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The V1/V2 region and the V3 loop of the human immunodeficiency virus type | (HIV-1) envelope (Env) protein are
targets for neutralizing antibodies and also play an important functional role, with the V3 loop largely determining
whether a virus uses CCR5 (R5), CXCR4 (X4), or either coreceptor (R5X4) to infect cells. While the sequence of V3 is
variable, its length is highly conserved. Structural studies indicate that V3 length may be important for interactions
with the extracellular loops of the coreceptor. Consistent with this view, genetic truncation of the V3 loop is typically
associated with loss of Env function. We removed approximately one-half of the V3 loop from three different HIV-1
strains, and found that only the Env protein from the R5X4 strain R3A retained some fusion activity. Loss of V1/V2
(AV1/V2) was well tolerated by this virus. Passaging of virus with the truncated V3 loop resulted in the derivation of a
virus strain that replicated with wild-type kinetics. This virus, termed TA1, retained the V3 loop truncation and
acquired several adaptive changes in gp120 and gp41. TA1 could use CCR5 but not CXCR4 to infect cells, and was
extremely sensitive to neutralization by HIV-1 positive human sera, and by antibodies to the CD4 binding site and to
CD4-induced epitopes in the bridging sheet region of gp120. In addition, TA1 was completely resistant to CCR5
inhibitors, and was more dependent upon the N-terminal domain of CCR5, a region of the receptor that is thought to
contact the bridging sheet of gp120 and the base of the V3 loop, and whose conformation may not be greatly affected
by CCRS5 inhibitors. These studies suggest that the V3 loop protects HIV from neutralization by antibodies prevalent in
infected humans, that CCR5 inhibitors likely act by disrupting interactions between the V3 loop and the coreceptor,
and that altered use of CCR5 by HIV-1 associated with increased sensitivity to changes in the N-terminal domain can be
linked to high levels of resistance to these antiviral compounds.
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Introduction

The envelope (Env) protein of human immunodeficiency
virus type 1 (HIV-1) has an impressive ability to adapt in the
face of an evolving immune response, enabling it to avoid
recognition by neutralizing antibodies while retaining the
ability to mediate viral entry through receptor binding and
the induction of membrane fusion [1-3]. Structural features
that contribute to immune evasion include an extensive array
of N-linked carbohydrate structures that are relatively non-
immunogenic, conformational flexibility, and the presence of
surface-exposed variable loops that can undergo extensive
antigenic variation and still shield more conserved regions of
Env that are involved in receptor binding (reviewed in [1]).
The V1/V2 variable loop region varies greatly in both amino
acid sequence and length [4,5]. Functionally, V1/V2 appears
to play a minor role in governing interactions between Env
and coreceptors, and its genetic ablation in both HIV-1 and
simian immunodeficiency virus is sometimes tolerated with-
out a significant loss of Env function [6-9]. However, genetic
removal of the VI1/V2 loop is associated with enhanced
neutralization of virus by antibodies to the CD4 binding site
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as well as by antibodies to CD4-induced epitopes that overlap
with the conserved coreceptor binding site in the bridging
sheet [6,9], a four-stranded anti-parallel beta sheet formed
during CD4 binding that connects the inner and outer
domains of the gp120 core [10,11].

In contrast to the V1/V2 region, the V3 loop plays an
important functional role in viral entry, being the primary
determinant of whether CCR5 (R5), CXCR4 (X4), or both
CCR5 and CXCR4 (R5X4) can be used as coreceptors to
initiate infection (reviewed in [12]). Although the precise
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Author Summary

The envelope protein of HIV-1 is responsible for binding virus to the
surface of cells and mediating viral entry. Viral entry can be
prevented by neutralizing antibodies that bind to envelope, and by
small molecule inhibitors that bind to viral receptors on the cell
surface, such as CCR5. HIV may acquire resistance to these small
molecule inhibitors, several of which are being used in clinical trials
to treat HIV-infected individuals, through resistance mechanisms
that are not well understood. In addition, broadly neutralizing
antibodies are rare—the envelope protein possesses structural
features that limit antibody binding. We made a partial deletion in a
region of envelope that interacts with viral receptors, and which is
also widely believed to act as a shield against neutralizing
antibodies. Normally, an envelope with such a modification would
have total loss of function. However, by passaging virus with the
partially deleted envelope in vitro, the envelope acquired adaptive
mutations that restored function. Virus with the adapted envelope
was highly sensitive to neutralizing antibodies and so may serve as a
platform for immunization. This envelope also exhibited complete
resistance to small molecule inhibitors that bind to the viral receptor
CCR5, and lends insight into a mechanism of drug resistance by
which the virus interacts with viral receptors on the cell surface in a
novel manner.

mechanism by which the V3 loop governs coreceptor
interactions is not clear, sequence motifs commonly associ-
ated with CXCR4 usage, including the presence of basic
residues at positions 11 and 25 within the V3 loop, have been
identified [13,14]. In addition to sequence motifs, the overall
length of the V3 loop is likely to be important, as most V3
sequences are 34 or 35 residues in length [15,16]. Structural
studies have shown that following CD4 binding, the V3 loop
protrudes from the gp120 core by 30 A, with this length likely
enabling it to interact with the viral coreceptor following
CD4 binding [17]. The V3 loop is also a target for neutralizing
antibodies, and like the V1/V2 region plays a role as an
immunological shield, protecting conserved regions in Env
that would otherwise be a target for more broadly neutraliz-
ing antibodies [6,18,19]. Indeed, genetic truncation of the V3
loop is associated with enhanced binding of antibodies to the
CD4 binding site as well as to CD4-induced epitopes [20-22].

