five species, the
ConradSFG-5 model provided a 4.0% improvement to 82.4%.
The single-species model, ConradS-1, achieved 63.3% accuracy:
22.5% better than GenelD and only 2.2% below Twinscan.

As expected, the EST features provide a large gain and im-
prove accuracy a further 12.1% to 94.5%. However, ConradSFGE-5
model differs from the other models in the number of genes
called and the average length of each gene. These differences may
be a consequence of the training set not having the same distri-

Table 2. Performance of Conrad and other gene callers on C. neoformans chromosome 9

Training No. of Additional No. of No. of Avg. gene Genes with Consistency Missed
Model method species features genes exons length (bases) EST overlap (%) ESTs
GenelD Generative 1 N/A 472 2719 1490 260 (55%) 40.8 86
ConradS-1 MEA-splice 1 — 489 2876 1547 264 (54%) 63.3 85
Twinscan Generative 2 N/A 478 2760 1477 267 (56%) 65.5 95
ConradG-2 Generative 2 N/A 486 2826 1437 271 (56%) 65.7 96
ConradC-2 Cond. ML 2 — 469 2823 1595 263 (56%) 66.9 87
ConradN-2 MEA-nuc. 2 — 487 2823 1522 269 (55%) 69.5 88
Conrads-2 MEA-splice 2 — 477 2823 1544 266 (56%) 71.1 87
ConradSFG-2 MEA-splice 2 Gap/Foot 477 2855 1564 264 (55%) 78.4 87
ConradS-5 MEA-splice 5 — 469 2837 1595 262 (56%) 76.0 88
ConradSFG-5 MEA-splice 5 Gap/Foot 465 2857 1601 261 (56%) 82.4 88
ConradSFGE-5 MEA-splice 5 Gap/Foot/EST 510 2881 1421 275 (54%) 94.5 104

The models are grouped by the evidence they used as input: single gene sequence, pairwise alignment, and then all available data. Predictions were
compared to available EST (expressed sequence tag) evidence using a custom set of metrics designed to handle partial information from ESTs. Shown
are the total number of genes and exons predicted by each model and the number of those predictions that overlapped EST evidence. Of those
predictions overlapping EST evidence, the percent where the EST and gene predictions agree is shown. Also included is the total number of EST clusters

that did not overlap any prediction, indicating probable missed genes.
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bution of EST evidence as chromosome 9. Because the refer-
ence genes all had full EST support, we randomly selected
one half of the training genes and removed all of their EST evi-
dence as a way of simulating a more realistic distribution. The
accuracy improvement indicates this is a reasonable approach.
However, there are still notable differences between our training
set and chromosome 9, such as the lack of genes with partial EST
support.

Application to A. nidulans

The Aspergillus clade has nine fully sequenced genomes, allowing
us to compare the effects of different choices of informant species
on gene prediction accuracy. The results of cross-validation ex-
periments using a 300-gene test set and 274-gene training set are
shown in Figure 2.

The single-species model using only A. nidulans has gene
sensitivity, 65.2%, and all of the comparative models outperform
the single-species predictor. The two species models using A. ory-
zae and A. fumigatus models perform ~9% better than the single-
species model. However, the two species C. immitis model only
outperforms the single-species model by 3.4%, which may indi-
cate that the branch length between this outgroup species and
reference genome is too large to be useful. Adding additional
species beyond two increases the accuracy further, but the gains
appear to be more modest (74.1% to 76.5% gene sensitivity).

We compared Conrad to Fgenesh, the gene caller used for
the GenBank annotation of A. nidulans. We ran both predictors
on the full genome and compared the results against the avail-
able ESTs. We used the single-species model ConradS-1 to get a
fair comparison against Fgenesh, which is also a single-species
predictor. Both programs predicted similar numbers of exons
(37,263 for Fgenesh and 37,084 for Conrad), but Conrad gener-
ally predicted more, shorter genes than Fgenesh (13,620 genes
averaging 1040 bases versus 10,146 genes averaging 1544 bases).
Conrad was more specific than Fgenesh, with 67.6% of genes
overlapping ESTs having agreement compared to 64.8%. Fgenesh
was 0.6% more specific than Conrad at exon predictions (76.0%
vs. 76.6%), while Conrad was 3.0% more specific than Fgenesh at
intron predictions (78.9% vs. 75.9%).