Given the functional importance of the V3 loop, it is not
surprising that its genetic ablation is usually associated with
loss of function [9,20-23]. Recently, we have been able to
remove both the V1/V2 region and the V3 loop from a CD4-
independent HIV-2 Env through a step-wise process of
mutation followed by adaptation, obtaining a replication
competent virus (G. Lin, A. Bertolotti-Ciarlet, B. Haggarty, J.
Romano, K. McGeehan, et al., unpublished data). In this study,
we sought to develop fully functional HIV-1 Envs bearing
significant deletions in the V3 loop to probe the role of this
domain in protecting virus from neutralization and in
coreceptor interactions. We found that one of three HIV-1
Env proteins tested, the R5X4 Env R3A [24,25], could tolerate
loss of 15 residues from the distal portion of its V3 loop. Our
results show not only that the V3 loop plays an important role
in protecting HIV-1 from neutralization, but that altered use
of CCR5 by the in vitro—adapted virus results in high levels of
resistance to small molecule CCRb inhibitors, several of which
are under clinical development.
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Results

Derivation of a Replication Competent HIV-1 Strain
Containing a 15-Amino Acid Deletion within Its V3 Loop

To produce a replication competent HIV-1 strain lacking
much of its V3 loop, we kept the following principles in mind.
First, the effects of deletions within the V1/V2 region on Env
function are context dependent. In some instances, signifi-
cant deletions within this region do not affect Env function,
whereas in other instances Env function is diminished or lost
[6-9]. We reasoned that this might also hold true for
truncations within the V3 loop. Therefore, we introduced
V3 loop deletions into three different, primary HIV-1 strains:
the R5X4 strains R3A and DH12, and the X4 strain TYBE.
Second, while previous studies have shown that genetic
ablation of the V3 loop typically abrogates Env function, in
one instance removal of three amino acids from each arm of
the V3 stem from an R5X4 virus resulted in a virus that lost
the ability to use CCR5, but could still mediate infection of
cells expressing CD4 and CXCR4 [26]. In another study, 23
residues were removed from the center of the 35 amino acid-
long V3 loop in the lab-adapted X4 virus strain HXBc2,
resulting in an Env protein that could mediate entry into
Jurkat cells approximately 10-fold less efficiently than the
wild-type (WT) virus Env protein [22]. Finally, we have been
able to derive a replication competent HIV-2 from a lab-
adapted strain via a process of partial V3 loop deletions
followed by viral adaptation in vitro (G. Lin, A. Bertolotti-
Ciarlet, B. Haggarty, J. Romano, K. McGeehan, et al,
unpublished data). Therefore, we introduced different sized
deletions in the V3 loop of each virus strain. Specifically, we
removed nine, 15, or 21 residues from the center of the 35
amino acid-long V3 loop, replacing the deleted region with a
GAG linker sequence. Equivalent portions in each arm of the
V3 loop stem were retained, and this information was used to
describe each mutant: AV3(12,12) contains the first and last
12 residues of the V3 loop (excluding the Cys residues that
mark the beginning and end of the V3 loop) separated by a
GAG sequence, AV3(9,9) retains the first and last nine
residues of the V3 loop separated by a GAG sequence, and
AV3(6,6) the first and last six residues of the V3 loop
separated by a GAG sequence.

Envs containing V3 loop deletions were tested for their
ability to mediate cell-cell fusion. We reasoned that Envs
unable to mediate cell-cell fusion would also not function in
the context of viral infection. To do this, Envs were
transiently expressed in quail QT6 cells that were then mixed
with QT6 cells expressing CD4 alone, CD4 and CCR5, or CD4
and CXCR4. In this assay, fusion between effector and target
cells results in the production of readily quantifiable
luciferase activity [27]. We found that DH12 and TYBE Env
proteins were rendered non-functional by even the smallest
of the V3 loop deletions in this assay (unpublished data). We
also found that these Envs lost fusion activity when their V1/
V2 loops were removed. In contrast, HIV-1 R3A AV3(9,9)
(Figure 1A) was able to support cell fusion at levels that were
approximately 25% of the WT protein, but only with cells
expressing CD4 and CCR5 (Figure 1B). Thus, the ability to
utilize CXCR4 appeared to be lost as a result of this V3 loop
truncation. Larger deletions in the V3 loop were not
tolerated. In contrast, removal of the entire V1/V2 loop from
R3A had little effect on membrane fusion activity, and
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Figure 1. HIV-1 Env Constructs and the Effects of Env Variable Loop
Deletions on Fusion Activity

(A) A schematic representation of the R3A, AV1/V2 (deletion of residues
126-196, but retains the cysteines at the base of the loops), AV3(9,9), and
TA1 constructs is shown. Amino acid changes in the adapted TA1 Env are
indicated, including R254K and T342A in gp120, a mutation in the three
amino acid linker introduced into the truncated V3 loop (GAG to GVG), a
deletion of residues 185-188 in the V2 loop, and an A to V mutation in
the amino terminal residue of gp41. FP, fusion peptide.