Understanding the trained models

Examining the weights of a trained model can provide some
insight into the relative importance of the features used for clas-
sification. If all features are similarly scaled, as is the case when a
model contains only generative features, larger weights indi-
cate more important features. This illustrates a benefit of dis-
criminative training (SMCRFs), which allows more useful
features to be given higher weights, as compared to generative
training (GHMMs) where all weights are fixed at 1.0.

Figure 3 shows the weights selected by MEA algorithm for
the ConradS-2 model for both A. nidulans and C. neoformans,
averaged across the 10 replicates. Encouragingly, when the same
feature is repeated across reading frames (donor and acceptor) or
strand (phylogenetic exon and intron), the weights are very simi-
lar. Some differences were unexpected, such as the weights for
donor PWMs being twice as large as those for acceptor PWMs.
This suggests that donor PWMs are more useful than acceptor
PWMs for classification in these organisms.

The length features have the largest variation across states.
The intron length feature has a very strong weight in C. neofor-
mans, which is consistent with previous investigations showing
intron lengths to be important signals for this organism (Tenney
et al. 2004) and confirming the need for the extension of CRFs to
SMCREFs in Conrad to handle explicit length distributions. This
weight is lower in A. nidulans where intron length is less impor-
tant. The intergenic length feature has a large negative weight,
which is probably an artifact of our training method, which pads
all training genes with 200 bases of intergenic sequence.

Discussion

The implementation of semi-Markov conditional random fields
(SMCREFs) in Conrad advances the state of the art in gene anno-
tation in fungi and provides a robust platform for both current
application and future research. The first advance comes from
the use of discriminative versus generative training. Using the
same set of generative features, we consistently achieve greater
accuracy using an SMCRF with feature weights set by conditional
maximum likelihood (CML) or maximum expected accuracy

Aspergillus nidulans accuracy

& & N sorted by gene sensitivi

§§ > Q\ s? > o & ® @"{9 Branch length : L i

F g &8 e §' & (subst/site)  Nucleotide (%) Exon (%) Gene (%)
¥ ¥ = ¥ ¥ ¥ v v O Total Longest Sens. Spec. Sens. Spec. Sens. Spec.
—_ = 1 163 .099 981 989 868 919 765 797
o e e e | 214 099 983 987 874 915 762 787
= _ —_ 132 099 984 989 871 918 762 796
OO OO OO 331 163 97.7 986 858  91.1 752 795
| _ | 249 163 980 988 864 914 751 790
| 1 O 1 132 .099 98.1 987 861 913 746 781
| 0 3 099 099 980 984 86.3 904 741 777
_ (| 099 099 976 988 857 906 740 779
| _ 088 088 985 985 862 903 739 767
| 1 163 163 973 982 827 84 686 717
| \ 975 979 793 868 652 69.0

Figure 2. Accuracy results for the ConradSGF-n model on A. nidulans using several different combinations of informant species. Branch lengths are
in substitutions per site based on a set of highly conserved housekeeping genes.
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Figure 3. Average weights for the ConradS-2 model on both the Cryptococcus 600-gene training sets
and the Aspergillus training sets. Bars show the standard deviation across 10 replicates.

(MEA) than using a generalized hidden Markov model (GHMM)
with feature weights fixed at 1.0. The second advance is the ease
of incorporating additional information and the resulting im-
provement in accuracy. For example, the gap and footprint fea-
tures increase accuracy by extracting unused information from
the multiple alignments; the use of more informant species in-
creases accuracy; and the use of EST data further increases accu-
racy. Importantly, all of these different features can be easily
combined together in a single model. SMCRF features do not
have to be probabilistic models and can contain long-range ef-
fects or unknown dependencies with other features. Conrad
achieves a level of accuracy greater than existing methods for
both C. neoformans and A. nidulans, two fungal genomes with
highly dissimilar gene structures.

Conrad is a robust platform. In addition to the thousands of
training and testing cycles done in our cross-validation experi-
ments, it has been incorporated into the Broad Institute’s anno-
tation pipeline for eukaryotic genomes and is currently being
used on Phytophthora infestans, Fusarium oxysporum, and Culex
pipiens quinquefasciatus. Conrad is freely available under a GPL
open-source license and is highly customizable. A user can re-
train Conrad for another species, reconfigure Conrad to use a
different combination of features and training method, write en-
tirely new features, or define a new measure of gene accuracy for
the MEA algorithm.

Designing improved feature sets is one avenue for further
improvements in gene prediction accuracy. In this paper, we be-
gan the development of Conrad with a core set of features inher-
ited from phylo-GHMMs. Thus, we started with a state-of-the-art
model and observed the benefits of discriminative training by
directly comparing the GHMM and SMCRF models. This ap-
proach of seeding discriminative models with features derived
from generative models has been used in other fields (Ulusoy and
Bishop 2005). In some cases, the generative features were even-
tually replaced with purely discriminative features that provide

A. nidulans

et al. 2005). Finally, we are creating a
parallel version that can utilize a compute
cluster to rapidly train on large data sets.

Although not pursued in this paper,
one can incorporate long-range biologi-
cal interactions in a SMCRF by writing
feature functions that depend on the en-
tire set of observations. For example, the
presence of upstream CpG islands is of-
ten associated with gene promoters, and
one could capture this effect with a feature that is 1 at the start of
transcription if there is a CpG island within 2 kb upstream, and
0 otherwise. This type of interaction is impossible to incorporate
in a GHMM without significantly altering the model and increas-
ing the number of states. Other long-range signals that may be
useful for gene prediction are exonic splicing enhancers, chro-
matin methylation patterns, transcription assays using genomic
tiling arrays, and DNase hypersensitive sites.

As features are added to include more information, it be-
comes increasingly important to ensure that the training set is
representative of the test set. For example, using the EST features
and all of the EST data on the C. neoformans reference set led to
a model that performed very well in cross-validation but poorly
on an entire chromosome. We addressed this problem by ran-
domly deleting half the EST evidence in the training set. This
improved performance in the whole chromosome test signifi-
cantly, but the elevated number of short genes suggests that
some bias still exists. Since most training sets today contain only
positive examples, this issue will be especially relevant for fea-
tures that provide negative evidence, such as repeat regions or
known RNA genes that indicate a given region of sequence is
likely not a protein-coding gene.

SMCREF training algorithms are another avenue for improve-
ment. In terms of accuracy, we might already be in the realm of
diminishing marginal gains: Holding the feature set constant,
the models trained discriminatively all had prediction accuracies
greater than the corresponding GHMM but indistinguishable
from each other (with the possible exception of MEA-splice hav-
ing better performance on a full chromosome of C. neoformans).
However, using a customizable definition of accuracy, as in MEA,
may be useful in reducing the impact of low-confidence data or
including alternate splice forms in the training data, perhaps by
considering several variants equally acceptable during training.
Additionally, entirely different training approaches can be used,
including Maximum Parse Accuracy (Gross et al. 2006) and mar-
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gin-based approaches (Taskar et al. 2003; Raetsch and Sonnen-
burg 2006; Bernal et al. 2007).

Conrad shows that the theoretical advantages of SMCRFs
over GHMMs translate into improved performance and more
flexible models, removing fundamental obstacles that have led to
the persistent gap between the performance of automated and
manual annotation methods. Conrad’s initial results presented
here already outperform the best available gene predictors on
two very diverse fungal genomes. However, we believe the most
significant contribution of this work is the potential it creates for
future improvements in gene prediction. Conrad provides a solid
theoretical framework with a robust open-source implementa-
tion that allows any researcher to add new data and features to
improve an already state-of-the-art automated gene caller.

Acknowledgments

We thank Michael Brent and Randall Brown for providing us
with the most up-to-date results on Twinscan and Roderic Guigd
and Francisco Camara for retraining GenelD. We thank Richard
Durbin for recognizing the connections to discriminative train-
ing approaches in the early development of gene prediction. We
also thank Antonios Rokas for providing us with the phyloge-
netic tree for Aspergillus. We thank the anonymous reviewers for
their comments, particularly for suggestions on comparing and
contrasting our work with the very recent CRAIG paper, and for
helping us clarify the theoretical advantages of SMCRFs relative
to GHMMs. This work was supported by grant u54-HG003067
from the NHGRI, HHSN2662004001C from the NIAID, and
MCB-0450812 from the NSF.