(B) The effects of Env variable loop deletions on coreceptor use was
determined in cell-cell fusion assays, in which cells expressing the
indicated Envs were incubated with cells expressing CD4 and CXCR4
(white bars) or CCR5 (black bars). The results are expressed as a
percentage of parental R3A Env, and represent the average of 21
independent experiments.

doi:10.1371/journal.ppat.0030117.g001

actually enhanced fusion on cells expressing CCRb (Figure
1B). These results confirm that deletion of the V1/V2 loop on
Env function is context dependent, and that significant
deletions within the V3 loop can sometimes be tolerated.
To determine if the reduced cell fusion activity exhibited
by AV3(9,9) was sufficient to support viral infection, we
introduced this Env, as well as the parental R3A Env, into an
NL4-3 provirus. Since virus attachment to target cells is often
rate-limiting for viral infection in vitro, plasmid DNA was
electroporated into SupT1.CCR5.DCSIGNR cells, which
stably express CXCR4, CCR5, and the C-type lectin DC-
SIGNR. DC-SIGNR mediates efficient attachment of HIV to
the cell surface, and thus can boost infection efficiency by
accelerating the rate-limiting step of virus attachment [28].
Cells were electroporated twice, then passaged for an addi-
tional 7 wk with regular addition of fresh SupT1.CCR5.DC-
SIGNR cells. After 8 wk of coculture, a spreading infection
was established, with over 80% of the cells positive for p24 by
immunofluorescence. After 11 subsequent cell-free passages,
we compared the replication kinetics of the viral swarm with
WT R3A virus on SupT1.CCR5.DCSIGNR cells, and found
that the passaged virus replicated with WT kinetics. Thus, we
concluded that partial deletion of the V3 loop followed by
cell passaging resulted in the acquisition of compensatory
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Figure 2. Replication of Virus with R3A Parental, Mutant, and Adapted
Envs in Supt1.CCR5.DCSIGNR Cells

Cells were infected with 5 or 50 ng of the indicated replication
competent virus, and culture supernatants sampled at the times
indicated for RT activity. Data are representative of two independent
experiments.

doi:10.1371/journal.ppat.0030117.9002

mutations that restored Env function to near WT levels, as
judged by replication efficiency on SupT1.CCR5.DCSIGNR
cells (Figure 2 and unpublished data). Virus with the AV1/V2
Env replicated somewhat more slowly than R3A. Bulk
sequencing of the AV1/V2 virus population did not indicate
that any dominant adaptive mutations occurred during
passage in tissue culture.

Identification of a Functional Env Protein Bearing a V3
Loop Deletion

Individual env clones were obtained from the tissue
culture-adapted (TA) viral swarm and tested for functionality
in the cell-cell fusion assay. All clones retained the V3(9,9)
deletion. We identified a number of Envs that mediated
fusion with cells expressing CD4 and CCR5 more efficiently
than the parental AV3(9,9) Env (clone TA1, Figure 1B). Fusion
with cells expressing CD4 and CXCR4 was below the limit of
detection for all Envs containing the V3 loop deletion. We
introduced one of these tissue culture-adapted env clones,
TA1, back into a provirus and found that the resulting virus
replicated as efficiently as WT R3A virus on SupT1.CCR5.DC-
SIGNR cells (Figure 2). In contrast, the AV3(9,9) virus
replicated very poorly.

Sequencing of the TA1 Env as well as four additional Env
clones that supported cell fusion with enhanced efficiency
relative to the parental, non-adapted AV3(9,9) Env revealed
two single amino acid changes and a small deletion in the V2
region that were present in all clones, as well as several
mutations unique to individual Envs. Together, these com-
mon mutations resulted in the loss of an N-linked glyco-
sylation site due to a four-amino acid deletion (residues 185-
188) in the V2 region, an A to V mutation in the GAG V3
linker, and a change from a highly conserved A to a V in the
N-terminal residue of gp4l. In TA1, there were two addi-
tional conservative amino acid mutations, R254K in con-
served region 2 (C2), and T342A in C3 that resulted in the loss
of a second N-linked glycosylation site.

Tropism of a Virus Bearing a V3 Loop Deletion

Because extensive cell passaging was required to derive
virus that could replicate well despite losing much of its V3
loop, it was possible that the adaptation process may have
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Table 1. Tropism of Viruses with or without Variable Loop
Deletions

Cell Type Env
R3A TA1 AV1/V2 AV3(9,9)

SupT1® +++° - +H+ -
MT-2° o+ - - _
Molt-4 clone 8 + - _ _
U87.CD4.CXCR4 ++ — 4+ _
SupT1.CCR5.DCSIGNR? b + + _
Jurkat.tat.CCR5° ++ — + _
CEM.CCR5? ++ +¢ = _
U87.CD4.CCR5 ++ - _ _

Cell lines express endogenous CXCR4.

PIncrease in RT value over background (day 0); + = 1 log, ++ = 2 logs, +++ = 3 logs. —
indicates no increase in value over background.

“Increase in RT value only after 14 d in culture.

doi:10.1371/journal.ppat.0030117.t001

altered viral tropism, and that TAl might be uniquely
adapted to grow on SupT1.CCR5.DCSIGNR cells. We found
that in contrast to the WT R3A virus, the TA1 virus was
unable to infect cell lines that expressed only CD4 and
CXCR4, including SupTl, MT-2, Molt-4 clone 8, and
US87.CD4.CXCR4, which is consistent with the failure of
TA1 Env to mediate fusion with quail cells expressing CD4
and CXCR4 (Table 1). TA1 was able to mediate infection of
cell lines expressing CD4 and CCRb, including SupT1.CCRb5
cells lacking DC-SIGNR, Jurkat.tat. CCR5, and U87.CD4.CCRb5.
We were unable to detect a productive infection in human
monocyte-derived macrophages (MDMs) or CD4+ T cells with
TAI1, whereas the R3A virus can use CCR5 or CXCR4 to enter
MDMs, and uses CXCR4 as the preferred coreceptor for entry
into CD4+ T cells (Yanji Yi, personal communication).

Although the AV1/V2 Env could mediate fusion with quail
QT6 cells expressing either CCR5 or CXCR4, infection with
AV1/V2-pseudotyped virus or replication competent virus
was cell line-dependent. There was robust replication on the
CXCR4-expressing cell lines SupT1 and U87.CD4.CXCR4, but
no detectable replication in MT-2 or Molt-4 clone 8 cells.
Infection of 293.CD4.CCRb5 cells, which express low levels of
endogenous CXCR4, could be completely blocked by the
CCR5 antagonist CMPD167, indicating that only CCR5 was
used for entry despite the presence of an alternate coreceptor
(unpublished data).

Functional Analysis of TA1

To study the functional properties of TA1 more carefully,
we produced virus pseudotypes so that single cycle viral
infection assays could be performed quickly and in a
quantitative fashion. Deletions in the V1/V2 region of Env
can be associated with enhanced sensitivity of virus to
antibody-mediated neutralization [6,9]. To determine if
truncations in the V3 loop impacted virus neutralization,
we incubated R3A, AV1/V2, and TA1 virus pseudotypes with
serial dilutions of four different HIV-positive human sera
before infecting human 293 cells expressing CD4 and CCRb.
As expected, virus pseudotypes bearing the WT R3A Env were
neutralized by human sera inefficiently, and then only at
relatively high sera concentrations (Figure 3). In contrast,
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virions bearing the AV1/V2 Env were efficiently neutralized
by three of the four HIV-positive human sera samples, while
virions bearing the TA1l Env were the most neutralization
sensitive of all, being efficiently neutralized by all human sera
samples tested. To determine if the sensitivity of TA1 virions
to neutralization was due to truncation of the V3 loop or due
to the presence of the adaptive mutations, we compared the
sensitivity of TA1 virions to those bearing the unadapted
AV3(9,9) truncation. However, since AV3(9,9) virions entered
cells inefficiently, the viral inoculum had to be increased 5-
fold to obtain a sufficiently high signal. When this was done,
we found that AV3(9,9) virions were also neutralization
sensitive, though not quite to the same extent as TA1 virions
(Figure 3D).

To evaluate the mechanism underlying the markedly
enhanced sensitivity of TA1 to neutralization by HIV-positive
human sera, we performed neutralization assays with several
well-defined, broadly neutralizing monoclonal antibodies
(MAbs). MAb IgG b12, which binds to gpl120 and prevents
subsequent binding to CD4 [29,30], neutralized TA1 approx-
imately 100-fold more efficiently than it neutralized R3A,
AV1/V2, or the lab-adapted X4 virus strain LAI (Figure 4A).
MAb 4E10, which binds to an epitope in the membrane
proximal region of gp41 [31], failed to neutralize R3A
efficiently, but exhibited modestly enhanced neutralization
activity against both TAl and AV1/V2 (Figure 4B). We also
tested the ability of MAb 17b to neutralize our panel of
viruses. MAb 17b binds to a CD4-induced epitope in gp120
that includes a portion of the bridging sheet [32]. Although
antibodies to this region appear to be relatively common in
sera from HIV-infected individuals, they fail to neutralize
primary HIV-1 isolates [33]. However, viruses lacking the V1/
V2 loops are susceptible to 17b-mediated neutralization, as
are CD4-independent HIV-1 strains in which the 17b epitope
is present in the absence of CD4 binding [6,9,34]. We found
that 17b failed to neutralize R3A or LAIL but did neutralize
AV1/V2. Moreover, TA1 was at least 100-fold more sensitive
to neutralization by 17b than the AV1/V2 virus (Figure 4C).
Thus, truncation of the V3 loop rendered HIV-1 R3A Env
extremely sensitive to antibody mediated neutralization, with
antibodies to the CD4 binding site and the bridging sheet in
gp120 in particular showing markedly enhanced neutraliza-
tion activity against this Env.

Sensitivity of TA1 Virus to Entry Inhibitors

Since the V3 loop plays an important role in mediating
interactions between Env and coreceptors, we hypothesized
that truncating this functionally important region could
influence viral sensitivity to entry inhibitors. We have found
that similar deletions of the V3 loop in a dual-tropic, lab-
adapted HIV-2 isolate confers resistance to both R5 and X4
antagonists (G. Lin, A. Bertolotti-Ciarlet, B. Haggarty, ]J.
Romano, K. McGeehan, et al., unpublished data). Compared
to the parental R3A virus, we found that virus pseudotypes
bearing the AV1/V2 Env protein were approximately 5-fold
more sensitive to inhibition by the fusion peptide inhibitor
enfuvirtide, while the TA1 virus was even more sensitive
(Figure 5A). Changes in gpl20 can influence sensitivity to
enfuvirtide, with one mechanism being the alteration of the
rate of membrane fusion [35,36]. Thus, it is possible that loss
of the entire V1/V2 loop or a portion of the V3 loop could
reduce the rate of Env-mediated membrane fusion by
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Figure 3. Sensitivity of Parental, Mutant, and Adapted Envs to Neutralization by HIV Patient Sera