References

Allen, J.E. and Salzberg, S.L. 2005. JIGSAW: Integration of multiple
sources of evidence for gene prediction. Bioinformatics 21: 3596-3603.

Allen, J.E., Pertea, M., and Salzberg, S.L. 2004. Computational gene prediction
using multiple sources of evidence. Genome Res. 14: 142-148.

Bernal, A., Crammer, K., Hatzigeorgiou, A., and Pereira, F. 2007. Global
discriminative learning for higher-accuracy computational gene
prediction. PLoS Comput. Biol. 3: e54. doi:
10.1371/journal.pcbi.0030054.

Blanchette, M., Kent, W J., Riemer, C., Elnitski, L., Smit, A.F.A., Roskin,
K.M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D., et al.
2004. Aligning multiple genomic sequences with the threaded
blockset aligner. Genome Res. 14: 708-715.

Blanco, E., Parra, G., and Guigd, R. 2003. Using geneid to identify
genes. In Current protocols in bioinformatics (ed. A.D. Baxevanis), Vol.
1, pp. 1-26. John Wiley, New York.

Brejova, B., Brown, D.G., Li, M., and Vinar, T. 2005. ExonHunter: A
comprehensive approach to gene finding. Bioinformatics 21 (Suppl.
1):i57-i65.

Brown, R.H., Gross, S.S., and Brent, M.R. 2005. Begin at the beginning:
Predicting genes with 5" UTRs. Genome Res. 15: 742-747.

Burge, C. and Karlin, S. 1997. Prediction of complete gene structures in
human genomic DNA. ]J. Mol. Biol. 268: 78-94.

Burset, M. and Guigd, R. 1996. Evaluation of gene structure prediction
programs. Genomics 34: 353-367.

Culotta, A., Kulp, D., and McCallum, A. 2005. Gene prediction with
conditional random fields. Technical Report UM-CS-2005-028.
University of Massachusetts, Amherst.

Elsik, C.G., Mackey, A.J., Reese, J.T., Milshina, N.V., Roos, D.S., and
Weinstock, G.M. 2007. Creating a honey bee consensus gene set.
Genome Biol. 8: R13. doi: 10.1186/gb-2007-8-1-r13.

Gross, S.S. and Brent, M.R. 2006. Using multiple alignments to improve
gene prediction. J. Comput. Biol. 13: 379-393.

Gross, S., Russakovsky, O., Do, C.B., and Batzoglou, S. 2006. Training
conditional random fields for maximum Parse accuracy. In Advances
in neural information processing systems, pp. 529-536. MIT Press,
Vancouver, Canada.

Guigo, R., Flicek, P., Abril, J.F., Reymond, A., Lagarde, ]J., Denoeud, F.,
Antonarakis, S., Ashburner, M., Bajic, V.B., Birney, E., et al. 2006.
EGASP: The human ENCODE genome annotation assessment
project. Genome Biol. 7 (Suppl. 1): S2. doi: 10.1186/gb-2006-7-s1-s2.

Harrow, J., Denoeud, F., Frankish, A., Reymond, A., Chen, C.-K., Chrast,
J., Lagarde, J., Gilbert, J.G.R., Storey, R., Swarbreck, D., et al. 2006.
GENCODE: Producing a reference annotation for ENCODE. Genome
Biol. 7 (Suppl. 1): S4. doi: 10.1186/gb-2006-7-s1-s4.

Howe, K.L., Chothia, T., and Durbin, R. 2002. GAZE: A generic
framework for the integration of gene-prediction data by dynamic
programming. Genome Res. 12: 1418-1427.

Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E.S. 2003.
Sequencing and comparison of yeast species to identify genes and
regulatory elements. Nature 423: 241-254.

Korf, I. 2004. Gene finding in novel genomes. BMC Bioinformatics 5: 59.
doi: 10.1186/1471-2105-5-59.

Korf, I, Flicek, P., Duan, D., and Brent, M.R. 2001. Integrating genomic
homology into gene structure prediction. Bioinformatics 17 (Suppl.
1): S140-S148.

Lafferty, J., McCallum, A., and Pereira, F. 2001. Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data. In Proceedings of the 18th International Conference on Machine
Learning, pp. 282-289. Williams College, Williamstown, MA.