(A-D) Serum from four HIV-infected individuals who were not on antiretroviral therapy and had CD4 counts >400 were tested for neutralization activity
by limiting dilution. Virus pseudotypes bearing the indicated Env were incubated with serial dilutions of patient sera for 1 h, added to 293.CD4.CCR5
cells, and the amount of luciferase activity measured 3 d later. The amount of luciferase activity obtained for each virus pseudotype in the absence of
serum was set to 100%. The results shown are the average for three or four independent experiments, = standard error of the mean.

doi:10.1371/journal.ppat.0030117.g003

reducing affinity for coreceptor and/or the efficiency of gp41
triggering, resulting in prolonged exposure of the enfuvirtide
binding site in the HR1 region of gp41.

We also tested the sensitivity of TA1 and AV1/V2 to three
different small molecule CCR5 inhibitors (CMPD 167,
aplaviroc, and AD101) using human 293.CD4.CCR5 cells as
targets. When used singly, these compounds inhibited R3A
infection by approximately 80%, with the residual infectivity
resulting from the presence of endogenous, low levels of
CXCR4 expressed on the human 293 cells that could be
utilized by this R5X4 virus. This CXCR4- dependent entry
could be efficiently blocked by the small molecule inhibitor
AMD3100 (unpublished data). Thus, a high concentration of
AMD3100 was included to suppress this background level of
infection when the sensitivity of R3A virions to CCRb5
inhibitors was being determined.

Virus pseudotypes bearing the AV1/V2 Env protein used
CCR5 to enter 293.CD4.CCR5 cells, and were 5- to 10-fold
more sensitive than the parental R3A to inhibition by the
panel of CCR5 inhibitors (Figure 5B, 5D, and 5F). In contrast,
TAT virus pseudotypes were completely resistant to the CCR5
inhibitors. Infection was not observed in the absence of
CCR5, confirming that TAI infection was CCR5-dependent
(unpublished data). Interestingly, infection was consistently
enhanced in the presence of high levels of AD101, though not
by aplaviroc. A small degree of enhancement was also
observed when very high levels of CMPD167 were used.
These results suggest that TA1 utilizes the ADI101-bound
conformation of CCR5 more efficiently than CCRb that is not
bound to this allosteric inhibitor. We also performed cell-cell
fusion assays (in the absence of AMD3100) and found that
TAl-mediated cell-cell fusion could only be reduced by 50%
at very high levels of aplaviroc (Figure 5C). Fusion mediated
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by the parental AV3(9,9) Env was also resistant to CCRbH
inhibitors, indicating that truncation of the V3 loop alone
imparted resistance to this class of entry inhibitors (Figure
5C, 5E, and 5G). Together, these results show that a significant
truncation in the V3 loop restricts the tropism of an R5X4
Env such that its fusion activity is CCR5-dependent, greatly
enhances sensitivity to neutralization by human sera and
some MAbs, and results in very high levels of resistance to
CCRDb5 inhibitors.

Altered Use of CCR5 by TA1

The high level of resistance exhibited by TAI to CCRb5
inhibitors suggests that it can efficiently utilize the drug-
bound conformation of the coreceptor. If so, TAl may
interact with CCRb differently than the parental R3A Env. A
model for Env-CCRb interactions is that the V3 loop
interacts with the extracellular loops (ECLs) of the receptor,
particularly ECL2, while the amino terminal domain of CCR5
interacts with the bridging sheet and base of the V3 loop
[17,37]. We hypothesized that the shortened V3 loop would
result in a weaker interaction with CCR5 ECL2, and that to
compensate for this, TA1 would have increased reliance on
the CCR5 N-terminus for entry. To test this hypothesis, we
first used MAbs to the CCR5 N-terminus and ECL2 in
neutralization assays. TA1, but not R3A, was highly sensitive
to neutralization by MAb CTC5 (Figure 6A). CTC5 binds to an
epitope in the distal N-terminus of CCR5, and does not
normally prevent infection by HIV-1 [38]. MAb 2D7, which
binds to CCR5 ECL2 and prevents infection by most HIV
strains [38,39], blocked entry of both TAl and R3A
(unpublished data).

To more finely map the residues in the CCR5 N-terminus
required for TA1 entry, we used a series of CCR5 mutants in
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Figure 4. Sensitivity of Viruses to Neutralization by MAbs

Luciferase reporter viruses pseudotyped with parental, mutant, or
adapted Envs as indicated were incubated with various concentrations
of the MAbs (A) 1gG b12, (B) 4E10, or (C) 17b for 1 h prior to infection of
293.CD4.CCR5 cells. The amount of luciferase activity obtained for each
virus pseudotype in the absence of any antibody was set to 100%. The
results shown are the average for three independent experiments, =
standard error of the mean.

doi:10.1371/journal.ppat.0030117.g004

which single amino acids were changed to alanine. We
concentrated on acidic residues and tyrosines, as sulfation
of tyrosines is important for coreceptor function [40]. 293T
cells were transiently transfected with expression plasmids
for CD4 alone, or CD4 and either WT CCRb5 or a CCRbH
mutant. Cells were infected the following day, and luciferase
assays performed 3 d post-infection. Changes in the tyrosine
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residues at positions 10, 14, and 15 resulted in nearly
complete ablation of viral entry by R3A and TAIl (Figure
6B). However, TA1 entry was much more sensitive to changes
at the extreme amino terminus of CCR5, particularly D2A
and Y3A, confirming the results of the neutralization assay
with CTC5, whose epitope overlaps these amino acids. Thus,
TA1l appears to interact with CCR5 in a manner that is
distinct from the parental R3A Env, in that it is highly
sensitive to changes in the distal portion of the CCR5 N-
terminus and to neutralization by a MAb that binds to this
region.

Discussion

While the V3 loop of HIV Env proteins exhibits extensive
sequence variability, it nonetheless faces significant func-
tional and structural constraints. The V3 loop is the major
determinant of coreceptor choice, with changes in specific
residues being associated with alterations in viral tropism at
the level of CCR5 and CXCR4 recognition, as well as with
viral sensitivity to chemokines and entry inhibitors [35,41-
46]. In addition, it is a target for neutralizing antibodies, and
may help to shield the conserved domains on the gp120 core
from what would otherwise be broadly neutralizing anti-
bodies (reviewed in [12,47]). Structurally, the V3 loop exhibits
little variation in length, with the vast majority of isolates
containing V3 loops that contain 34 or 35 residues [15,16].
This conservation of length may be related to the require-
ment that the V3 loop engage CCR5 or CXCR4 only after Env
has bound CD4, which might position gpl20 a defined
distance from the cell surface and, as a result, from the
coreceptors to which it must bind. The highly conserved
length of the V3 loop stands in marked contrast to the V1/V2
and V4 variable loops, which exhibit extensive sequence and
length variation and play a subsidiary role in viral entry.

In light of these constraints, it is perhaps not surprising
that truncations in the V3 loop are associated with either lost
or significantly reduced Env function [21,26]. In this report,
we introduced significant V3 loop truncations into three
HIV-1 Env proteins, of which only one (R3A) retained
functional competence. Until a larger number of Envs are
examined, it is not possible to predict whether any given virus
will be able to tolerate significant deletions within the V3
loop. R3A was derived from an HIV-positive individual who
progressed to AIDS rapidly, with syncytium-inducing viruses
being detected early after infection [48]. Virus bearing the
R3A Env is dual-tropic and is unusually cytopathic in human
fetal thymus organ cultures and in SCID-hu Thy/Liv mice
[49,50]. R3A can also mediate fusion with SupT1 cells very
efficiently, with this property being due at least in part to the
V1/V2 region [24]. Perhaps because of its highly fusogenic
nature, R3A was better able to tolerate a significant deletion
within its V3 loop.

Truncation of the V3 loop on R3A was associated with
markedly enhanced sensitivity of virus to neutralization by
MAbs directed to the bridging sheet and CD4 binding site
(but not to other epitopes), as well as to neutralization by
HIV-positive human sera samples that were otherwise unable
to neutralize the parental virus with an intact V3 loop. These
findings are reminiscent of observations that CD4-independ-
ent HIV-1 and simian immunodeficiency virus strains are
highly neutralization sensitive [7,34,51-53]. CD4-independent
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Pseudotyped luciferase reporter viruses were used to determine sensitivity to the fusion inhibitor (A) enfuvirtide, or the CCRS5 inhibitors (B) aplaviroc, (D)
AD101, and (F) CMPD167. Sensitivity of Envs to (C) aplaviroc, (E) AD101, and (G) CMPD167 was determined in a cell-cell fusion luciferase reporter assay,
using QT6 effector cells expressing the indicated Env and QT6 target cells expressing CD4 and CCR5. Results are the average of three or four

independent experiments, + standard error of the mean.
doi:10.1371/journal.ppat.0030117.g005

viruses are thought to exist in a conformation that resembles
the CD4-bound conformation. As a result, MAbs to the
bridging sheet can bind to these viruses in the absence of
CD4, resulting in efficient neutralization [34]. The fact that
CD4-independent viruses are easily neutralized by HIV-
positive human sera suggests that antibodies to the bridging
sheet are generated during the course of viral infection, but
cannot bind to and neutralize WT virus [33,52]. Our results
support the widely accepted view that the V3 loop plays an
important role in protecting this conserved domain from
antibody recognition. However, TAl is CD4-dependent.
Thus, upon truncation of the V3 loop, it is possible that
antibodies to the bridging sheet or other conserved domains
on the gp120 core can bind to Env after the virus has bound
CD4 at the cell surface, which suggests that the V3 loop may
function in part as a steric shield, protecting conserved

@ PLoS Pathogens | www.plospathogens.org

1124

domains in gp120 from circulating antibodies even after the
virus has engaged CD4.