Loftus, B.J., Fung, E., Roncaglia, P., Rowley, D., Amedeo, P., Bruno, D.,
Vamathevan, J., Miranda, M., Anderson, LJ., Fraser, J.A., et al. 2005.
The genome of the basidiomycetous yeast and human pathogen
Cryptococcus neoformans. Science 307: 1321-1324.

McAuliffe, J.D., Pachter, L., and Jordan, M.I. 2004. Multiple-sequence
functional annotation and the generalized hidden Markov
phylogeny. Bioinformatics 20: 1850-1860.

Ng, A. and Jordan, M. 2001. On discriminative vs. generative classifiers:
A comparison of logistic regression and naive Bayes. Adv. Neural Inf.
Process. Syst. 2: 841-848.

Parra, G., Blanco, E., and Guigd, R. 2000. GenelD in Drosophila. Genome
Res. 10: 511-515.

Pedersen, J.S. and Hein, J. 2003. Gene finding with a hidden Markov
model of genome structure and evolution. Bioinformatics 19: 219-227.

Raetsch, G. and Sonnenburg, S. 2006. Large scale hidden semi-Markov
SVMs. In Advances in neural information processing systems, pp.
1161-1168. MIT Press, Vancouver, Canada.

Salamov, A.A. and Solovyev, V.V. 2000. Ab initio gene finding in
Drosophila genomic DNA. Genome Res. 10: 516-522.

Sarawagi, S. and Cohen, W.W. 2005. Semi-markov conditional random
fields for information extraction. Adv. Neural Inf. Process. Syst.
17:1185-1192.

Siepel, A. and Haussler, D. 2004. Combining phylogenetic and hidden
Markov models in biosequence analysis. /. Comput. Biol. 11: 413-428.

Stanke, M., Tzvetkova, A., and Morgenstern, B. 2006. AUGUSTUS at
EGASP: Using EST, protein and genomic alignments for improved
gene prediction in the human genome. Genome Biol. 7 (Suppl.

1): S11. doi: 10.1186/gb-2006-7-s1-s11.

Stormo, G.D. and Haussler, D. 1994. Optimally parsing a sequence into
different classes based on multiple types of evidence. Proc. Int. Conf.
Intell. Syst. Mol. Biol. 2: 369-375.

Sutton, C. and McCallum, A. 2006. An introduction to conditional
random fields for relational learning. In Introduction to statistical
relational learning (eds. L. Getoor and B. Taskar), pp. 1-35. MIT Press,
Cambridge, MA.

Taskar, B., Guestrin, C., and Koller, D. 2003. Max-margin Markov networks.
Neural Information Processing Systems Conference Vancouver, Canada.

Tenney, A.E., Brown, R.H., Vaske, C., Lodge, J.K., Doering, T.L., and
Brent, M.R. 2004. Gene prediction and verification in a compact
genome with numerous small introns. Genome Res. 14: 2330-2335.

Ulusoy, I. and Bishop, C.M. 2005. Generative versus discriminative
methods for object recognition. In Proceedings of CVPR 05, pp.
258-265. San Diego, CA.

Vinson, J., DeCaprio, D., Pearson, M., Luoma, S., and Galagan, J. 2006.
Gene prediction using semi-Markov conditional random fields. In
Advances in Neural Information Processing Systems, pp. 1141-1148.
MIT Press, Vancouver, Canada.

Wallach, H. 2003. Efficient training of conditional random fields. In
Proceedings of the 6th Annual CLUK Research Colloquium. CLUK,
Edinburgh, Scotland.

Wei, C. and Brent, M.R. 2006. Using ESTs to improve the accuracy of
de novo gene prediction. BMC Bioinformatics 7: 327. doi: 10.1186/
1471-2105-7-327.

Yeh, R.F., Lim, L.P., and Burge, C.B. 2001. Computational inference of
homologous gene structures in the human genome. Genome Res.
11: 803-816.

Zhu, C., Byrd, R.H., Lu, P., and Nocedal, J. 1994. L-BFGS-B: A limited
memory FORTRAN code for solving bound constrained optimization
problems. Technical Report EECS Department, Northwestern
University, Evanston, Illinois.

Received April 4, 2007; accepted in revised form June 18, 2007.

1398 Genome Research
www.genome.org