The most striking result of our study was that the TA1 virus
was completely resistant to three different CCR5 inhibitors.
In contrast, the use of CCR5 by the parental R3A Env could
be efficiently blocked by CCR5 inhibitors, while the AV1/V2
virus exhibited enhanced sensitivity to these compounds. We
hypothesize that loss of the V1/V2 region is associated with
reduced affinity for CCR5, as this could account not only for
the fact that the AV1/V2 virus is more sensitive than R3A to
CCRb5 inhibitors, but that it exhibits enhanced sensitivity for
enfuvirtide as well. The antiviral activity of enfuvirtide is
subject to kinetic constraints, as the binding site for this drug
in the HRI region of gp41l becomes available only after Env
has engaged CD4 [35,54]. Thus, there is a kinetic window
between CD4 binding and membrane fusion during which
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Figure 6. Altered Dependence on CCR5 N-Terminus for Viral Entry

(A) Luciferase reporter viruses pseudotyped with R3A or TA1 were
incubated with various concentrations of the MAb CTC5 for 1 h prior to
infection of 293.CD4.CCR5 cells. The amount of luciferase activity
obtained for each virus pseudotype in the absence of any antibody
was set to 100%. The results shown are the average for three
independent experiments, = standard error of the mean.

(B) Luciferase reporter viruses pseudotyped with R3A (white bars) or TA1
(black bars) Env were incubated with 293T cells expressing CD4 only,
CD4 and CCRS5, or CD4 and mutant CCR5, as indicated. A2-17 refers to a
CCR5 construct lacking amino acids 2-17. Single amino acid mutants
refer to changes in the CCR5 N-terminus. The amount of luciferase
activity obtained for each virus pseudotype on WT CCR5 was set to
100%. The results shown are the average for three independent
experiments, * standard error of the mean.
doi:10.1371/journal.ppat.0030117.9g006

Env is sensitive to enfuvirtide. All other things being equal,
reduced affinity for coreceptor slows membrane fusion
kinetics, prolongs the exposure of the enfuvirtide binding
site, and enhances sensitivity to enfuvirtide. In addition,
reduction in CCR) affinity in genetically similar Envs
increases sensitivity to CCR5 inhibitors [55].

High-level resistance of HIV-1 isolates to CCR5 inhibitors
is unusual, though there is baseline variability in the
sensitivity of R5 Env and R5X4 Envs to these antiviral
compounds [56-58]. When resistance is selected for in vitro, it
has often been associated with continued use of CCRb5 by the
adapted virus rather than a “coreceptor switch” in which the
ability to use CXCR4 is acquired [43,46,59]. It has been
hypothesized that the small molecule CCR5 inhibitors
operate via an allosteric mechanism, binding to and stabiliz-
ing CCR5 conformations that are not recognized by HIV-1
Env [60,61]. Resistance to CCR5 inhibitors often, but not
always, involves changes in the V3 loop [45,59,62], enabling
virus to utilize the drug-bound conformation of the receptor.
Whether this entails recognition of altered CCR5 conforma-
tions or regions of CCR5 that are not conformationally
altered by the drug, increased affinity for CCR5, or a
combination of mechanisms, is not clear.

How might the complete resistance of TAl to multiple
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CCRb5 inhibitors be explained, and could this provide insight
into how HIV acquires resistance to these antiviral agents in
vivo? It is evident that virus bearing the TA1 Env requires
CCR5 to infect cells. Thus, its resistance to CCR5 inhibitors
cannot be ascribed to the use of CXCR4 or alternative
coreceptors. Rather, TA1 continues to use CCR5 efficiently,
even in the face of very high concentrations of potent CCRH
inhibitors, which indicates that TAl recognizes the drug-
bound conformation of CCRb5. In fact, TA1 may recognize the
drug-bound conformation of CCR5 more efficiently than the
unbound receptor, as we consistently observed enhanced
fusion and infection of CCR5-positive cells by TA1 in the
presence of high concentrations of the CCR5 inhibitor
ADI101 and, to a lesser extent, in the presence of CMPD167
and aplaviroc. A variety of studies suggest that the V3 loop
contacts the extracellular loops of CCR5, with the second
extracellular loop being particularly important for corecep-
tor function (reviewed in [12,63]). CCR5 inhibitors are
thought to bind to a hydrophobic cavity formed by the first,
second, third, and seventh transmembrane domain helices
[64], and may disrupt subsequent binding by MAbs that
recognize epitopes in the second extracellular loop of the
receptor [61]. Thus, CCR5 inhibitors may alter the con-
formation of the extracellular loops of the receptor,
preventing interactions with the V3 loop [65]. Our results
indicate that, faced with the loss of the V3 loop, the TA1 virus
acquired adaptive changes that enhanced its ability to
interact with the N-terminal domain of CCR5, a region of
the receptor that is thought to contact the bridging sheet of
gp120 and the base of the V3 loop and whose conformation
may not be greatly affected by CCRbH inhibitors. If such a
“shift” in how Env recognizes CCRb is typically associated
with inhibitor resistance, then the identification of inhibitors
that perturb the amino terminal domain of CCR5 may prove
to be useful antiviral agents, with viruses such as TAI being
receptor ligands that can be used to identify such com-
pounds.

Materials and Methods

Cells. QT6, 293T/17, and 293.CD4.CCR5 cell lines were cultured in
DMEM supplemented with 10% fetal bovine serum, 60 ug/ml
penicillin, and 100 pg/ml streptomycin (complete DMEM), plus 0.3
mg/ml G418 and 0.2 mg/ml zeomycin where appropriate. U87.CD4,
UK7.CD4.CCR5, and U87.CD4.CXCR4 cell lines were cultured in
complete DMEM plus 0.3 mg/ml G418, and 1 pg/ml puromycin for
cells expressing coreceptor. SupT1, SupT1.CCR5.DCSIGNR, MT-2,
Molt-4 clone 8, and Jurkat.tat. CCR5 cells were cultured in RPMI1640
supplemented with 10% fetal bovine serum, 60 pg/ml penicillin, and
100 pg/ml streptomycin (complete RPMI). SupT1.CCR5.DCSIGNR
cells were made by transfecting SupT1 cells with pCDNA3.1-CCR5
and selecting in 1 pg/ml puromycin. The puromycin-resistant cell
population was transduced with a VSV G-pseudotyped retrovirus
vector, Lenti6-DCSIGNR, and selected in 10 pg/ml blasticidin for 14 d.

Plasmids. All viral env genes used for production of virus
pseudotypes, including 400 nt upstream of the env initiation codon
with the complete coding sequences of tat, rev, and vpu, were cloned
into the Xhol and EcoRlI sites of pHSPG [24]. All viral env genes used
for fusion assays were TOPO cloned into pcDNA3.1 (Invitrogen,
http:/lwww.invitrogen.com/). The QuikChange Site-Directed Muta-
genesis Kit (Stratagene, http://www.stratagene.com/) was used to
construct variable loop deletion mutants. Human CD4, CXCR4, and
CCR5 in pcDNA3.1 and the reporter plasmid encoding luciferase
under the control of a T7 promoter (pT7.luciferase) used in cell-cell
fusion assays have been described previously [27].

R3A was cloned from a rapid progressor with early loss of T cell
homeostasis [25]. It allows entry into both macrophages and T cells, as
well as into both CXCR4- and CCR5-expressing cell lines. DHI12 was
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isolated from an AIDS patient in a screen to identify primary viruses
that could spread with rapid kinetics in chimpanzee PBMCs; it allows
entry into human monocyte-derived macrophages and human T cell
lines [66]. The primary isolate TYBE is an X4-tropic isolated from the
cerebrospinal fluid cell pellet of an individual with AIDS [67].

Cell-cell fusion assay. This assay has been previously described in
detail [27]. Briefly, “target” QT6 cells were cotransfected with CD4
and a coreceptor or control expression plasmid as well as with a
luciferase reporter gene expression plasmid under the control of a T7
promoter (pGEM2 T7-luc; Promega, http:/lwww.promega.com/). QT6
“effector” cells were transfected with Env expression plasmids and
infected with a recombinant vaccinia virus expressing T7 polymerase
(vIF1.1) [68]. Effector cells were added to target cells approximately
18 h post-transfection and the cells allowed to interact at 37 °C for a
period of 7-8 h. Cells were lysed in 0.5% Triton X-100 in PBS,
luciferase substrate was added, and luciferase activity was measured
in a luminometer [69]. The sensitivity of Env-mediated fusion to
aplaviroc, enfuvirtide, CMPD167, and AD101 was determined by
fusing cells in the presence of increasing amounts of inhibitors, as
previously described [35,70].

Adaptation of the TAl Env. Viruses with adapted Envs were
generated bg/ electroporating (250 V; 950 uF) SupT1.CCR5.DCSIGNR
cells (5 X 10" cells in 4-mm cuvettes) with 20 pg of pNL-R3A AV3(9,9).
Viral growth was monitored by immunofluorescence microscopy
using antibodies to p24Gag, and cell-free passage of virus onto
uninfected SupT1.CCR5.DCSIGNR cells was performed when cul-
tures were > 80% for p24 expression. Briefly, a Shandon Cytospin
(1,500 rpm X 5 min; Thermo Fisher Scientific, http://www.thermo.
com/) was used to gently affix cells to a glass slide. Cells were fixed for
10 min in methanol:acetone, then dried and stained with anti-p24
murine MAb (25.4 provided by Jan McClure, University of Wash-
ington) followed by a FITC-conjugated anti-mouse immunoglobulin.
After 8 wk of coculture with uninfected cells, >80% of cells were
positive by immunofluorescence assay. Supernatant was harvested
and used to infect naive SupT1.CCR5.DCSIGNR cells. This first cell-
free passage was designated Passage 1. Cell-free supernatant was
passaged on uninfected cells weekly for 26 wk. To derive env clones
from infected cells, genomic DNA was prepared with QIAamp DNA
Mini kit according to the manufacturer’s instructions (Qiagen, http://
www.qiagen.com/), and env sequences were PCR amplified from
genomic DNA and TOPO cloned into pCR2.1 (Invitrogen). PCR-
amplified envs from proviral sequences were sequenced in bulk for
selected passages. Individual envs were cloned after 11 cell-free
passages.

Viral infection assays. Luciferase reporter pseudotype viruses were
produced in 293T cells by cotransfection with the NL4-3-based
luciferase vector, pNL-luc (E-, Vpr'), and LAIL YU2, R3A, or R3A
mutant envelope expression plasmids as previously described [71,72].
Replication competent viruses were produced in 293T/17 cells by
transfection of an NL4-3-based proviral vector with the HIV env
cloned into the Xhol and EcoRI sites. Viral titer was normalized by
p24 value. For neutralization sensitivity assays, 5 or 10 ng of virus was
incubated with serial dilutions of the MAb or patient serum for 1 h at
37 °C, and spinoculated onto 293.CD4.CCR5 cells [73]. Cells were
subsequently incubated at 37 °C for 3 h, then aspirated and re-fed
with complete DMEM. Cells were assayed for luciferase expression 3 d
post-infection. Sera from HIV patients were obtained from the
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